Canine Cranial Cruciate Ligament Disease (CCLD): A Concise Review of the Recent Literature
Simple Summary
Abstract
1. Introduction
1.1. Pathophysiology and Etiology of CCLD
1.2. Predisposing Factors
2. Diagnosis of Canine CCLD
2.1. Symptoms of CCLD
2.2. Physical Exam
2.3. Synovial Fluid Analysis
2.4. Radiography
2.5. Computed Tomography (CT) and CT Arthrography
2.6. Magnetic Resonance Imaging (MRI)
2.7. Ultrasonography and Elastography
3. Surgical Treatment
3.1. Extra-Articular Stabilization
3.2. Intra-Articular Stabilization
3.3. Tibial Plateau Leveling Osteotomy (TPLO)
3.4. Tibial Tuberosity Advancement (TTA)
3.5. Stifle Arthroscopy
3.6. Emerging Biomarkers and Molecular Diagnostics
3.7. Postoperative Rehabilitation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Comerford, E.J.; Smith, K.; Hayashi, K. Update on the aetiopathogenesis of canine cranial cruciate ligament disease. Vet. Comp. Orthop. Traumatol. 2011, 24, 91–98. [Google Scholar] [PubMed]
- Conzemius, M.G.; Evans, R.B.; Besancon, M.F.; Gordon, W.J.; Horstman, C.L.; Hoefle, W.D.; Nieves, M.A.; Wagner, S.D. Effect of surgical technique on limb function after surgery for rupture of the cranial cruciate ligament in dogs. J. Am. Vet. Med. Assoc. 2005, 226, 232–236. [Google Scholar]
- Griffon, D.J. A review of the pathogenesis of canine cranial cruciate ligament disease. Vet. Surg. 2010, 39, 399–409. [Google Scholar] [CrossRef]
- Moretti, G.; Militi, M.; Peteoaca, A.; Angeli, G.; Monti, E.; Bufalari, A. CT and CTA of normal canine stifles. Sci. Works Ser. C Vet. Med. 2021, 67, 55–64. [Google Scholar]
- Ödman, S.; Martenne-Duplan, A.; Finck, M.; Crumière, A.; Goin, B.; Buttin, P.; Viguier, E.; Cachon, T.; Julinder, K. Intra-articular reconstruction with UHMWPE ligament. Vet. Sci. 2024, 11, 334. [Google Scholar] [CrossRef]
- Ragetly, C.A.; Griffon, D.J.; Klump, L.M.; Hsiao-Wecksler, E.T. Kinetic and kinematic analysis in CCLD-prone Labradors. Vet. Surg. 2012, 41, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Rooster, H. Cranial Cruciate Ligament Disease in the Dog: Contributions to Etiology, Diagnosis and Treatment. Ph.D. Dissertation, Ghent University, Ghent, Belgium, 2001. [Google Scholar]
- Spinella, G.; Arcamone, G.; Valentini, S. CCL rupture: Biomechanics and rehabilitation review. Vet. Sci. 2021, 8, 186. [Google Scholar] [CrossRef]
- Wilke, V.L.; Robinson, D.A.; Evans, R.B.; Rothschild, M.F.; Conzemius, M.G. Annual economic impact of CCL treatment. JAVMA 2005, 227, 1604–1607. [Google Scholar]
- Curuci, E.H.P.; Minto, B.W.; Magalhães, T.V.; de Barros, L.P.; Dias, L.G.G.G. Double-Cut Tibial Plateau Leveling Osteotomy. Vet. Comp. Orthop. Traumatol. 2024, 37, 297–303. [Google Scholar] [CrossRef]
- Mostafa, A.A.; Griffon, D.J.; Thomas, M.W.; Constable, P.D. Morphometrics in Labradors with/without CCLD. AJVR 2009, 70, 498–507. [Google Scholar]
- Schmutterer, J.M.; Augat, P.; Greinwald, M.; Meyer-Lindenberg, A. Meniscal load distribution in canine stifles. Vet. Comp. Orthop. Traumatol. 2024, 37, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Restucci, B.; Sgadari, M.; Fatone, G.; Valle, G.D.; Aragosa, F.; Caterino, C.; Ferrara, G.; Niebauer, G.W. Immunoexpression of Relaxin and Its Receptors in Stifle Joints of Dogs with Cranial Cruciate Ligament Disease. Animals 2022, 12, 819. [Google Scholar] [CrossRef] [PubMed]
- Schwandt, C.S.; Bohorquez-Vanelli, A.; Tepic, S.; Hassig, M.; Dennler, R.; Vezzoni, A.; Montavon, P.M. Patellar ligament angle in partial CCL tears. AJVR 2006, 67, 1855–1860. [Google Scholar]
- Tinga, S.; Kim, S.E.; Banks, S.A.; Jones, S.C.; Park, B.H.; Pozzi, A.; Lewis, D.D. Fluoroscopic gait analysis in CCLD dogs. BMC Vet. Res. 2018, 14, 85. [Google Scholar] [CrossRef]
- Ševčík, K.; Hluchý, M.; Ševčíková, M.; Domaniža, M.; Ledecký, V. Radiographic variation in Yorkies with CCL rupture. Vet. Sci. 2022, 9, 179. [Google Scholar]
- Pye, C.R.; Green, D.C.; Anderson, J.R.; Phelan, M.M.; Fitzgerald, M.M.; Comerford, E.J.; Peffers, M.J. Metabolomic biomarkers of meniscal injury. JSAP 2024, 65, 90–103. [Google Scholar] [CrossRef]
- Carrillo, A.E.; Maras, A.H.; Suckow, C.L.; Chiang, E.C.; Waters, D.J. Comparison of Cranial Cruciate Ligament Rupture Incidence among Parous and Nulliparous Rottweiler Bitches. Animals 2024, 14, 2608. [Google Scholar] [CrossRef]
- Kim, S.E.; Pozzi, A.; Kowaleski, M.P.; Lewis, D.D. Tibial osteotomies for CCL insufficiency. Vet. Surg. 2008, 37, 111–125. [Google Scholar] [CrossRef]
- Alvarez, L.X.; Repac, J.A.; Kirkby Shaw, K.; Compton, N. Systematic review of postoperative rehabilitation interventions after cranial cruciate ligament surgery in dogs. Vet. Surg. 2022, 51, 233–243. [Google Scholar] [CrossRef]
- Volz, F.; Schmutterer, J.M.; Vockrodt, T.S.; Zablotski, Y.; Lauer, S.K. Stifle goniometry reliability in CCLD dogs. BMC Vet. Res. 2024, 20, 339. [Google Scholar] [CrossRef]
- Reinstein, R.D.S.; Pozzobon, F.M.; Müller, D.C.D.M. Intra-articular stabilization with polyester thread. Ciência Rural. 2023, 54, e20220125. [Google Scholar]
- Rayward, R.M.; Thomson, D.G.; Davies, J.V.; Innes, J.F.; Whitelock, R.G. OA progression after TPLO. JSAP 2004, 45, 92–97. [Google Scholar] [CrossRef]
- Todorović, A.Z.; Krstić, N.E.; Žikić, D.R.; Van Bree, H.J.; Gielen, I.M.; Macanović, M.V.L. Tibial Plateau Angle Measurement in Dogs–Comparison of Three Different Methods. Acta Vet. 2024, 74, 17–29. [Google Scholar]
- Worden, N.J.; Oxley, B.; Naiman, J.; Karlin, W.M.; Chen, T.M.; Hetzel, S.J.; Bleedorn, J. Virtual TPLO planning. VCOT 2023, 36, 225–235. [Google Scholar]
- Tepic, S.; Damur, D.M.; Montavon, P.M. Biomechanics of the stifle joint. In Proceedings of the 1st World Orthopaedic Veterinary Congress Proceedings, Munich, Germany, 5–8 September 2002; pp. 189–190. [Google Scholar]
- Olson, N.J.; Weeren, F.R.; van Eerde, E. Radiographic cranial tibial translation in dogs with CCL rupture. PLoS ONE 2023, 18, e0296252. [Google Scholar] [CrossRef]
- Van der Vekens, E.; de Bakker, E.; Bogaerts, E.; Broeckx, B.J.G.; Ducatelle, R.; Kromhout, K.; Saunders, J.H. US, CT, and CTA of stifles. BMC Vet. Res. 2019, 15, 146. [Google Scholar] [CrossRef]
- Yu, J.; Griffon, D.J.; Wisser, G.; Mostafa, A.A.; Dong, F. Dynamic stress radiography of rotational laxity. Front. Vet. Sci. 2023, 10, 1118755. [Google Scholar] [CrossRef]
- Mostafa, A.A.; Griffon, D.J.; Thomas, M.W.; Constable, P.D. Radiographic and CT evaluation of femoral torsion. Vet. Surg. 2014, 43, 534–541. [Google Scholar]
- Kim, J.; Ko, J.; Eom, K.; Kim, J. Preoperative planning using CT in TPLO. Vet. Med. Sci. 2022, 8, 959–965. [Google Scholar] [CrossRef]
- Tonima, M.A.; Hossain, F.M.; DeHart, A.; Zhang, Y. Auto-Detection of Tibial Plateau Angle in Canine Radiographs Using a Deep Learning Approach. In Proceedings of the 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), Suzhou, China, 14–16 May 2021; pp. 468–472. [Google Scholar] [CrossRef]
- Al Aiyan, A.; Richardson, K.; Manchi, G.; Ginja, M.; Brunnberg, L. Measurement of the Femoral Anteversion Angle in Medium and Large Dog Breeds Using Computed Tomography. Front. Vet. Sci. 2021, 8, 540406. [Google Scholar] [CrossRef]
- Han, S.; Cheon, H.; Cho, H.; Kim, J.; Kang, J.H.; Yang, M.P.; Lee, Y.; Lee, H.; Chang, D. Evaluation of partial cranial cruciate ligament rupture. J. Vet. Sci. 2008, 9, 395–400. [Google Scholar] [CrossRef]
- Böttcher, P.; Brühschwein, A.; Winkels, P.; Werner, H.; Ludewig, E.; Grevel, V.; Oechtering, G. Value of low-field magnetic resonance imaging in diagnosing meniscal tears in the canine stifle: A prospective study evaluating sensitivity and specificity in naturally occurring cranial cruciate ligament deficiency with arthroscopy as the gold standard. Vet. Surg. 2010, 39, 296–305. [Google Scholar] [CrossRef] [PubMed]
- De Armond, C.C.; Lewis, D.D.; Townsend, S. Use of Preoperative 3D Virtual Planning and 3D-Printed Patient-Specific Guides. Case Rep. Vet. Med. 2023, 2023, 3368794. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ko, J.; Kim, J.; Seo, A.; Eom, K. Customized 3D Printing Surgical Guide for TPLO. Front. Vet. Sci. 2021, 8, 751908. [Google Scholar] [CrossRef]
- Tinga, S.; Hughes, N.; Jones, S.C.; Park, B.; Palm, L.; Desaraju, S.S.; Banks, S.A.; MacArthur, S.L.; Lewis, D.D. CORA-based leveling in 4 CCLD dogs. Front. Vet. Sci. 2022, 9, 1052327. [Google Scholar] [CrossRef]
- Trębacz, P.; Frymus, J.; Pawlik, M.; Barteczko, A.; Kurkowska, A.; Czopowicz, M.; Antonowicz, M.; Kajzer, W. Meniscal visibility post-TPLO: 3D model study. Animals 2023, 14, 65. [Google Scholar] [CrossRef]
- Wu, W.T.; Lee, T.M.; Mezian, K.; Naňka, O.; Chang, K.; Özçakar, L. Pictorial review: US of ACL. Ultrasound Med. Biol. 2022, 48, 377–396. [Google Scholar] [CrossRef]
- Knebel, J.; Wilke, S.K.; Neumann, S.; Klatt, A.L.; Schenk, H.C.; Konar, M. Low-field MRI detection of meniscal lesions in dogs. Animals 2024, 14, 3097. [Google Scholar] [CrossRef]
- Mattei, C.; Pratesi, A.; Bernardini, M.; Specchi, S. High-field MRI vs. radiographs for TPLO planning. Vet. Radiol. Ultrasound 2025, 66, e70005. [Google Scholar] [CrossRef]
- Galindo-Zamora, V.; Dziallas, P.; Ludwig, D.C.; Nolte, I.; Wefstaedt, P. Diagnostic accuracy of a short-duration 3T MRI protocol. BMC Vet. Res. 2013, 9, 40. [Google Scholar] [CrossRef]
- Winegardner, K.R.; Scrivani, P.V.; Krotscheck, U.; Todhunter, R.J. MRI of bone marrow lesions in CCLD. Vet. Radiol. Ultrasound 2007, 48, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Tsoi, H.; Canapp, S.; Canapp, D. US detection of CCL pathology without instability. Vet. Evid. 2023, 8, 1–15. [Google Scholar] [CrossRef]
- Seong, Y.; Eom, K.; Lee, H.; Lee, J.; Park, J.; Lee, K.; Jang, K.; Oh, T.; Yoon, J. Dynamic intra-articular saline US for CCL rupture. Vet. Radiol. Ultrasound 2005, 46, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Embriano, K.; Holland, M.; Corriveau, K.M.; Hofmeister, E.; McCarthy, J. Shear-wave elastography of canine patellar tendons. Vet. Radiol. Ultrasound 2025, 66, e13447. [Google Scholar] [CrossRef]
- Pennasilico, L.; Volta, A.; Sassaroli, S.; Di Bella, C.; Riccio, V.; Pilati, N.; Tambella, A.M.; Dini, F.; Palumbo Piccionello, A. Elastosonographic Features of the Patellar Ligament. Vet. Sci. 2024, 11, 126. [Google Scholar] [CrossRef]
- Au, K.K.; Gordon-Evans, W.J.; Dunning, D.; O’Dell-Anderson, K.J.; Knap, K.E.; Griffon, D.; Johnson, A.L. Comparison of short- and long-term function and radiographic osteoarthrosis in dogs after postoperative physical rehabilitation and tibial plateau leveling osteotomy or lateral fabellar suture stabilization. Vet. Surg. 2010, 39, 173–180. [Google Scholar] [CrossRef]
- Tassani, C.; de Witt, A.A.; Fosgate, G.T.; Elliott, R.C. Biomechanics of suture vs. anchor for feline CCL repair. AJVR 2024, 1, 1–7. [Google Scholar]
- Tikekar, A.; De Vicente, F.; McCormack, A.; Thomson, D.; Farrell, M.; Carmichael, S.; Chase, D. TPLO vs. LFTS outcomes in small dogs. N. Z. Vet. J. 2022, 70, 218–227. [Google Scholar] [CrossRef]
- Kaeding, C.C.; Léger-St-Jean, B.; Magnussen, R.A. Epidemiology and Diagnosis of Anterior Cruciate Ligament Injuries. Clin. Sports Med. 2017, 36, 1–8. [Google Scholar] [CrossRef]
- Liu, F.; Guan, B.; Zhou, Z.; Samsonov, A.; Rosas, H.; Lian, K.; Sharma, R.; Kanarek, A.; Kim, J.; Guermazi, A.; et al. Fully Automated ACL Tear Diagnosis with Deep Learning. Radiol. Artif. Intell. 2019, 1, e180091. [Google Scholar] [CrossRef]
- Christopher, S.A.; Beetem, J.; Cook, J.L. Comparison of long-term outcomes associated with three surgical techniques for treatment of cranial cruciate ligament disease in dogs. Vet. Surg. 2013, 42, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Stein, S.; Schmoekel, H. TTA short- and mid-term outcomes. JSAP 2008, 49, 398–404. [Google Scholar] [CrossRef]
- Rovesti, G.L.; Devesa, V.; Bertorelli, L.; Rodriguez-Quiros, J. Arthroscopic meniscal tear treatment with stifle joint distractor. BMC Vet. Res. 2018, 14, 212. [Google Scholar] [CrossRef]
- Malek, S.; Weng, H.Y.; Martinson, S.A.; Rochat, M.C.; Béraud, R.; Riley, C.B. Biomarkers in CCLD-associated osteoarthritis. PLoS ONE 2020, 15, e0242614. [Google Scholar] [CrossRef]
- Wang, Y.; Gludish, D.W.; Hayashi, K.; Todhunter, R.J.; Krotscheck, U.; Johnson, P.J.; Cummings, B.P.; Su, J.; Reesink, H.L. Lubricin increase in CCL rupture. Sci. Rep. 2020, 10, 16725. [Google Scholar] [CrossRef]
- Yamazaki, A.; Tomo, Y.; Eto, H.; Tanegashima, K.; Edamura, K. miRNAs as biomarkers for OA in dogs. Sci. Rep. 2022, 12, 18152. [Google Scholar] [CrossRef]
- Kim, K.B.; Song, D.H.; Woo, Y.W. Machine Intelligence for Pet Dog Health. Int. J. Bio-Sci. Bio-Technol. 2014, 6, 83–90. [Google Scholar] [CrossRef]
- Debes, C.; Wowra, J.; Manzoor, S.; Ruple, A. Predicting health outcomes in dogs using insurance claims data. Sci. Rep. 2023, 13, 9122. [Google Scholar] [CrossRef]
- Baker, L.A.; Momen, M.; Chan, K.; Bollig, N.; Lopes, F.B.; Rosa, G.J.M.; Todhunter, R.J.; Binversie, E.E.; Sample, S.J.; Muir, P. Bayesian and Machine Learning Models for Genomic Prediction of Anterior Cruciate Ligament Rupture in the Canine Model. G3 Genes Genomes Genet. 2020, 10, 2619–2628. [Google Scholar] [CrossRef]
- Dyce, K.M.; Sack, W.O.; Wensing, C.J.G. Textbook of Veterinary Anatomy; Saunders Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
Characteristic | Large Breed Dogs | Small Breed Dogs |
---|---|---|
Risk of CCLD | Higher due to greater body weight and joint stress | Lower, but can still occur due to conformation issues |
Common Breeds Affected | Labrador Retriever, Rottweiler, Saint Bernard, Newfoundland | Shih Tzu, Yorkshire Terrier, Miniature Poodle |
Joint Conformation | Increased tibial plateau angle, leading to higher shear forces on the CCL | More prone to patellar luxation, affecting ligament stability |
Primary Contributing Factor | Degenerative changes due to chronic stress and weight-bearing forces | Tibial instability secondary to patellar luxation (especially Grade IV cases) |
Management Approach | More likely to require surgical intervention (TPLO, TTA) | Conservative management may be more effective, but surgery is indicated in severe cases |
Postoperative Recovery | Longer due to higher mechanical loading on joints | Typically faster, but risk of complications from concurrent orthopedic issues (e.g., patellar luxation) |
Key Factor | Description |
---|---|
Breed | Large breeds (e.g., Labrador Retrievers, Rottweilers, Saint Bernards) have a higher risk due to joint stress. Small breeds may develop CCLD due to tibial instability (e.g., patellar luxation). |
Conformation | Breeds with hyperextended pelvic limbs and open joint angles (e.g., Rottweilers, Chow Chows) have increased ligament strain. Hip dysplasia worsens stress. |
Obesity | Excess weight increases joint stress and inflammation, accelerating ligament degeneration. Genetic variations in ADIPOQ may affect ligament integrity. |
Genetics and Parity | Parous female Rottweilers have a significantly lower risk, suggesting a protective hormonal or mechanical factor. |
Immune-Mediated | Autoimmune responses and inflammatory mediators (e.g., MMPs) contribute to ligament breakdown. |
Inactivity | Muscle atrophy and poor neuromuscular control reduce joint stability, increasing ligament strain. Proprioceptive training helps mitigate risk. |
Technique | Description | Outcomes |
---|---|---|
Extra-Articular Stabilization | Lateral fabellar suture technique involves the placement of a suture from the femur to the fibula to stabilize the stifle. | Effective for stabilization but may not address underlying bone deformities or long-term outcomes. |
Intra-Articular Stabilization | Utilizes natural or synthetic implants to reconstruct the cranial cruciate ligament. | Good short-term results; choice between natural vs. synthetic implants depending on specific cases. |
TPLO | Reshapes the tibial plateau to alter the biomechanics of the stifle joint, reducing tibial thrust. | Effective in reducing tibial thrust and improving function; requires accurate preoperative planning. |
DCTPLO | Modified TPLO technique involving two cuts in the same plane to level the tibial plateau. | Effective for cases with excessive tibial plateau angle; significantly reduces eTPA with good clinical outcomes. |
TTA | Shifts the tibial tuberosity to reduce patellar tendon force on the cranial cruciate ligament. | Improves function and reduces lameness; may have a longer recovery period compared to TPLO. |
Arthroscopy | Minimally invasive technique to visualize and treat the joint, often used in combination with other surgical methods. | Allows for detailed assessment and treatment of intra-articular issues; can be combined with TPLO or other techniques. |
Rehabilitation Method | Description | Advantages | Disadvantages |
---|---|---|---|
Aquatic Therapy (Swimming) | Engages dogs in swimming within a controlled aquatic environment, allowing for low-impact exercise that facilitates movement without stressing the joints. |
|
|
Passive Range of Motion Exercises | Involves manual manipulation of affected joints to maintain or improve flexibility and prevent stiffness. |
|
|
Underwater Treadmill Rehabilitation | Utilizes a treadmill submerged in water to facilitate controlled ambulation and resistance training. |
|
|
Therapeutic Exercise Programs | Structured exercise regimens are designed to target specific muscle groups and enhance functional recovery. |
|
|
Cold Compression Therapy | Involves the application of cold packs combined with compression to reduce inflammation and manage postoperative pain. |
|
|
Massage Therapy | Involves the manual manipulation of soft tissues to enhance circulation and alleviate muscle tension. |
|
|
Electrical Stimulation Therapy | Utilizes electrical currents to stimulate muscle contraction and promote rehabilitation. |
|
|
Activity Restriction Protocols | Involves limiting physical activity to facilitate initial healing and mitigate the risk of postoperative complications. |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafla, M.; Yang, P.; Mostafa, A. Canine Cranial Cruciate Ligament Disease (CCLD): A Concise Review of the Recent Literature. Animals 2025, 15, 1030. https://doi.org/10.3390/ani15071030
Rafla M, Yang P, Mostafa A. Canine Cranial Cruciate Ligament Disease (CCLD): A Concise Review of the Recent Literature. Animals. 2025; 15(7):1030. https://doi.org/10.3390/ani15071030
Chicago/Turabian StyleRafla, Michael, Peilong Yang, and Ayman Mostafa. 2025. "Canine Cranial Cruciate Ligament Disease (CCLD): A Concise Review of the Recent Literature" Animals 15, no. 7: 1030. https://doi.org/10.3390/ani15071030
APA StyleRafla, M., Yang, P., & Mostafa, A. (2025). Canine Cranial Cruciate Ligament Disease (CCLD): A Concise Review of the Recent Literature. Animals, 15(7), 1030. https://doi.org/10.3390/ani15071030