Effects of Low-Protein Diet Without Soybean Meal on Growth Performance, Nutrient Digestibility, Plasma Free Amino Acids, and Meat Quality of Finishing Pigs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Determination
2.2. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Nutrient Digestion and Serum Biochemical Parameters
3.3. Plasma Free Amino Acid Composition
3.4. Meat Quality
3.5. The Content of H2S and Ammonia-Nitrogen in Urine
4. Discussion
4.1. Growth Performance, Nutrient Digestion, and Serum Biochemical Parameters
4.2. Free Amino Acid Profile in Plasma
4.3. Meat Quality and the Content of H2S and Ammonia-Nitrogen in Urine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Yin, J.; Han, H. Metabolic and proteomic responses to long-term protein restriction in a pig model. J. Agric. Food Chem. 2018, 47, 12571–12579. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, J.; Cao, N. Dietary crude protein time-dependently modulates the bacterial community and metabolites and changes dietary nutrient efficiency in growing pigs. Anim. Nutr. 2023, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Grabež, V.; Egelandsdal, B.; Kjos, N.P. Replacing soybean meal with rapeseed meal and faba beans in a growing-finishing pig diet: Effect on growth performance, meat quality and metabolite changes. Meat Sci. 2020, 166, 108134. [Google Scholar] [CrossRef]
- Pirgozliev, V.R.; Whiting, I.M.; Mansbridge, S.C. Sunflower and rapeseed meal as alternative feed materials to soybean meal for sustainable egg production, using aged laying hens. Br. Poult. Sci. 2023, 5, 634–640. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Qiao, S. Advances in low-protein diets for swine. J. Anim. Sci. Biotechnol. 2018, 9, 60. [Google Scholar] [CrossRef]
- Wang, Y.; Han, S.; Zhou, J. Effects of dietary crude protein level and N-carbamylglutamate supplementation on nutrient digestibility and digestive enzyme activity of jejunum in growing pigs. J. Anim. Sci. 2020, 4, skaa088. [Google Scholar] [CrossRef]
- Nyachoti, C.M.; Omogbenigun, F.O.; Rademacher, M.; Blank, G. Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets. J. Anim. Sci. 2006, 1, 125–134. [Google Scholar] [CrossRef]
- Liu, S.; Fan, Z. Effects of dietary protein restriction on colonic microbiota of finishing pigs. Animals 2022, 1, 9. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Swine; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- Niyonsaba, A.; Jin, X.H.; Kim, Y.Y. Effect of reducing dietary crude protein level on growth performance, blood profiles, nutrient digestibility, carcass traits, and odor emissions in growing-finishing pigs. Anim. Biosci. 2023, 10, 1584–1595. [Google Scholar] [CrossRef]
- Fan, P.; Liu, P.; Song, P. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep. 2017, 7, 43412. [Google Scholar] [CrossRef]
- Kerr, B.J.; Southern, L.L.; Bidner, T.D.; Friesen, K.G.; Easter, R.A. Influence of dietary protein level, amino acid supplementation, and dietary energy levels on growing-finishing pig performance and carcass composition. J. Anim. Sci. 2003, 12, 3075–3087. [Google Scholar] [CrossRef]
- Pieper, R.; Kröger, S.; Richter, J.F.; Wang, J.; Martin, L.; Bindelle, J.; Htoo, J.K.; von Smolinski, D.; Vahjen, W.; Zentek, J.; et al. Fermentable fiber ameliorates fermentable protein-Induced changes in microbial ecology, but not the mucosal response, in the colon of piglets. J. Nutr. 2012, 4, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhao, H.; Chen, S. Effects of low protein diet supplemented with amino acids on growth performance and nitrogen excretion of growing-finishing pigs. Anim. Husb. Feed. Sci. 2010, 5, 3. [Google Scholar]
- Li, Y.H.; Li, F.N.; Duan, Y.H. Low-protein diet improves meat quality of growing and finishing pigs through changing lipid metabolism, fiber characteristics, and free amino acid profile of the muscle. J. Anim. Sci. 2018, 8, 3221–3232. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.E.; Parnsen, W.; Zhang, S.; Abreu ML, T.; Kim, S.W. Low crude protein formulation with supplemental amino acids for its impacts on intestinal health and growth performance of growing-finishing pigs. J. Anim. Sci. Biotechnol. 2024, 1, 55. [Google Scholar] [CrossRef]
- Kim, S.W.; Chen, H.; Parnsen, W. Regulatory Role of Amino Acids in Pigs Fed on Protein-restricted Diets. Curr. Protein Pept. Sci. 2019, 2, 132–138. [Google Scholar] [CrossRef]
- Pan, S.; Jia, Y.; Yang, X. Amino acid starvation-induced autophagy is involved in reduced subcutaneous fat deposition in weaning piglets derived from sows fed low-protein diet during gestation and lactation: Autophagy is involved in reduced fat deposition in maternal low-protein piglets. Eur. J. Nutr. 2018, 3, 991–1001. [Google Scholar]
- Liu, X.; Pan, S.; Li, X. Maternal low-protein diet affects myostatin signaling and protein synthesis in skeletal muscle of offspring piglets at weaning stage. Eur. J. Nutr. 2015, 6, 971–979. [Google Scholar] [CrossRef]
- Corino, C.; Musella, M.; Mourot, J. Influence of extruded linseed on growth, carcass composition, and meat quality of slaughtered pigs at one hundred ten and one hundred sixty kilograms of liveweight. J. Anim. Sci. 2008, 8, 1850–1860. [Google Scholar] [CrossRef]
- Davidson, S.; Odle, J. Supplementing limited methionine diets with rumen-protected methionine, betaine, and choline in early lactation Holstein cows. J. Dairy Sci. 2008, 91, 1552–1559. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, J.; Kim, J. Effects of growth rate on carcass and meat quality traits and their association with metabolism-related gene expression in finishing pigs. Anim. Sci. J. 2012, 2, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tao, X.; Zhao, P. Effects of slaughter weight on carcass characteristics, meat quality, and metabolomics profiling in the longissimus dorsi muscle of Tianfu finishing pigs. Front. Vet. Sci. 2024, 11, 1420634. [Google Scholar] [CrossRef] [PubMed]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Zhou, L.; Huang, Y. A whole-genome sequence based association study on pork eating quality traits and cooking loss in a specially designed heterogeneous F6 pig population. Meat Sci. 2018, 146, 160. [Google Scholar] [CrossRef]
- GB 5009.6-2016; National Food Safety Standard-Determination of Fat in Food. The National Health and Family Planning Commission of the People’s Republic of China and State Food and Drug Administration: Beijing, China, 2016.
- Maiteseidi, T.; Yibureyimu, A. Determination of ammonia-nitrogen concentration in rumen fluid treated with methanol by sodium hypochlorite and phenol spectrophotometry. Xinjiang Agric. Sci. 2012, 3, 179–184. [Google Scholar]
- Han, Y.G.; Lee, G.I.; Do, S.H. The Effect of Reduced Crude Protein on Growth Performance, Nutrient Digestibility, and Meat Quality in Weaning to Finishing Pigs. Animals 2023, 12, 1938. [Google Scholar] [CrossRef]
- Jiang, S.; Quan, W.; Luo, J. Low-protein diets supplemented with glycine improves pig growth performance and meat quality: An untargeted metabolomic analysis. Front. Vet. Sci. 2023, 10, 1170573. [Google Scholar] [CrossRef]
- Duan, J.Q.; Ding, P.; Wu, S.B. Effects of low protein diet on growth performance, carcass quality and plasma amino acids of pigs. Chin. J. Anim. Sci. 2020, 12, 99–103. [Google Scholar]
- Wang, M.; Yang, C.; Wang, Q. The Relationship between Villous Height and Growth Performance, Small Intestinal Mucosal Enzymes Activities and Nutrient Transporters Expression in Weaned Piglets. J. Anim. Physiol. Anim. Nutr. 2020, 104, 606–615. [Google Scholar] [CrossRef]
- Magowan, E.; McCann, M.E.E.; Beattie, V.E. Investigation of Growth Rate Variation between Commercial Pig Herds. Animal 2007, 1, 1219–1226. [Google Scholar] [CrossRef]
- Salazar-Villanea, S.; Hendriks, W.H.; Bruininx, E.M. Protein structural changes during processing of vegetable feed ingredients used in swine diets: Implications for nutritional value. Nutr. Res. Rev. 2016, 1, 126–141. [Google Scholar] [CrossRef] [PubMed]
- Gotti, R.; Esposito, E.; Luise, D. Determination of Free Amino Acids in Milk, Colostrum and Plasma of Swine via Liquid Chromatography with Fluorescence and UV Detection. Molecules 2022, 13, 4153. [Google Scholar] [CrossRef] [PubMed]
- Bergen, W.G. Amino Acids in Beef Cattle Nutrition and Production. Adv. Exp. Med. Biol. 2021, 12, 29–42. [Google Scholar]
- Ye, C.; Zeng, X.; Zhu, J. Dietary N-Carbamylglutamate Supplementation in a Reduced Protein Diet Affects Carcass Traits and the Profile of Muscle Amino Acids and Fatty Acids in Finishing Pigs. J. Agric. Food Chem. 2017, 28, 5751–5758. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, H.; Fu, Y. Comprehensive characterization of the differences in metabolites, lipids, and volatile flavor compounds between Ningxiang and Berkshire pigs using multi-omics techniques. Food Chem. 2024, 457, 139807. [Google Scholar] [CrossRef]
- Fu, Y.; Cao, S.; Yang, L. Flavor formation based on lipid in meat and meat products: A review. J. Food Biochem. 2022, 12, 14439. [Google Scholar] [CrossRef]
- Zhu, Y.P. Effects of Low Protein Amino Acid Balance Diet and Cysteamine Supplementation on Pork Quality. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2017. [Google Scholar]
- Li, H.; Xin, H.; Burns, R.T. Reducing ammonia emissions from laying-hen houses through dietary manipulation. J. Air Waste Manag. Assoc. 2012, 2, 160–169. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Mahgoub, S.A.; Alagawany, M. Improving productive performance and mitigating harmful emissions from laying hen excreta via feeding on graded levels of corn DDGS with or without Bacillus subtilis probiotic. J. Anim. Physiol. Anim. Nutr. 2017, 5, 904–913. [Google Scholar] [CrossRef]
Items (%) | Treatment (1) | ||
---|---|---|---|
CON | HSB | SBF | |
Ground corn | 71.77 | 45.37 | 37.03 |
Wheat | - | 25.00 | 30.00 |
Soybean meal | 14.00 | 7.00 | - |
Wheat bran | 12.00 | 10.00 | 10.00 |
Rice bran | - | 5.00 | 5.00 |
Wheat germ meal | - | 5.00 | 15.00 |
Soybean oil | 0.50 | 0.50 | 0.50 |
Salt | 0.40 | 0.40 | 0.40 |
Calcium carbonate | 0.10 | 0.10 | 0.10 |
CaHPO4 | 0.50 | 0.50 | 0.50 |
Lysine | 0.46 | 0.52 | 0.63 |
Methionine | 0.03 | 0.04 | 0.05 |
Threonine | 0.10 | 0.12 | 0.15 |
Tryptophan | - | 0.01 | 0.12 |
Valine | - | - | 0.02 |
Premix (2) | 0.14 | 0.44 | 0.50 |
Total | 100.00 | 100.00 | 100.00 |
Nutrient Levels (3) | |||
DM (%) | 87.15 | 87.15 | 87.15 |
SNE (Kcal/kg) | 2422.00 | 2418.00 | 2420.00 |
CP (%DM) | 14.00 | 13.00 | 12.00 |
EE (%DM) | 4.12 | 4.13 | 4.13 |
Ash (%DM) | 3.50 | 3.51 | 3.53 |
Calcium (%DM) | 0.58 | 0.58 | 0.58 |
Phosphorus (%DM) | 0.24 | 0.24 | 0.24 |
Swine SID Lys (%) | 0.90 | 0.90 | 0.90 |
Swine SID M + C (%) | 0.45 | 0.45 | 0.45 |
Swine SID Met (%) | 0.24 | 0.24 | 0.24 |
Swine SID Thr (%) | 0.50 | 0.50 | 0.50 |
Swine SID Trp (%) | 0.13 | 0.13 | 0.13 |
Swine SID Val (%) | 0.53 | 0.53 | 0.53 |
Items | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
CON (n = 3) | HSB (n = 3) | SBF (n = 3) | |||
IBW (kg) | 103.28 | 104.30 | 103.35 | 5.03 | 0.35 |
FBW (kg) | 151.26 | 153.43 | 151.48 | 8.46 | 0.42 |
ADFI (g/d) | 4209.57 | 4230.20 | 4214.09 | 35.15 | 0.61 |
ADG (g/d) | 1170.28 | 1198.25 | 1173.89 | 13.10 | 0.14 |
FCR | 3.60 | 3.53 | 3.59 | 0.02 | 0.08 |
Items | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
CON (n = 6) | HSB (n = 6) | SBF (n = 6) | |||
DM (%) | 80.10 b | 82.28 ab | 86.25 a | 2.13 | <0.05 |
CP (%) | 79.50 b | 81.10 ab | 83.45 a | 1.05 | <0.05 |
EE (%) | 75.65 | 74.60 | 75.31 | 3.40 | 0.38 |
Ca (%) | 55.20 b | 56.13 b | 60.62 a | 2.25 | <0.05 |
P (%) | 47.24 | 51.50 | 50.68 | 3.62 | 0.72 |
Items | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
CON (n = 6) | HSB (n = 6) | SBF (n = 6) | |||
ALT (U/L) | 50.83 | 52.03 | 49.96 | 6.02 | 0.25 |
AST (U/L) | 35.13 | 35.30 | 32.30 | 3.79 | 0.42 |
ALP (U/L) | 70.67 | 71.60 | 72.33 | 5.50 | 0.38 |
GGT (U/L) | 40.00 | 40.33 | 42.67 | 3.26 | 0.16 |
TBIL (μmoI/L) | 7.70 | 5.23 | 6.93 | 0.65 | 0.22 |
TP (g/L) | 74.73 | 68.96 | 75.96 | 5.32 | 0.57 |
ALB (g/L) | 41.37 | 41.26 | 43.16 | 3.20 | 0.32 |
GLO (g/L) | 33.36 | 27.70 | 32.80 | 5.58 | 0.46 |
A/G | 1.26 | 1.50 | 1.33 | 0.35 | 0.78 |
LDH (U/L) | 601.00 | 610.67 | 607.67 | 25.65 | 0.35 |
CK (U/L) | 1426.33 | 1590.00 | 1500.67 | 100.20 | 0.92 |
BUN (mmoI/L) | 4.91 | 4.54 | 5.76 | 0.80 | 0.20 |
CREA(μmoI/L) | 149.20 | 140.50 | 146.30 | 10.25 | 0.33 |
GLU (mmoI/L) | 5.93 | 6.03 | 6.23 | 0.50 | 0.53 |
CHOL (mmoI/L) | 2.31 | 1.99 | 2.35 | 0.04 | 0.12 |
TG (mmoI/L) | 0.43 | 0.35 | 0.45 | 0.08 | 0.16 |
PAMY (U/L) | 2236.33 | 2424.00 | 2380.33 | 158.35 | 0.87 |
LIP (U/L) | 17.76 | 14.70 | 16.43 | 3.20 | 0.28 |
Items | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
CON (n = 6) | HSB (n = 6) | SBF (n = 6) | |||
Glycine (μg/mL) | 219.10 a | 125.10 b | 137.91 b | 10.03 | <0.05 |
Serine (μg/mL) | 253.04 | 248.56 | 246.21 | 6.46 | 0.12 |
Methionine (μg/mL) | 72.33 | 63.64 | 66.59 | 5.15 | 0.51 |
Proline (μg/mL) | 28.36 | 25.72 | 24.37 | 3.20 | 0.24 |
Leucine (μg/mL) | 33.55 | 30.78 | 31.64 | 2.12 | 0.78 |
Creatine (μg/mL) | 43.71 | 33.76 | 42.53 | 6.28 | 0.37 |
Glutamate (μg/mL) | 229.20 a | 165.13 b | 173.69 b | 10.20 | <0.05 |
Phenylalanine (μg/mL) | 18.67 | 12.89 | 16.64 | 3.50 | 0.13 |
Lysine (μg/mL) | 56.96 | 52.71 | 54.34 | 3.78 | 0.62 |
Argine (μg/mL) | 25.39 | 21.86 | 20.89 | 4.10 | 0.39 |
Tryptophan (μg/mL) | 15.18 | 12.85 | 15.76 | 2.30 | 0.17 |
Tyrosine (μg/mL) | 13.01 | 11.49 | 12.02 | 1.80 | 0.59 |
Histidine (μg/mL) | 47.67 a | 43.06 ab | 39.70 b | 0.90 | <0.05 |
Valine (μg/mL) | 142.68 a | 138.52 ab | 119.55 b | 8.15 | <0.05 |
Ornithine (μg/mL) | 57.42 | 50.09 | 52.12 | 6.05 | 0.17 |
Alanine (μg/mL) | 40.59 | 33.83 | 39.92 | 5.26 | 0.82 |
Taurine (μg/mL) | 31.83 | 31.99 | 35.33 | 3.80 | 0.28 |
Isoleucine (μg/mL) | 23.10 a | 11.46 b | 17.23 ab | 4.30 | <0.05 |
Aspartic (μg/mL) | 10.52 | 8.61 | 9.03 | 1.28 | 0.47 |
Threonine (μg/mL) | 42.64 | 39.46 | 33.93 | 5.90 | 0.62 |
Glutamine (μg/mL) | 58.21 | 54.72 | 56.06 | 3.02 | 0.15 |
Asparagine(μg/mL) | 13.89 | 14.62 | 16.27 | 2.40 | 0.17 |
Items | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
CON (n = 6) | HSB (n = 6) | SBF (n = 6) | |||
Carcass traits | |||||
YP (%) | 72.83 | 70.25 | 71.95 | 1.32 | 0.56 |
CL (cm) | 91.05 | 90.50 | 92.89 | 2.58 | 0.42 |
BFT (cm) | 2.83 b | 2.87 ab | 2.93 a | 0.05 | <0.05 |
LEA (cm2) | 32.58 | 33.06 | 32.73 | 2.80 | 0.17 |
LMR (%) | 60.20 | 61.52 | 57.90 | 2.35 | 0.09 |
Meat quality | |||||
pH24h | 5.72 | 5.68 | 5.70 | 0.15 | 0.35 |
a* | 16.30 | 16.25 | 16.81 | 1.80 | 0.57 |
b* | 4.23 | 4.50 | 4.46 | 0.45 | 0.81 |
L* | 56.10 | 57.20 | 56.52 | 3.55 | 0.70 |
SF (N) | 37.00 | 36.50 | 37.87 | 4.90 | 0.32 |
DL (%) | 4.65 | 4.70 | 4.62 | 0.89 | 0.61 |
CL (%) | 15.50 | 14.92 | 15.10 | 0.80 | 0.20 |
ML (%) | 37.10 | 37.45 | 38.06 | 10.25 | 0.38 |
IMF (%) | 1.80 | 1.84 | 1.95 | 0.50 | 0.53 |
Items | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
CON (n = 6) | HSB (n = 6) | SBF (n = 6) | |||
NH3-N (mg/dL) | 1.25 a | 1.14 ab | 0.89 b | 0.13 | <0.05 |
H2S (nmol/mL) | 5.25 | 5.16 | 4.12 | 0.75 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, B.; Wang, L.; Jiang, X.; Zhang, T.; Zhu, M.; Wang, G.; Wang, Y.; Cheng, Y. Effects of Low-Protein Diet Without Soybean Meal on Growth Performance, Nutrient Digestibility, Plasma Free Amino Acids, and Meat Quality of Finishing Pigs. Animals 2025, 15, 828. https://doi.org/10.3390/ani15060828
Deng B, Wang L, Jiang X, Zhang T, Zhu M, Wang G, Wang Y, Cheng Y. Effects of Low-Protein Diet Without Soybean Meal on Growth Performance, Nutrient Digestibility, Plasma Free Amino Acids, and Meat Quality of Finishing Pigs. Animals. 2025; 15(6):828. https://doi.org/10.3390/ani15060828
Chicago/Turabian StyleDeng, Bobo, Litong Wang, Xiaomei Jiang, Tianyong Zhang, Mingfei Zhu, Guoshui Wang, Yizhen Wang, and Yuanzhi Cheng. 2025. "Effects of Low-Protein Diet Without Soybean Meal on Growth Performance, Nutrient Digestibility, Plasma Free Amino Acids, and Meat Quality of Finishing Pigs" Animals 15, no. 6: 828. https://doi.org/10.3390/ani15060828
APA StyleDeng, B., Wang, L., Jiang, X., Zhang, T., Zhu, M., Wang, G., Wang, Y., & Cheng, Y. (2025). Effects of Low-Protein Diet Without Soybean Meal on Growth Performance, Nutrient Digestibility, Plasma Free Amino Acids, and Meat Quality of Finishing Pigs. Animals, 15(6), 828. https://doi.org/10.3390/ani15060828