Assessing the Impact of the Methane Inhibitors 3-Nitrooxypropanol (3-NOP) and Canola Oil on the Rumen Anaerobic Fungi
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Dietary Treatments
2.2. Metagenomic DNA Extraction
2.3. Quantitative Real-Time Polymerase Chain Reaction (qPCR)
2.4. Amplicon Sequencing
2.5. Bioinformatic and Statistical Analyses
3. Results
3.1. Sequencing Characteristics
3.2. Effect of Methane Inhibitors on Fungal Diversity and Community Structure
3.3. Effect of Methane Inhibitors on Abundance of Fungal Genera
3.4. Community and Individual Genus Resilience to CH4 Inhibitors
3.5. Quantitative Real-Time PCR Results
4. Discussion
4.1. Canola-Oil-Containing Diets Cause Substantial Changes in AGF Community Composition, Diversity, and LSU Gene Quantity
4.2. 3-NOP Mitigates Enteric Methanogenesis Without Impacting the Rumen Anaerobic Fungi
4.3. Repeated Perturbation of the Rumen Fungi with Canola Oil Reduces the Ability of Certain AGF Taxa to Return to Their Pre-Supplementation State
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Hara, E.; Neves, A.L.A.; Song, Y.; Guan, L.L. The Role of the gut microbiome in cattle production and health: Driver or passenger? Annu. Rev. Anim. Biosci. 2020, 8, 199–220. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, I.; Wallace, R.J.; Moraïs, S. The rumen microbiome: Balancing food security and environmental impacts. Nat. Rev. Microbiol. 2021, 19, 553–566. [Google Scholar] [CrossRef]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Review: Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020, 14, s2–s16. [Google Scholar] [CrossRef] [PubMed]
- Muller, R.A.; Muller, E.A. Fugitive methane and the role of atmospheric half-life. Geoinfor Geostat Overv. 2017, 5, 3. [Google Scholar] [CrossRef]
- Inman, M. Carbon is forever. Nat. Clim. Change 2008, 1, 156–158. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited review: Current enteric methane mitigation options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef]
- Thiel, A.; Rümbeli, R.; Mair, P.; Yeman, H.; Beilstein, P. 3-Nop: Adme studies in rats and ruminating animals. Food Chem. Toxicol. 2019, 125, 528–539. [Google Scholar] [CrossRef]
- Duval, S.; Kindermann, M. Use of Nitooxy Organic Molecules in Feed for Reducing Enteric Methane Emissions in Ruminants, and/or to Improve Ruminant Performance. U.S. Patent US9902685B2, 27 February 2018. [Google Scholar]
- Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.W.; Harper, M.T.; Weeks, H.L.; Branco, A.F.; Moate, P.J.; Deighton, M.H.; Williams, S.R.; et al. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. USA 2015, 112, 10663–10668. [Google Scholar] [CrossRef]
- Alemu, A.W.; Gruninger, R.J.; Zhang, X.M.; O’Hara, E.; Kindermann, M.; Beauchemin, K.A. 3-nitrooxypropanol supplementation of a forage diet decreased enteric methane emissions from beef cattle without affecting feed intake and apparent total-tract digestibility. J. Anim. Sci. 2023, 101, skad001. [Google Scholar] [CrossRef]
- Van Wesemael, D.; Vandaele, L.; Ampe, B.; Cattrysse, H.; Duval, S.; Kindermann, M.; Fievez, V.; De Campeneere, S.; Peiren, N. Reducing enteric methane emissions from dairy cattle: Two ways to supplement 3-nitrooxypropanol. J. Dairy Sci. 2019, 102, 1780–1787. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Smith, M.L.; Gruninger, R.J.; Kung, L.; Vyas, D.; McGinn, S.M.; Kindermann, M.; Wang, M.; Tan, Z.L.; Beauchemin, K.A. Combined effects of 3-nitrooxypropanol and canola oil supplementation on methane emissions, rumen fermentation and biohydrogenation, and total tract digestibility in beef cattle. J. Anim. Sci. 2021, 99, skab081. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; McGinn, S.M.; Petit, H.V. Methane abatement strategies for cattle: Lipid supplementation of diets. Can. J. Anim. Sci. 2007, 87, 431–440. [Google Scholar] [CrossRef]
- Patra, A.K. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livest. Sci. 2013, 155, 244–254. [Google Scholar] [CrossRef]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayat, A.R.; et al. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef] [PubMed]
- Beyzi, S.B.; Dallı, C. Changes in the rumen and milk fatty acid profile and milk composition in response to fish and microalgae oils supplementation to diet alone or combination in dairy goats. Trop. Anim. Health Prod. 2023, 55, 407. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Kearns, M.; Kiani, A.; Santhiravel, S.; Vahmani, P.; Prache, S.; Monahan, F.J.; Mapiye, C. Enrichment of ruminant meats with health enhancing fatty acids and antioxidants: Feed-based effects on nutritional value and human health aspects—Invited review. Front. Anim. Sci. 2024, 5, 1329346. [Google Scholar] [CrossRef]
- Newbold, C.J.; de la Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The role of ciliate protozoa in the rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Zhang, X.M.; Smith, M.L.; Kung, L., Jr.; Vyas, D.; McGinn, S.M.; Kindermann, M.; Wang, M.; Tan, Z.L.; Beauchemin, K.A. Application of 3-nitrooxypropanol and canola oil to mitigate enteric methane emissions of beef cattle results in distinctly different effects on the rumen microbial community. Anim. Microbiome 2022, 4, 35. [Google Scholar] [CrossRef]
- Frank, E.; Livshitz, L.; Portnick, Y.; Kamer, H.; Alon, T.; Moallem, U. The effects of high-fat diets from calcium salts of palm oil on milk yields, rumen environment, and digestibility of high-yielding dairy cows fed low-forage diet. Animals 2022, 12, 2081. [Google Scholar] [CrossRef]
- Muñoz, C.; Muñoz, I.A.; Rodríguez, R.; Urrutia, N.L.; Ungerfeld, E.M. Effect of combining the methanogenesis inhibitor 3-nitrooxypropanol and cottonseeds on methane emissions, feed intake, and milk production of grazing dairy cows. Animal 2024, 18, 101203. [Google Scholar] [CrossRef] [PubMed]
- Hanafy, R.A.; Dagar, S.S.; Griffith, G.W.; Pratt, C.J.; Youssef, N.H.; Elshahed, M.S. Taxonomy of the anaerobic gut fungi (neocallimastigomycota): A review of classification criteria and description of current taxa. Int. J. Syst. Evol. Microbiol. 2022, 72, 005322. [Google Scholar] [CrossRef]
- Elshahed, M.S.; Hanafy, R.A.; Cheng, Y.; Dagar, S.S.; Edwards, J.E.; Flad, V.; Fliegerová, K.O.; Griffith, G.W.; Kittelmann, S.; Lebuhn, M.; et al. Characterization and rank assignment criteria for the anaerobic fungi (Neocallimastigomycota). Int. J. Syst. Evol. Microbiol. 2022, 72, 005449. [Google Scholar] [CrossRef]
- Rezaeian, M.; Beakes, G.W.; Parker, D.S. Distribution and estimation of anaerobic zoosporic fungi along the digestive tracts of sheep. Mycol. Res. 2004, 108, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Gordon, G.L.R.; Phillips, M.W. Removal of anaerobic fungi from the rumen of sheep by chemical treatment and the effect on feed consumption and in vivo fibre digestion. Lett. Appl. Microbiol. 1993, 17, 220–223. [Google Scholar] [CrossRef]
- McAllister, T.A.; Thomas, K.D.; Gruninger, R.J.; Elshahed, M.; Li, Y.; Cheng, Y. International symposium on ruminant physiology: Rumen fungi, archaea and their interactions. J. Dairy. Sci. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Hess, M.; Paul, S.S.; Puniya, A.K.; van der Giezen, M.; Shaw, C.; Edwards, J.E.; Fliegerová, K. Anaerobic fungi: Past, present, and future. Front. Microbiol. 2020, 11, 584893. [Google Scholar] [CrossRef]
- Swift, C.L.; Brown, J.L.; Seppälä, S.; O’Malley, M.A. Co-cultivation of the anaerobic fungus anaeromyces robustus with methanobacterium bryantii enhances transcription of carbohydrate active enzymes. J. Ind. Microbiol. Biotechnol. 2019, 46, 1427–1433. [Google Scholar] [CrossRef]
- Young, D.; Joshi, A.; Huang, L.; Munk, B.; Wurzbacher, C.; Youssef, N.H.; Elshahed, M.S.; Moon, C.D.; Ochsenreither, K.; Griffith, G.W.; et al. Simultaneous metabarcoding and quantification of neocallimastigomycetes from environmental samples: Insights into community composition and novel lineages. Microorganisms 2022, 10, 1749. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Bisanz, J.E. Qiime2r: Importing QIIME2 Artifacts and Associated Data into R Sessions. 2018. Available online: https://github.com/jbisanz/qiime2R (accessed on 1 October 2024).
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Chen, J.; Bittinger, K.; Charlson, E.S.; Hoffmann, C.; Lewis, J.; Wu, G.D.; Collman, R.G.; Bushman, F.D.; Li, H. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 2012, 28, 2106–2113. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package (R Package Version 2.7-0). 2024. Available online: https://cran.r-project.org/package=vegan (accessed on 1 October 2024).
- Barnett, D.; Arts, I.; Penders, J. microViz: An R package for microbiome data visualization and statistics. J. Open Source Softw. 2021, 6, 3201. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V. Corrplot: A visualization of a Correlation Matrix. 2024. Available online: https://github.com/taiyun/corrplot (accessed on 1 October 2024).
- Wickham, H. Ggplot2: Elegant graphics for data analysis. Meas. Interdiscip. Res. Perspect. 2016, 17, 160–167. [Google Scholar]
- Lin, H.; Peddada, S.D. Multigroup analysis of compositions of microbiomes with covariate adjustments and repeated measures. Nat. Methods 2024, 21, 83–91. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Puniya, A.K.; Callaghan, T.M.; Edwards, J.E.; Youssef, N.; Dagar, S.S.; Fliegerova, K.; Griffith, G.W.; Forster, R.; Tsang, A.; et al. Anaerobic fungi (phylum Neocallimastigomycota): Advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol. Ecol. 2014, 90, 1–17. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, G.; Yuan, Z.; He, S.; Wang, R.; Zheng, J.; Mao, H.; Chai, J.; Wu, D. Exploring the temporal dynamics of rumen bacterial and fungal communities in yaks (bos grunniens) from 5 days after birth to adulthood by full-length 16S and 18S rRNA sequencing. Front. Vet. Sci. 2023, 10, 1166015. [Google Scholar] [CrossRef]
- Tapio, I.; Fischer, D.; Blasco, L.; Tapio, M.; Wallace, R.J.; Bayat, A.R.; Ventto, L.; Kahala, M.; Negussie, E.; Shingfield, K.J.; et al. Taxon abundance, diversity, co-occurrence and network analysis of the ruminal microbiota in response to dietary changes in dairy cows. PLoS ONE 2017, 12, e0180260. [Google Scholar] [CrossRef]
- Kumar, S.; Indugu, N.; Vecchiarelli, B.; Pitta, D.W. Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Front. Microbiol. 2015, 6, 781. [Google Scholar] [CrossRef]
- Fouts, D.E.; Szpakowski, S.; Purushe, J.; Torralba, M.; Waterman, R.C.; MacNeil, M.D.; Alexander, L.J.; Nelson, K.E. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS ONE 2012, 7, e48289. [Google Scholar] [CrossRef]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Bolchacova, E.; Voigt, K.; Crous, P.W.; et al. Nuclear ribosomal internal transcribed spacer (its) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef]
- Hanafy, R.A.; Johnson, B.; Youssef, N.H.; Elshahed, M.S. Assessing anaerobic gut fungal diversity in herbivores using D1/D2 large ribosomal subunit sequencing and multi-year isolation. Environ. Microbiol. 2020, 22, 3883–3908. [Google Scholar] [CrossRef]
- Griffith, G.W.; Callaghan, T.M.; Podmirseg, S.M.; Hohlweck, D.; Edwards, J.E.; Puniya, A.K.; Dagar, S.S. Buwchfawromyces eastonii gen. Nov., sp. Nov.: A new anaerobic fungus (neocallimastigomycota) isolated from buffalo faeces. MycoKeys 2015, 9, 11–28. [Google Scholar] [CrossRef]
- Kittelmann, S.; Naylor, G.E.; Koolaard, J.P.; Janssen, P.H. A proposed taxonomy of anaerobic fungi (class neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. PLoS ONE 2012, 7, e36866. [Google Scholar] [CrossRef]
- Edwards, J.E.; Kingston-Smith, A.H.; Jimenez, H.R.; Huws, S.A.; Skã¸T, K.P.; Griffith, G.W.; McEwan, N.R.; Theodorou, M.K. Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen. FEMS Microbiol. Ecol. 2008, 66, 537–545. [Google Scholar] [CrossRef]
- Dagar, S.S.; Kumar, S.; Mudgil, P.; Singh, R.; Puniya, A.K. D1/d2 domain of large-subunit ribosomal DNA for differentiation of Orpinomyces spp. Appl. Environ. Microbiol. 2011, 77, 6722–6725. [Google Scholar] [CrossRef]
- Fonty, G.; Grenet, E. Effects of diet on the fungal population of the digestive tract of ruminants. In Anaerobic Fungi. Biology: Ecology, and Function; Mountfort, D., Ed.; CRC Press: Boca Raton, FL, USA, 1994; Volume 1. [Google Scholar]
- Elliott, R.; Ash, A.J.; Calderon-Cortes, F.; Norton, B.W.; Bauchop, T. The influence of anaerobic fungi on rumen volatile fatty acid concentrations in vivo. J. Agric. Sci. 1987, 109, 13–17. [Google Scholar] [CrossRef]
- Nandasiri, R.; Eskin, N.A.M.; Eck, P.; Thiyam-Höllander, U. Chapter 8—Application of green technology on extraction of phenolic compounds in oilseeds (canola). In Cold Pressed Oils; Ramadan, M.F., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 81–96. [Google Scholar] [CrossRef]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef]
- Nam, I.S.; Garnsworthy, P.C. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. J. Appl. Microbiol. 2007, 103, 551–556. [Google Scholar] [CrossRef]
- Jenkins, T.C. Lipid metabolism in the rumen. J. Dairy. Sci. 1993, 76, 3851–3863. [Google Scholar] [CrossRef]
- Hanafy, R.A.; Wang, Y.; Stajich, J.E.; Pratt, C.J.; Youssef, N.H.; Elshahed, M.S. Phylogenomic analysis of the neocallimastigomycota: Proposal of caecomycetaceae fam. Nov., piromycetaceae fam. Nov., and emended description of the families Neocallimastigaceae and Anaeromycetaceae. Int. J. Syst. Evol. Microbiol. 2023, 73, 005735. [Google Scholar] [CrossRef]
- Meili, C.H.; TagElDein, M.A.; Jones, A.L.; Moon, C.D.; Andrews, C.; Kirk, M.R.; Janssen, P.H.; Yeoman, C.J.; Grace, S.; Borgogna, J.L.; et al. Diversity and community structure of anaerobic gut fungi in the rumen of wild and domesticated herbivores. Appl. Environ. Microbiol. 2024, 90, e0149223. [Google Scholar] [CrossRef]
- Akin, D.E. Ultrastructure of plant cell-walls degraded by anaerobic fungi. In Anaerobic Fungi. Biology: Ecology, and Function; Mountfort, D., Ed.; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar] [CrossRef]
- Pearce, P.D.; Bauchop, T. Glycosidases of the rumen anaerobic fungus Neocallimastix frontalis grown on cellulosic substrates. Appl. Environ. Microbiol. 1985, 49, 1265–1269. [Google Scholar] [CrossRef]
- Henske, J.K.; Gilmore, S.P.; Knop, D.; Cunningham, F.J.; Sexton, J.A.; Smallwood, C.R.; Shutthanandan, V.; Evans, J.E.; Theodorou, M.K.; O’Malley, M.A. Transcriptomic characterization of caecomyces churrovis: A novel, non-rhizoid-forming lignocellulolytic anaerobic fungus. Biotechnol. Biofuels 2017, 10, 305. [Google Scholar] [CrossRef]
- Edwards, J.E.; Forster, R.J.; Callaghan, T.M.; Dollhofer, V.; Dagar, S.S.; Cheng, Y.; Chang, J.; Kittelmann, S.; Fliegerova, K.; Puniya, A.K.; et al. Pcr and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges and opportunities. Front. Microbiol. 2017, 8, 1657. [Google Scholar] [CrossRef]
- Belanche, A.; Newbold, C.J.; Lin, W.; Rees Stevens, P.; Kingston-Smith, A.H. A systems biology approach reveals differences in the dynamics of colonization and degradation of grass vs. hay by rumen microbes with minor effects of vitamin E supplementation. Front. Microbiol. 2017, 8, 1456. [Google Scholar] [CrossRef]
- Haisan, J.; Sun, Y.; Guan, L.L.; Beauchemin, K.A.; Iwaasa, A.; Duval, S.; Barreda, D.R.; Oba, M. The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. J. Dairy Sci. 2014, 97, 3110–3119. [Google Scholar] [CrossRef]
- Zhang, X.M.; Gruninger, R.J.; Alemu, A.W.; Wang, M.; Tan, Z.L.; Kindermann, M.; Beauchemin, K.A. 3-Nitrooxypropanol supplementation had little effect on fiber degradation and microbial colonization of forage particles when evaluated using the in situ ruminal incubation technique. J. Dairy Sci. 2020, 103, 8986–8997. [Google Scholar] [CrossRef]
- Pitta, D.W.; Indugu, N.; Melgar, A.; Hristov, A.; Challa, K.; Vecchiarelli, B.; Hennessy, M.; Narayan, K.; Duval, S.; Kindermann, M.; et al. The effect of 3-nitrooxypropanol, a potent methane inhibitor, on ruminal microbial gene expression profiles in dairy cows. Microbiome 2022, 10, 146. [Google Scholar] [CrossRef]
- Ni, G.; Walker, N.; Fischer, A.; Stemmler, R.T.; Schmidt, O.; Jain, S.; Jespersen, M.; Grinter, R.; Wang, M.; Pope, P.B.; et al. Methanogenesis inhibition remodels microbial fermentation and stimulates acetogenesis in ruminants. bioRxiv 2024. [Google Scholar]
- Duin, E.C.; Wagner, T.; Shima, S.; Prakash, D.; Cronin, B.; Yáñez-Ruiz, D.R.; Duval, S.; Rümbeli, R.; Stemmler, R.T.; Thauer, R.K.; et al. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proc. Natl. Acad. Sci. USA 2016, 113, 6172–6177. [Google Scholar] [CrossRef]
- Meili, C.H.; Jones, A.L.; Arreola, A.X.; Habel, J.; Pratt, C.J.; Hanafy, R.A.; Wang, Y.; Yassin, A.S.; TagElDein, M.A.; Moon, C.D.; et al. Patterns and determinants of the global herbivorous mycobiome. Nat. Commun. 2023, 14, 3798. [Google Scholar] [CrossRef]
- Joshi, A.; Lanjekar, V.B.; Dhakephalkar, P.K.; Callaghan, T.M.; Griffith, G.W.; Dagar, S.S. Liebetanzomyces polymorphus gen. Et sp. Nov., a new anaerobic fungus (neocallimastigomycota) isolated from the rumen of a goat. MycoKeys 2018, 40, 89–110. [Google Scholar] [CrossRef]
- Jin, W.; Cheng, Y.-F.; Mao, S.-Y.; Zhu, W.-Y. Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. Bioresour. Technol. 2011, 102, 7925–7931. [Google Scholar] [CrossRef]
- Leis, S.; Dresch, P.; Peintner, U.; Fliegerová, K.; Sandbichler, A.M.; Insam, H.; Podmirseg, S.M. Finding a robust strain for biomethanation: Anaerobic fungi (neocallimastigomycota) from the alpine ibex (capra ibex) and their associated methanogens. Anaerobe 2014, 29, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Ingrisch, J.; Bahn, M. Towards a Comparable Quantification of Resilience. Trends Ecol. Evol. 2018, 33, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Solomon, K.V.; Haitjema, C.H.; Henske, J.K.; Gilmore, S.P.; Borges-Rivera, D.; Lipzen, A.; Brewer, H.M.; Purvine, S.O.; Wright, A.T.; Theodorou, M.K.; et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 2016, 351, 1192–1195. [Google Scholar] [CrossRef] [PubMed]
- CCAC. Best practices in the use of animals for agricultural research and teaching: CCAC guidelines on: The care and use of farm animals in research, teaching and testing. Can. J. Anim. Sci. 2009, 86, 579. [Google Scholar]
Period | 11, 21 * | 9, 10 | 6, 12 | 2, 8 |
---|---|---|---|---|
P1 | CONTROL | 3-NOP + OIL | OIL | 3-NOP |
P2 | OIL | CONTROL | 3-NOP | 3-NOP + OIL |
P3 | 3-NOP + OIL | 3-NOP | CONTROL | OIL |
P4 | 3-NOP | OIL | 3-NOP + OIL | CONTROL |
CONTROL vs. OIL | CONTROL vs. 3-NOP | CONTROL vs. 3-NOP + OIL | ||||
---|---|---|---|---|---|---|
Genus | Log2FC | P-adj. | Log2FC | P-adj. | Log2FC | P-adj. |
Liebetanzomyces | −0.21 | 0.61 | −1.19 | 0.02 | 1.75 | <0.01 |
Caecomyces | 0.82 | 0.08 | −0.12 | 0.75 | 1.47 | <0.01 |
NY05 | −1.97 | <0.01 | −0.19 | 0.71 | −2.48 | <0.01 |
NY08 | 3.43 | <0.01 | 1.21 | 0.02 | 4.04 | <0.01 |
NY09 | −1.24 | <0.01 | −0.16 | 0.71 | −1.92 | <0.01 |
Neocallimastix | −2.11 | <0.01 | −0.33 | 0.54 | −1.48 | <0.01 |
Piromyces | −2.33 | <0.01 | 0.59 | 0.27 | −1.77 | <0.01 |
Unknown taxa | 0.39 | 0.36 | 0.47 | 0.35 | 1.18 | <0.01 |
Genus | RESP2-CON | RESP3-CON | RESP4-CON |
---|---|---|---|
Piromyces | 1.28 | 1.10 | 0.88 |
Caecomyces | 1.09 | 1.06 | 1.02 |
NY05 | 1.05 | 0.95 | 0.80 |
NY09 | 0.95 | 1.33 | 0.80 |
NY08 | 0.79 | 0.00 | 0.65 |
Neocallimastix | 0.75 | 0.82 | 0.77 |
NY20 | 0.68 | 1.03 | 0.09 |
Anaeromyces | 0.03 | ND * | ND |
NY07 | ND | 1.02 | ND |
NY15 | ND | 0.77 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025, O’Hara, E., Chomistek, N, Terry S.A., Beauchemin, K.A., Gruninger, R.J., and His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada for the contribution of O’Hara, E., Chomistek, N, Terry S.A., Beauchemin, K.A., Gruninger, R.J. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Share and Cite
O’Hara, E.; Chomistek, N.; Terry, S.A.; Beauchemin, K.A.; Gruninger, R.J. Assessing the Impact of the Methane Inhibitors 3-Nitrooxypropanol (3-NOP) and Canola Oil on the Rumen Anaerobic Fungi. Animals 2025, 15, 1230. https://doi.org/10.3390/ani15091230
O’Hara E, Chomistek N, Terry SA, Beauchemin KA, Gruninger RJ. Assessing the Impact of the Methane Inhibitors 3-Nitrooxypropanol (3-NOP) and Canola Oil on the Rumen Anaerobic Fungi. Animals. 2025; 15(9):1230. https://doi.org/10.3390/ani15091230
Chicago/Turabian StyleO’Hara, Eóin, Nora Chomistek, Stephanie A. Terry, Karen A. Beauchemin, and Robert J. Gruninger. 2025. "Assessing the Impact of the Methane Inhibitors 3-Nitrooxypropanol (3-NOP) and Canola Oil on the Rumen Anaerobic Fungi" Animals 15, no. 9: 1230. https://doi.org/10.3390/ani15091230
APA StyleO’Hara, E., Chomistek, N., Terry, S. A., Beauchemin, K. A., & Gruninger, R. J. (2025). Assessing the Impact of the Methane Inhibitors 3-Nitrooxypropanol (3-NOP) and Canola Oil on the Rumen Anaerobic Fungi. Animals, 15(9), 1230. https://doi.org/10.3390/ani15091230