The Glutamatergic System Regulates Feather Pecking Behaviors in Laying Hens Through the Gut–Brain Axis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Instruments and Biochemical Kits
2.2. Animals and Housing Conditions
2.3. Stress Treatments
2.4. Behavioral Assessments
2.5. Sample Collection
2.6. Quantification of Immune Response Markers
2.7. The 16S rRNA Gene Quantification
2.8. Eukaryotic Transcriptome Sequencing
2.9. Statistical Analysis
3. Results
3.1. Stress-Induced FP Initiates a Cascade of Adverse Physiological and Behavioral Changes in Laying Hens
3.2. Gut Microbiota Diversity and Composition of Laying Hens Are Altered by Stress-Induced FP
3.3. A Variety of Distinct Metabolites Are Identified in the FP Group
3.4. Transcriptome Profiling of Hippocampus and Amygdala Exhibits Distinct Gene Expression in FP Chickens
3.5. Differential Gut Microbiomes Are Associated with Metabolites and Gene Expression Changes
4. Discussion
4.1. The Hippocampal Glutamatergic System Affects FP in Laying Hens
4.2. Gut Microbiota Regulates the Hippocampal Glutamatergic System Influencing FP Behavior in Laying Hens
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodenburg, T.B.; Van Krimpen, M.M.; De Jong, I.C.; De Haas, E.N.; Kops, M.S.; Riedstra, B.J.; Nordquist, R.E.; Wagenaar, J.P.; Bestman, M.; Nicol, C.J. The Prevention and Control of Feather Pecking in Laying Hens: Identifying the Underlying Principles. World’s Poult. Sci. J. 2013, 69, 361–374. [Google Scholar] [CrossRef]
- Cronin, G.M.; Glatz, P.C. Causes of Feather Pecking and Subsequent Welfare Issues for the Laying Hen: A Review. Anim. Prod. Sci. 2021, 61, 990–1005. [Google Scholar] [CrossRef]
- Rodenburg, T.B.; Van Hierden, Y.M.; Buitenhuis, A.J.; Riedstra, B.; Koene, P.; Korte, S.M.; Van Der Poel, J.J.; Groothuis, T.G.G.; Blokhuis, H.J. Feather Pecking in Laying Hens: New Insights and Directions for Research? Appl. Anim. Behav. Sci. 2004, 86, 291–298. [Google Scholar] [CrossRef]
- Fijn, L.B.; Josef van der Staay, F.; Goerlich-Jansson, V.C.; Arndt, S.S. Importance of Basic Research on the Causes of Feather Pecking in Relation to Welfare. Animals 2020, 10, 213. [Google Scholar] [CrossRef]
- Wysocki, M.; Bessei, W.; Kjaer, J.B.; Bennewitz, J. Genetic and Physiological Factors Influencing Feather Pecking in Chickens. World’s Poult. Sci. J. 2010, 66, 659–672. [Google Scholar] [CrossRef]
- Falker-Gieske, C.; Mott, A.; Preuß, S.; Franzenburg, S.; Bessei, W.; Bennewitz, J.; Tetens, J. Analysis of the Brain Transcriptome in Lines of Laying Hens Divergently Selected for Feather Pecking. BMC Genom. 2020, 21, 595. [Google Scholar] [CrossRef]
- de Haas, E.N.; van der Eijk, J.A.J. Where in the Serotonergic System Does It Go Wrong? Unravelling the Route by Which the Serotonergic System Affects Feather Pecking in Chickens. Neurosci. Biobehav. Rev. 2018, 95, 170–188. [Google Scholar] [CrossRef]
- Kops, M.S.; Kjaer, J.B.; Güntürkün, O.; Westphal, K.G.C.; Korte-Bouws, G.A.H.; Olivier, B.; Korte, S.M.; Bolhuis, J.E. Brain Monoamine Levels and Behaviour of Young and Adult Chickens Genetically Selected on Feather Pecking. Behav. Brain Res. 2017, 327, 11–20. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Wang, H.; Li, M.; Rong, J.; Liao, X.; Wu, Y.; Wang, Y. Differences in Peripheral and Central Metabolites and Gut Microbiome of Laying Hens with Different Feather-Pecking Phenotypes. Front. Microbiol. 2023, 14, 1132866. [Google Scholar] [CrossRef]
- Buitenhuis, A.J.; Kjaer, J.B.; Labouriau, R.; Juul-Madsen, H.R. Altered Circulating Levels of Serotonin and Immunological Changes in Laying Hens Divergently Selected for Feather Pecking Behavior. Poult. Sci. 2006, 85, 1722–1728. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, Q.; Hou, Y.; Zhang, X.; Yin, Z.; Cai, X.; Wei, W.; Wang, J.; He, D.; Wang, G.; et al. Bacteroides Species Differentially Modulate Depression-like Behavior via Gut-Brain Metabolic Signaling. Brain. Behav. Immun. 2022, 102, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Mayneris-Perxachs, J.; Castells-Nobau, A.; Arnoriaga-Rodríguez, M.; Martin, M.; de la Vega-Correa, L.; Zapata, C.; Burokas, A.; Blasco, G.; Coll, C.; Escrichs, A.; et al. Microbiota Alterations in Proline Metabolism Impact Depression. Cell Metab. 2022, 34, 681–701. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, F.; Song, Z.-W.; Shao, H.-T.; Bai, D.-Y.; Ma, Y.-B.; Kong, T.; Yang, F. The Influence of Immune Stress Induced by Escherichia coli Lipopolysaccharide on the Pharmacokinetics of Danofloxacin in Broilers. Poult. Sci. 2022, 101, 101629. [Google Scholar] [CrossRef]
- Akinyemi, F.; Adewole, D. Effects of Brown Seaweed Products on Growth Performance, Plasma Biochemistry, Immune Response, and Antioxidant Capacity of Broiler Chickens Challenged with Heat Stress. Poult. Sci. 2022, 101, 102215. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Zhou, Y.; Danbolt, N.C. Glutamate as a Neurotransmitter in the Healthy Brain. J. Neural Transm. 2014, 121, 799–817. [Google Scholar] [CrossRef]
- Meldrum, B.S. Glutamate as a Neurotransmitter in the Brain: Review of Physiology and Pathology. J. Nutr. 2000, 130, 1007S–1015S. [Google Scholar] [CrossRef]
- Dennis, R.L.; Cheng, H.W. Effects of Selective Serotonin Antagonism on Central Neurotransmission. Poult. Sci. 2012, 91, 817–822. [Google Scholar] [CrossRef]
- Riedel, G.; Platt, B.; Micheau, J. Glutamate Receptor Function in Learning and Memory. Behav. Brain Res. 2003, 140, 1–47. [Google Scholar] [CrossRef]
- Karisetty, B.C.; Maitra, S.; Wahul, A.B.; Musalamadugu, A.; Khandelwal, N.; Guntupalli, S.; Garikapati, R.; Jhansyrani, T.; Kumar, A.; Chakravarty, S. Differential Effect of Chronic Stress on Mouse Hippocampal Memory and Affective Behavior: Role of Major Ovarian Hormones. Behav. Brain Res. 2017, 318, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Szo, A.; Zichó, K.; Barth, A.M.; Gönczi, R.T.; Schlingloff, D.; Török, B.; Sipos, E.; Major, A.; Bardóczi, Z.; Sos, K.E.; et al. Median Raphe Controls Acquisition of Negative Experience in the Mouse. Science 2019, 366, eaay8746. [Google Scholar]
- Morais, L.H.; Schreiber, H.L.; Mazmanian, S.K. The Gut Microbiota–Brain Axis in Behaviour and Brain Disorders. Nat. Rev. Microbiol. 2021, 19, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Fetissov, S.O. Role of the Gut Microbiota in Host Appetite Control: Bacterial Growth to Animal Feeding Behaviour. Nat. Rev. Endocrinol. 2017, 13, 11–25. [Google Scholar] [CrossRef]
- He, H.; Zhao, Z.; Xiao, C.; Li, L.; Liu, Y.-E.; Fu, J.; Liao, H.; Zhou, T.; Zhang, J. Gut Microbiome Promotes Mice Recovery from Stress-Induced Depression by Rescuing Hippocampal Neurogenesis. Neurobiol. Dis. 2024, 191, 106396. [Google Scholar] [CrossRef]
- Ruan, D.; Fouad, A.M.; Fan, Q.L.; Huo, X.H.; Kuang, Z.X.; Wang, H.; Guo, C.Y.; Deng, Y.F.; Zhang, C.; Zhang, J.H.; et al. Dietary L-Arginine Supplementation Enhances Growth Performance, Intestinal Antioxidative Capacity, Immunity and Modulates Gut Microbiota in Yellow-Feathered Chickens. Poult. Sci. 2020, 99, 6935–6945. [Google Scholar] [CrossRef]
- Van Krimpen, M.M.; Kwakkel, R.P.; Reuvekamp, B.F.J.; Van Der Peet-Schwering, C.M.C.; Den Hartog, L.A.; Verstegen, M.W.A. Impact of Feeding Management on Feather Pecking in Laying Hens. World’s Poult. Sci. J. 2005, 61, 663–686. [Google Scholar] [CrossRef]
- Han, Y.; Koshio, S.; Ishikawa, M.; Yokoyama, S. Interactive Effects of Dietary Arginine and Histidine on the Performances of Japanese Flounder Paralichthys Olivaceus Juveniles. Aquaculture 2013, 414–415, 173–182. [Google Scholar] [CrossRef]
- Taghadosi, Z.; Zarifkar, A.; Razban, V.; Owjfard, M.; Aligholi, H. Effect of Chronically Electric Foot Shock Stress on Spatial Memory and Hippocampal Blood Brain Barrier Permeability. Behav. Brain Res. 2021, 410, 113364. [Google Scholar] [CrossRef]
- Lackner, J.; Hess, V.; Marx, A.; Hosseini-Ghaffari, M.; Sauerwein, H. Effects of Dietary Supplementation with Histidine and β-Alanine on Blood Plasma Metabolome of Broiler Chickens at Different Ages. PLoS ONE 2022, 17, e0277476. [Google Scholar] [CrossRef]
- Brugaletta, G.; Zampiga, M.; Laghi, L.; Indio, V.; Oliveri, C.; De Cesare, A.; Sirri, F. Feeding Broiler Chickens with Arginine above Recommended Levels: Effects on Growth Performance, Metabolism, and Intestinal Microbiota. J. Anim. Sci. Biotechnol. 2023, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Birkl, P.; Chow, J.; Forsythe, P.; Gostner, J.M.; Kjaer, J.B.; Kunze, W.A.; McBride, P.; Fuchs, D.; Harlander-Matauschek, A. The Role of Tryptophan-Kynurenine in Feather Pecking in Domestic Chicken Lines. Front. Vet. Sci. 2019, 6, 209. [Google Scholar] [CrossRef] [PubMed]
- Birkl, P.; Franke, L.; Bas Rodenburg, T.; Ellen, E.; Harlander-Matauschek, A. A Role for Plasma Aromatic Amino Acids in Injurious Pecking Behavior in Laying Hens. Physiol. Behav. 2017, 175, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Dennis, R.L. Adrenergic and Noradrenergic Regulation of Poultry Behavior and Production. Domest. Anim. Endocrinol. 2016, 56, S94–S100. [Google Scholar] [CrossRef]
- Andersen, J.V.; Markussen, K.H.; Jakobsen, E.; Schousboe, A.; Waagepetersen, H.S.; Rosenberg, P.A.; Aldana, B.I. Glutamate Metabolism and Recycling at the Excitatory Synapse in Health and Neurodegeneration. Neuropharmacology 2021, 196, 108719. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, N.; Yao, L.; Chen, Q.; Zhang, R.; Qian, J.; Hou, Y.; Guo, W.; Fan, S.; Liu, S.; et al. Moderate UV Exposure Enhances Learning and Memory by Promoting a Novel Glutamate Biosynthetic Pathway in the Brain. Cell 2018, 173, 1716–1727. [Google Scholar] [CrossRef]
- Tachikawa, M.; Hirose, S.; Akanuma, S.-I.; Matsuyama, R.; Hosoya, K.-I. Developmental Changes of L-Arginine Transport at the Blood-Brain Barrier in Rats. Microvasc. Res. 2018, 117, 16–21. [Google Scholar] [CrossRef]
- Henriques, C.; Miller, M.P.; Catanho, M.; De Carvalho, T.M.U.; Krieger, M.A.; Probst, C.M.; De Souza, W.; Degrave, W.; Amara, S.G. Identification and Functional Characterization of a Novel Arginine/Ornithine Transporter, a Member of a Cationic Amino Acid Transporter Subfamily in the Trypanosoma Cruzi Genome. Parasites Vectors 2015, 8, 346. [Google Scholar] [CrossRef]
- Oldendorf, W.H.; Crane, P.D.; Braun, L.D.; Gosschalk, E.A.; Diamond, J.M. PH Dependence of Histidine Affinity for Blood-Brain Barrier Carrier Transport Systems for Neutral and Cationic Amino Acids. J. Neurochem. 1988, 50, 857–861. [Google Scholar] [CrossRef]
- Yildiz, F.; Erden, B.F.; Ulak, G.; Utkan, T.; Gacar, N. Antidepressant-like Effect of 7-Nitroindazole in the Forced Swimming Test in Rats. Psychopharmacology 2000, 149, 41–44. [Google Scholar] [CrossRef]
- Huang, S.-K.; Lu, C.-W.; Lin, T.-Y.; Wang, S.-J. Neuroprotective Role of the B Vitamins in the Modulation of the Central Glutamatergic Neurotransmission. CNS Neurol. Disord. Drug Targets 2022, 21, 292–301. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Wang, C.; Li, Y.; Lin, Y.; Wu, Y.; Wang, Y. The Glutamatergic System Regulates Feather Pecking Behaviors in Laying Hens Through the Gut–Brain Axis. Animals 2025, 15, 1297. https://doi.org/10.3390/ani15091297
Yan X, Wang C, Li Y, Lin Y, Wu Y, Wang Y. The Glutamatergic System Regulates Feather Pecking Behaviors in Laying Hens Through the Gut–Brain Axis. Animals. 2025; 15(9):1297. https://doi.org/10.3390/ani15091297
Chicago/Turabian StyleYan, Xiliang, Chao Wang, Yaling Li, Yating Lin, Yinbao Wu, and Yan Wang. 2025. "The Glutamatergic System Regulates Feather Pecking Behaviors in Laying Hens Through the Gut–Brain Axis" Animals 15, no. 9: 1297. https://doi.org/10.3390/ani15091297
APA StyleYan, X., Wang, C., Li, Y., Lin, Y., Wu, Y., & Wang, Y. (2025). The Glutamatergic System Regulates Feather Pecking Behaviors in Laying Hens Through the Gut–Brain Axis. Animals, 15(9), 1297. https://doi.org/10.3390/ani15091297