The Effect of a Phytobiotic, Probiotic, and Their Combination as Feed Additives on Growth Performance of Weaned Holstein Male Dairy Calves
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experiment Design
2.2. Measurement of Feed Intake and Feed Analysis
2.3. Body and Health Measurements
2.4. Weather Data
2.5. Blood Collection
2.6. Statistical Analysis
3. Results and Discussion
3.1. Feed Analyses
3.2. Weather Data
3.3. Growth Performance
3.4. Dry Matter Intake and Gain to Feed
3.5. Frame Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hulbert, L.E.; Moisá, S.J. Stress, immunity, and the management of calves. J. Dairy Sci. 2016, 99, 3199–3216. [Google Scholar] [CrossRef]
- Urie, N.J.; Lombard, J.E.; Shivley, C.B.; Kopral, C.A.; Adams, A.E.; Earleywine, T.J.; Olson, J.D.; Garry, F.B. Preweaned heifer management on US dairy operations: Part V. Factors associated with morbidity and mortality in preweaned dairy heifer calves. J. Dairy Sci. 2018, 101, 9229–9244. [Google Scholar] [CrossRef] [PubMed]
- Salazar, L.F.L.; Nero, L.A.; Campos-Galvão, M.E.M.; Cortinhas, C.S.; Acedo, T.S.; Tamassia, L.F.M.; Busato, K.C.; Morais, V.C.; Rotta, P.P.; Silva, A.L.; et al. Effect of selected feed additives to improve growth and health of dairy calves. PLoS ONE 2019, 14, e0216066. [Google Scholar] [CrossRef]
- Reddy, P.R.K.; Elghandour, M.M.M.Y.; Salem, A.Z.M.; Yasaswini, D.; Reddy, P.P.R.; Reddy, A.N.; Hyder, I. Plant secondary metabolites as feed additives in calves for antimicrobial stewardship. Anim. Feed Sci. Technol. 2020, 264, 114469. [Google Scholar] [CrossRef]
- Hill, T.M.; Aldrich, J.M.; Schlotterbeck, R.L.; Bateman II, H.G. Apex plant botanicals for neonatal calf milk replacers and starters. Prof. Anim. Sci. 2007, 23, 521–526. [Google Scholar] [CrossRef]
- Tapki, I.; Ozalpaydin, H.B.; Tapki, N.; Aslan, M.; Selvi, M.H. Effects of oregano essential oil on reduction of weaning age and increasing economic efficiency in Holstein Friesian calves. Pak. J. Zool. 2020, 52, 745–752. [Google Scholar] [CrossRef]
- Stefańska, B.; Katzer, F.; Golińska, B.; Sobolewska, P.; Smulski, S.; Frankiewicz, A.; Nowak, W. Different methods of eubiotic feed additive provision affect the health, performance, fermentation, and metabolic status of dairy calves during the preweaning period. BMC Vet. Res. 2022, 18, 138. [Google Scholar] [CrossRef]
- Alem, W.T. Effect of herbal extracts in animal nutrition as feed additives. Heliyon 2024, 10, e24973. [Google Scholar] [CrossRef]
- Froehlich, K.A.; Abdelsalam, K.W.; Chase, C.; Koppien-Fox, J.; Casper, D.P. Evaluation of essential oils and prebiotics for newborn dairy calves. J. Anim. Sci. 2017, 95, 3772–3782. [Google Scholar] [CrossRef]
- Casper, D.P. Bile salt inclusion rates in milk replacer fed to neonatal calves. Appl. Anim. Sci. 2024, 40, 738–750. [Google Scholar] [CrossRef]
- Palhares Campolina, J.; Gesteira Coelho, S.; Belli, A.L.; Samarini Machado, F.; R. Pereira, L.G.; R. Tomich, T.; A. Carvalho, W.; S. Silva, R.O.; L. Voorsluys, A.; V. Jacob, D.; et al. Effects of a blend of essential oils in milk replacer on performance, rumen fermentation, blood parameters, and health scores of dairy heifers. PLoS ONE 2021, 16, e0231068. [Google Scholar] [CrossRef] [PubMed]
- Olagunju, L.K.; Casper, D.P.; Officer, M.; Klanderman, K.; Anele, U.Y. Holstein calves fed a milk replacer with a direct-fed microbial and a starter containing a botanical extract or a direct-fed microbial alone or in combination. J. Dairy Sci. 2024, 107, 8021–8033. [Google Scholar] [CrossRef] [PubMed]
- Olagunju, L.K.; Casper, D.P.; Officer, M.; Klanderman, K.; Anele, U.Y. Male Holstein calves fed a milk replacer and pelleted calf starter containing a botanical extract or a direct-fed microbial alone or in combination. J. Dairy Sci. 2024, 107, 10838–10850. [Google Scholar] [CrossRef]
- Wu, J.; Bai, Y.; Lang, X.; Wang, C.; Shi, X.; Casper, D.P.; Zhang, L.; Liu, H.; Liu, T.; Gong, X.; et al. Dietary supplementation with oregano essential oil and monensin in combination is antagonistic to growth performance of yearling Holstein bulls. J. Dairy Sci. 2020, 103, 8119–8129. [Google Scholar] [CrossRef] [PubMed]
- Cangiano, L.; Yohe, T.; Steele, M.; Renaud, D.J.A.A.S. Invited Review: Strategic use of microbial-based probiotics and prebiotics in dairy calf rearing. Appl. Anim. Sci. 2020, 36, 630–651. [Google Scholar] [CrossRef]
- Jonova, S.; Ilgaza, A.; Zolovs, M. The impact of inulin and a novel synbiotic (yeast Saccharomyces cerevisiae strain 1026 and inulin) on the development and functional state of the gastrointestinal canal of calves. Vet. Med. 2021, 2021, 8848441. [Google Scholar] [CrossRef]
- Radzikowski, D. Effect of probiotics, prebiotics and synbiotics on the productivity and health of dairy cows and calves. World Sci. News 2017, 78, 193–198. [Google Scholar]
- Arne, A.; Ilgaza, A. Prebiotic and synbiotic effect on rumen papilla length development and rumen pH in 12-week-old calves. Vet. World 2021, 14, 2883–2888. [Google Scholar] [CrossRef]
- Liu, T.; Hultquist, K.; Froehlich, K.; Casper, D.P. Feeding an amino acid-formulated milk replacer for Holstein calves during 2 time periods. J. Dairy Sci. 2020, 103, 10108–10121. [Google Scholar] [CrossRef]
- ADSA-ASAS-PSA. Guide for the Care and Use of Agricultural Animals in Research and Teaching, 4th ed.; American Dairy Science Association, American Society of Animal Science, and Poultry Science Association: Champaign, IL, USA, 2020. [Google Scholar]
- AOAC International. Official Methods of Analysis, 21st ed.; AOAC International: Washington, DC, USA, 2019. [Google Scholar]
- Krishnamoorthy, U.; Muscato, T.V.; Sniffen, C.J.; Van Soest, P.J. Nitrogen fractions in selected feedstuffs. J. Dairy Sci. 1982, 65, 217–225. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Hall, M.B. Determination of starch, including maltooligosaccharides, in animal feeds: Comparison of methods and a method recommended for AOAC collaborative study. J. AOAC Int. 2009, 92, 42–49. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Board on Agriculture and Natural Resources; Committee on Nutrient Requirements of Dairy Cattle. Nutrient Requirements of Dairy Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, T.; Hultquist, K.; Wu, J.; Casper, D.P. Feeding an amino acid formulated milk replacer for Holstein calves. J. Anim. Sci. 2020, 98, skaa099. [Google Scholar] [CrossRef] [PubMed]
- Vitali, A.; Segnalini, M.; Bertocchi, L.; Bernabucci, U.; Nardone, A.; Lacetera, N. Seasonal pattern of mortality and relationships between mortality and temperature-humidity index in dairy cows. J. Dairy Sci. 2009, 92, 3781–3790. [Google Scholar] [CrossRef]
- Kovács, L.; Kézér, F.L.; Póti, P.; Boros, N.; Nagy, K. Short communication: Upper critical temperature-humidity index for dairy calves based on physiological stress variables. J. Dairy Sci. 2020, 103, 2707–2710. [Google Scholar] [CrossRef]
- Steel, R.G.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Wang, J.; Li, J.; Wang, F.; Xiao, J.; Wang, Y.; Yang, H.; Li, S.; Cao, Z. Heat stress on calves and heifers: A review. J. Anim. Sci. Biotechnol. 2020, 11, 79. [Google Scholar] [CrossRef]
- Gebremedhin, K.G.; Cramer, C.O.; Porter, W.P. Predictions and measurements of heat production and food and water requirements of Holstein calves in different environments. Trans. ASAE 1981, 24, 715–720. [Google Scholar] [CrossRef]
- Fandiño, I.; Fernandez-Turren, G.; Ferret, A.; Moya, D.; Castillejos, L.; Calsamiglia, S. Exploring Additive, Synergistic or Antagonistic Effects of Natural Plant Extracts on In Vitro Beef Feedlot-Type Rumen Microbial Fermentation Conditions. Animals 2020, 10, 173. [Google Scholar] [CrossRef]
- Hall, J.B.; Laarman, A.H.; Reynolds, M.K.; Smith, W.K. Performance of backgrounding steers fed diets containing monensin or a lactobacillus fermentation product. Transl. Anim. Sci. 2018, 2 (Suppl. S1), S130–S133. [Google Scholar] [CrossRef]
- Fomenky, B.E.; Do, D.N.; Talbot, G.; Chiquette, J.; Bissonnette, N.; Chouinard, Y.P.; Lessard, M.; Ibeagha-Awemu, E.M. Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre- and post-weaned calves. Sci. Rep. 2018, 8, 14147. [Google Scholar] [CrossRef]
Ingredient | Treatment | |||
---|---|---|---|---|
CN | PE | EX | PEEX | |
(% Inclusion in Mix) | ||||
Wheat midds | 35.34 | 35.31 | 35.12 | 35.09 |
Soybean meal | 31.50 | 31.50 | 31.50 | 31.50 |
Corn, fine ground | 21.50 | 21.50 | 21.50 | 21.50 |
Molasses mixer | 5.50 | 5.50 | 5.50 | 5.50 |
Calcium carbonate | 2.35 | 2.35 | 2.35 | 2.35 |
Corn starch | 1.25 | 1.25 | 1.25 | 1.25 |
Salt | 1.10 | 1.10 | 1.10 | 1.10 |
Soy oil | 0.40 | 0.40 | 0.40 | 0.40 |
Bovine B premix 1 | 0.25 | 0.25 | 0.25 | 0.25 |
Clarify 0.67% larvicide (diflubenzuron) 2 | 0.20 | 0.20 | 0.20 | 0.20 |
Vitamin A, premix 3 | 0.19 | 0.19 | 0.19 | 0.19 |
Vitamin E, premix 4 | 0.16 | 0.16 | 0.16 | 0.16 |
Decquinate, 6% 5 | 0.08 | 0.08 | 0.08 | 0.08 |
Vitamin D, premix 6 | 0.07 | 0.07 | 0.07 | 0.07 |
Dairy TM premix 7 | 0.06 | 0.06 | 0.07 | 0.06 |
Cherry flavor | 0.05 | 0.05 | 0.05 | 0.05 |
Selenium yeast 2000 | 0.01 | 0.01 | 0.01 | 0.01 |
Phytobiotic extract 8 | ------ | 0.03 | ------ | 0.03 |
Probiotic 9 | ------ | ------ | 0.22 | 0.22 |
Nutrient | Calf Starter | |||
---|---|---|---|---|
Control | PE | EX | PEEX | |
N 2 | 1 | 1 | 1 | 1 |
DM 3, % | 88.4 | 87.2 | 86.6 | 86.2 |
CP 4, % | 25.0 | 25.2 | 25.6 | 25.4 |
SP 5, % of CP | 37.1 | 33.4 | 32.0 | 31.0 |
ADF, % | 7.04 | 7.39 | 6.98 | 7.41 |
NDF, % | 18.2 | 20.5 | 20.5 | 20.7 |
ADF-ICP | 1.40 | 1.75 | 1.61 | 1.31 |
NDF-ICP | 4.88 | 3.94 | 4.30 | 3.94 |
Lignin, % | 7.59 | 7.19 | 5.59 | 5.36 |
NFC 6, % | 45.7 | 43.6 | 43.5 | 43.5 |
Starch, % | 22.2 | 23.9 | 23.0 | 23.5 |
Crude fat, % | 3.91 | 3.64 | 3.74 | 3.98 |
ME 7, Mcal/kg | 2.82 | 2.78 | 2.81 | 2.83 |
Nem 8, Mcal/kg | 2.01 | 1.98 | 2.00 | 2.02 |
Neg 9, Mcal/kg | 1.35 | 1.33 | 1.35 | 1.37 |
Ash, % | 9.36 | 9.20 | 9.39 | 8.79 |
Ca, % | 1.86 | 1.72 | 1.80 | 1.55 |
P, % | 0.81 | 0.75 | 0.78 | 0.77 |
Mg, % | 0.29 | 0.28 | 0.30 | 0.27 |
K, % | 1.49 | 1.48 | 1.60 | 1.57 |
S, % | 0.24 | 0.24 | 0.25 | 0.24 |
Na, % | 0.38 | 0.30 | 0.43 | 0.34 |
Cl, % | 0.70 | 0.68 | 0.77 | 0.68 |
Boron, ppm | 14 | 14 | 15 | 15 |
Al, ppm | 160 | 254 | 175 | 146 |
Fe, ppm | 175 | 213 | 174 | 150 |
Mn, ppm | 172 | 1693 | 145 | 127 |
Zn, ppm | 185 | 188 | 193 | 150 |
Cu, ppm | 27 | 27 | 28 | 24 |
Amino Acid | Treatment | |||
---|---|---|---|---|
CN | PE | EX | PEEX | |
N 2 | 1 | 1 | 1 | 1 |
DM, % | 88.6 | 88.3 | 87.4 | 87.4 |
----------------------------- (% of DM) ----------------------------- | ||||
Arg | 1.71 | 1.72 | 1.77 | 1.69 |
His | 0.68 | 0.67 | 0.69 | 0.67 |
Ile | 1.09 | 1.08 | 1.12 | 1.08 |
Leu | 1.93 | 1.92 | 1.94 | 1.81 |
Lys | 1.46 | 1.43 | 1.48 | 1.43 |
Met | 0.36 | 0.37 | 0.36 | 0.35 |
Phe | 1.26 | 1.25 | 1.28 | 1.24 |
Thr | 0.94 | 0.94 | .096 | 0.92 |
Trp | 0.30 | 0.30 | 0.33 | 0.33 |
Val | 1.25 | 1.20 | 1.25 | 1.21 |
Total EAA | 11.0 | 10.9 | 11.2 | 10.8 |
Ala | 1.19 | 1.17 | 1.20 | 1.15 |
Asp | 2.54 | 2.56 | 2.62 | 2.50 |
Cys | 0.42 | 0.44 | 0.43 | 0.42 |
Gly | 1.14 | 1.12 | 1.15 | 1.09 |
Glu | 4.58 | 1.62 | 1.68 | 4.50 |
Pro | 1.38 | 1.41 | 1.40 | 1.38 |
Ser | 1.06 | 1.04 | 1.04 | 1.00 |
Tyr | 0.76 | 0.80 | 0.78 | 0.75 |
Total NEAA | 13.1 | 13.2 | 13.3 | 12.8 |
Total AA | 24.3 | 24.3 | 24.8 | 23.9 |
CP, % | 26.1 | 25.3 | 26.2 | 26.6 |
Temperature, °C | Humidity, % | Wind Speed, km/h | THI, °C 1 | Rain, cm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Week | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Mean | Total |
1 | 29.4 | 23.1 | 16.7 | 89.7 | 68.7 | 46.1 | 25.3 | 9.8 | 1.1 | 83.4 | 70.9 | 61.1 | 0.19 | 1.32 |
2 | 29.4 | 22.9 | 16.5 | 87.3 | 61.7 | 39.9 | 20.9 | 9.2 | 0.0 | 83.1 | 70.0 | 60.5 | 0.00 | 0.00 |
3 | 31.7 | 25.0 | 18.3 | 87.7 | 64.1 | 41.0 | 20.2 | 9.1 | 0.0 | 87.0 | 73.2 | 62.7 | 0.00 | 0.00 |
Mean | 30.2 | 23.7 | 17.2 | 88.2 | 64.8 | 42.3 | 22.1 | 4.3 | 0.0 | 84.5 | 77.2 | 61.5 | 0.06 | 1.32 |
SD | 2.11 | 2.13 | 2.90 | 2.66 | 6.07 | 9.11 | 8.44 | 3.18 | 1.76 | 3.51 | 3.22 | 3.66 | 0.28 | 0.28 |
Measurement | Treatment | p< 1 | ||||
---|---|---|---|---|---|---|
CN | PEX | EX | PEEX | SEM | Treatment | |
N | 19 | 18 | 20 | 20 | - | |
BW, kg | ||||||
Week 0, initial | 72.3 | 71.0 | 74.7 | 74.8 | 1.76 | 0.08 |
Week 1 | 76.7 | 76.3 | 79.9 | 79.4 | ||
Week 2 | 85.6 | 84.2 | 87.7 | 87.0 | ||
Week 3, final | 92.7 | 91.7 | 96.8 | 95.6 | ||
Study average | 81.3 b | 80.8 b | 84.8 a | 84.2 ab | 1.67 | 0.08 |
Study BW gain, kg | 20.3 | 20.7 | 22.1 | 20.8 | 1.14 | 0.61 |
ADG, g/d | ||||||
Week 1 | 628.7 | 754.3 | 737.8 | 658.6 | 106.0 | 0.60 |
Week 2 | 967.0 | 1131.4 | 1118.7 | 1078.6 | ||
Week 3 | 1302.4 | 1067.1 | 1299.7 | 1230.0 | ||
Study average | 966.0 | 984.3 | 1052.1 | 989.1 | 63.1 | 0.65 |
Overall ADG, 49–70 d | 965.5 | 984.3 | 1052.8 | 989.1 | 36.3 | 0.60 |
Measurement | Treatment | p< 1 | ||||
---|---|---|---|---|---|---|
CN | PE | Treatment | PEEX | SEM | Treatment | |
N | 19 | 18 | 20 | 20 | - | |
DMI, kg/d | ||||||
Week 1 | 1.66 | 1.61 | 1.75 | 1.65 | 0.15 | 0.66 |
Week 2 | 2.18 | 2.22 | 2.36 | 2.17 | 0.15 | |
Week 3 | 2.72 | 2.71 | 2.82 | 2.59 | 0.15 | |
Study average | 2.19 | 2.18 | 2.31 | 2.14 | 0.11 | |
Gain/DMI, kg/kg | ||||||
Week 1 | 0.40 | 0.47 | 0.40 | 0.39 | 0.05 | 0.24 |
Week 2 | 0.45 | 0.51 | 0.48 | 0.49 | 0.05 | |
Week 3 | 0.50 | 0.39 | 0.46 | 0.48 | 0.05 | |
Study average | 0.45 | 0.46 | 0.45 | 0.45 | 0.02 | |
BUN, mg/dL | 14.7 | 14.6 | 14.9 | 13.4 | 0.81 | 0.17 |
Measurement | Treatment | p< 1 | ||||
---|---|---|---|---|---|---|
CN | PE | Treatment | PEEX | SEM | Treatment | |
N | 19 | 18 | 20 | 20 | ----- | |
Hip height | ||||||
Initial, cm | 90.5 | 90.1 | 90.8 | 90.4 | 0.79 | 0.87 |
Final, cm | 94.8 | 93.8 | 95.2 | 94.7 | 0.71 | 0.27 |
Gain, cm | 4.14 | 3.71 | 4.48 | 4.32 | 0.53 | 0.63 |
Hip width | ||||||
Initial, cm | 24.4 | 24.2 | 24.6 | 24.5 | 0.23 | 0.58 |
Final, cm | 26.0 | 26.1 | 26.9 | 26.6 | 0.38 | 0.13 |
Gain, cm | 1.58 b | 1.85 b | 2.32 a | 2.09 ab | 0.21 | 0.05 |
Withers height | ||||||
Initial, cm | 85.2 | 85.2 | 86.0 | 86.1 | 0.55 | 0.23 |
Final, cm | 89.7 | 89.8 | 90.7 | 90.7 | 0.79 | 0.34 |
Gain, cm | 4.47 | 4.54 | 4.70 | 4.60 | 0.47 | 0.99 |
Heart girth | ||||||
Initial, cm | 93.9 | 93.8 | 94.8 | 94.5 | 0.70 | 0.48 |
Final, cm | 101.7 b | 102.3 b | 105.1 a | 103.3 ab | 1.16 | 0.07 |
Gain, cm | 7.88 | 8.48 | 10.36 | 8.76 | 0.83 | 0.13 |
Body length | ||||||
Initial, cm | 62.8 | 62.8 | 62.4 | 63.2 | 0.71 | 0.85 |
Final, cm | 65.9 | 66.8 | 67.1 | 67.5 | 0.77 | 0.39 |
Gain, cm | 3.06 | 4.00 | 4.77 | 4.25 | 0.76 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Casper, D.P.; Hu, J. The Effect of a Phytobiotic, Probiotic, and Their Combination as Feed Additives on Growth Performance of Weaned Holstein Male Dairy Calves. Animals 2025, 15, 1166. https://doi.org/10.3390/ani15081166
Liu T, Casper DP, Hu J. The Effect of a Phytobiotic, Probiotic, and Their Combination as Feed Additives on Growth Performance of Weaned Holstein Male Dairy Calves. Animals. 2025; 15(8):1166. https://doi.org/10.3390/ani15081166
Chicago/Turabian StyleLiu, Ting, David P. Casper, and Jiang Hu. 2025. "The Effect of a Phytobiotic, Probiotic, and Their Combination as Feed Additives on Growth Performance of Weaned Holstein Male Dairy Calves" Animals 15, no. 8: 1166. https://doi.org/10.3390/ani15081166
APA StyleLiu, T., Casper, D. P., & Hu, J. (2025). The Effect of a Phytobiotic, Probiotic, and Their Combination as Feed Additives on Growth Performance of Weaned Holstein Male Dairy Calves. Animals, 15(8), 1166. https://doi.org/10.3390/ani15081166