Leveraging Whole-Genome Resequencing to Uncover Genetic Diversity and Promote Conservation Strategies for Ruminants in Asia
Simple Summary
Abstract
1. Introduction
2. Overview of Whole-Genome Resequencing Technology
2.1. Definition
2.2. Technical Advantages
3. Applications and Research Progress in Ruminants
3.1. Population Genetic Structure Analysis
3.1.1. Genetic Structure of Sheep and Goats
3.1.2. Genetic Structure of Bovine
3.2. Assessment of Genetic Diversity
3.2.1. Genetic Diversity in Sheep and Goats
3.2.2. Genetic Diversity in Bovine
3.3. Identification of Functional Genes Associated with Economic Traits
3.3.1. Key Functional Genes in Sheep and Goats
3.3.2. Key Functional Genes in Bovine
3.4. Studies on Adaptive Traits
3.4.1. Adaptive Traits in Sheep and Goats
3.4.2. Adaptive Traits in Bovine
4. Conservation of Genetic Resources
4.1. Conservation of Genetic Resources in Sheep and Goats
4.2. Conservation of Genetic Resources in Bovine
5. Deciphering Complex Traits in Ruminants Using Whole-Genome Resequencing: Challenges and Multi-Omics Breakthroughs
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bovine Genome Sequencing and Analysis Consortium; Elsik, C.G.; Tellam, R.L.; Worley, K.C.; Gibbs, R.A.; Muzny, D.M.; Weinstock, G.M.; Adelson, D.L.; Eichler, E.E.; Elnitski, L.; et al. The genome sequence of taurine cattle: A window to ruminant biology and evolution. Science 2009, 324, 522–528. [Google Scholar] [PubMed]
- Qiu, Q.; Zhang, G.; Ma, T.; Qian, W.; Wang, J.; Ye, Z.; Cao, C.; Hu, Q.; Kim, J.; Larkin, D.M.; et al. The yak genome and adaptation to life at high altitude. Nat. Genet. 2012, 44, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Y.; Zhao, Y.; Zhang, X.; Li, R.; Chen, L.; Zhang, G.; Jiang, Y.; Qiu, Q.; Wang, W.; et al. Draft genome of the Marco Polo Sheep (Ovis ammon polii). Gigascience 2017, 6, gix106. [Google Scholar] [CrossRef] [PubMed]
- Low, W.Y.; Tearle, R.; Bickhart, D.M.; Rosen, B.D.; Kingan, S.B.; Swale, T.; Thibaud-Nissen, F.; Murphy, T.D.; Young, R.; Lefevre, L.; et al. Chromosome-level assembly of the water buffalo genome surpasses human and goat genomes in sequence contiguity. Nat. Commun. 2019, 10, 260. [Google Scholar] [CrossRef]
- Wu, H.; Luo, L.Y.; Zhang, Y.H.; Zhang, C.Y.; Huang, J.H.; Mo, D.X.; Zhao, L.M.; Wang, Z.X.; Wang, Y.C.; He-Hua, E.; et al. Telomere-to-telomere genome assembly of a male goat reveals variants associated with cashmere traits. Nat. Commun. 2024, 15, 10041. [Google Scholar] [CrossRef]
- Bentley, D.R. Whole-Genome Re-Sequencing. Curr. Opin. Genet. Dev. 2006, 16, 545–552. [Google Scholar] [CrossRef]
- Lai, Y.-T.; Yeung, C.K.L.; Omland, K.E.; Pang, E.-L.; Hao, Y.; Liao, B.-Y.; Cao, H.-F.; Zhang, B.-W.; Yeh, C.-F.; Hung, C.-M.; et al. Standing Genetic Variation as the Predominant Source for Adaptation of a Songbird. Proc. Natl. Acad. Sci. USA 2019, 116, 2152–2157. [Google Scholar] [CrossRef]
- Liang, Z.; Duan, S.; Sheng, J.; Zhu, S.; Ni, X.; Shao, J.; Liu, C.; Nick, P.; Du, F.; Fan, P.; et al. Whole-Genome Resequencing of 472 Vitis Accessions for Grapevine Diversity and Demographic History Analyses. Nat. Commun. 2019, 10, 1190. [Google Scholar] [CrossRef]
- Li, Y.; Cao, K.; Zhu, G.; Fang, W.; Chen, C.; Wang, X.; Zhao, P.; Guo, J.; Ding, T.; Guan, L.; et al. Genomic Analyses of an Extensive Collection of Wild and Cultivated Accessions Provide New Insights into Peach Breeding History. Genome Biol. 2019, 20, 36. [Google Scholar] [CrossRef]
- Athanasopoulou, K.; Boti, M.A.; Adamopoulos, P.G.; Skourou, P.C.; Scorilas, A. Third-Generation Sequencing: The Spearhead towards the Radical Transformation of Modern Genomics. Life 2021, 12, 30. [Google Scholar] [CrossRef]
- Olivucci, G.; Iovino, E.; Innella, G.; Turchetti, D.; Pippucci, T.; Magini, P. Long read sequencing on its way to the routine diagnostics of genetic diseases. Front. Genet. 2024, 15, 1374860. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Yang, C.; Xiao, D.; Liu, X.; Jiang, X.; Lin, H.; Ying, Z.; Lin, Y. Chromosome-level assembly of Dictyophora rubrovolvata genome using third-generation DNA sequencing and Hi-C analysis. G3 2023, 13, jkad102. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Chen, H.; Chen, C.; Liu, J.; Song, Z.; Ding, C. The Mutagenic Effect of Cold Plasma on Medicago sativa L. Free Radic. Biol. Med. 2024, 223, 18–29. [Google Scholar] [CrossRef]
- Fuentes-Pardo, A.P.; Ruzzante, D.E. Whole-Genome Sequencing Approaches for Conservation Biology: Advantages, Limitations and Practical Recommendations. Mol. Ecol. 2017, 26, 5369–5406. [Google Scholar] [CrossRef]
- Maybery-Reupert, K.; Isenegger, D.; Hayden, M.; Cogan, N. Development of Genomic Resources for Rhodes Grass (Chloris gayana), Draft Genome and Annotated Variant Discovery. Front. Plant Sci. 2023, 14, 1239290. [Google Scholar] [CrossRef]
- Guo, F.; Ye, Y.; Zhu, K.; Lin, S.; Wang, Y.; Dong, Z.; Yao, R.; Li, H.; Wang, W.; Liao, Z.; et al. Genetic Diversity, Population Structure, and Environmental Adaptation Signatures of Chinese Coastal Hard-Shell Mussel Mytilus coruscus Revealed by Whole-Genome Sequencing. Int. J. Mol. Sci. 2023, 24, 13641. [Google Scholar] [CrossRef]
- Bhattarai, G.; Shi, A.; Mou, B.; Correll, J.C. Resequencing Worldwide Spinach Germplasm for Identification of Field Resistance QTLs to Downy Mildew and Assessment of Genomic Selection Methods. Hortic. Res. 2022, 9, uhac205. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, Z.; Guo, T.; Yuan, C.; Liu, J. Construction of a High-Density Genetic Map and QTL Localization of Body Weight and Wool Production Related Traits in Alpine Merino Sheep Based on WGR. BMC Genom. 2024, 25, 641. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, C.; Zhang, J.; Qiao, J.; Wang, B.; Zhao, Y. Construction of a High-Density Paulownia Genetic Map and QTL Mapping of Important Phenotypic Traits Based on Genome Assembly and Whole-Genome Resequencing. Int. J. Mol. Sci. 2023, 24, 15647. [Google Scholar] [CrossRef]
- Ma, Y.; Jia, J.; Fan, R.; Lu, Y.; Zhao, X.; Zhong, Y.; Yang, J.; Ma, L.; Wang, Y.; Lv, M.; et al. Screening and Identification of the First Non-CRISPR/Cas9-Treated Chinese Miniature Pig with Defective Porcine Endogenous Retrovirus Pol Genes. Front. Immunol. 2021, 12, 797608. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Tan, X.; Liu, R.; Rahman, F.U.; Jiang, J.; Sun, L.; Fan, X.; Liu, J.; Liu, C.; Zhang, Y. QTL Detection and Candidate Gene Analysis of Grape White Rot Resistance by Interspecific Grape (Vitis vinifera L. × Vitis davidii Foex.) Crossing. Hortic. Res. 2023, 10, uhad063. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, Y.X.C.; Warren, B.H. An Overview of Current Population Genomics Methods for the Analysis of Whole-Genome Resequencing Data in Eukaryotes. Mol. Ecol. 2021, 30, 6036–6071. [Google Scholar] [CrossRef] [PubMed]
- Kishikawa, T.; Momozawa, Y.; Ozeki, T.; Mushiroda, T.; Inohara, H.; Kamatani, Y.; Kubo, M.; Okada, Y. Empirical Evaluation of Variant Calling Accuracy Using Ultra-Deep Whole-Genome Sequencing Data. Sci. Rep. 2019, 9, 1784. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, Y.; Wang, S.; Zhang, Q.; Ding, X. Optimal Sequencing Depth Design for Whole Genome Re-Sequencing in Pigs. BMC Bioinform. 2019, 20, 556. [Google Scholar] [CrossRef]
- Logsdon, G.A.; Vollger, M.R.; Eichler, E.E. Long-Read Human Genome Sequencing and Its Applications. Nat. Rev. Genet. 2020, 21, 597–614. [Google Scholar] [CrossRef]
- Smith, S.D.; Kawash, J.K.; Grigoriev, A. Lightning-Fast Genome Variant Detection with GROM. GigaScience 2017, 6, gix091. [Google Scholar] [CrossRef]
- Kosugi, S.; Momozawa, Y.; Liu, X.; Terao, C.; Kubo, M.; Kamatani, Y. Comprehensive Evaluation of Structural Variation Detection Algorithms for Whole Genome Sequencing. Genome Biol. 2019, 20, 117. [Google Scholar] [CrossRef]
- Wratten, L.; Wilm, A.; Göke, J. Reproducible, Scalable, and Shareable Analysis Pipelines with Bioinformatics Workflow Managers. Nat. Methods 2021, 18, 1161–1168. [Google Scholar] [CrossRef]
- Shin, S.C.; Ahn, D.H.; Kim, S.J.; Lee, H.; Oh, T.-J.; Lee, J.E.; Park, H. Advantages of Single-Molecule Real-Time Sequencing in High-GC Content Genomes. PLoS ONE 2013, 8, e68824. [Google Scholar] [CrossRef]
- Levy, S.E.; Boone, B.E. Next-Generation Sequencing Strategies. Cold Spring Harb. Perspect. Med. 2019, 9, a025791. [Google Scholar] [CrossRef] [PubMed]
- Basapathi Raghavendra, J.; Zorzano, M.-P.; Kumaresan, D.; Martin-Torres, J. DNA Sequencing at the Picogram Level to Investigate Life on Mars and Earth. Sci. Rep. 2023, 13, 15277. [Google Scholar] [CrossRef] [PubMed]
- Hossein-Zadeh, N.G. An overview of recent technological developments in bovine genomics. Vet. Anim. Sci. 2024, 25, 100382. [Google Scholar] [CrossRef] [PubMed]
- Didion, J.P.; Yang, H.; Sheppard, K.; Fu, C.-P.; McMillan, L.; de Villena, F.P.-M.; Churchill, G. Discovery of novel variants in genotyping arrays improves genotype retention and reduces ascertainment bias. BMC Genom. 2012, 13, 34. [Google Scholar] [CrossRef]
- Saurabh, R.; Fouodo, C.J.K.; König, I.R.; Busch, H.; Wohlers, I. A survey of genome-wide association studies, polygenic scores and UK Biobank highlights resources for autoimmune disease genetics. Front. Immunol. 2022, 13, 972107. [Google Scholar] [CrossRef]
- Thanh Nguyen, D.; Hoang Nguyen, Q.; Thuy Duong, N.; Vo, N.S. LmTag: Functional-enrichment and imputation-aware tag SNP selection for population-specific genotyping arrays. Brief. Bioinform. 2022, 23, bbac252. [Google Scholar] [CrossRef]
- Runheim, H.; Pettersson, M.; Hammarsjö, A.; Nordgren, A.; Henriksson, M.; Lindstrand, A.; Levin, L.; Soller, M.J. The cost-effectiveness of whole genome sequencing in neurodevelopmental disorders. Sci. Rep. 2023, 13, 6904. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Qin, Q.; Liu, W.; Bian, C.; Yi, Y.; Wang, M.; Zhong, L.; You, X.; Tang, S.; et al. Whole-Genome Sequencing of Chinese Yellow Catfish Provides a Valuable Genetic Resource for High-Throughput Identification of Toxin Genes. Toxins 2018, 10, 488. [Google Scholar] [CrossRef]
- Jung, H.; Winefield, C.; Bombarely, A.; Prentis, P.; Waterhouse, P. Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes. Trends Plant Sci. 2019, 24, 700–724. [Google Scholar] [CrossRef]
- Yang, J.; Cai, Z.; Fang, Y.; Shan, B.; Zhang, R.; Lin, L.; Li, Y.; Zhang, J. Whole-Genome Resequencing Reveals Signatures of Adaptive Evolution in Acanthopagrus latus and Rhabdosargus sarba. Animals 2024, 14, 2339. [Google Scholar] [CrossRef]
- Feng, P.; Zeng, T.; Yang, H.; Chen, G.; Du, J.; Chen, L.; Shen, J.; Tao, Z.; Wang, P.; Yang, L.; et al. Whole-genome resequencing provides insights into the population structure and domestication signatures of ducks in eastern China. BMC Genom. 2021, 22, 401. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Han, B.; Liu, D.; Wang, S.; Wang, L.; Pei, Q.; Zhang, Z.; Zhao, J.; Huang, B.; Zhang, F.; et al. Whole-Genome Resequencing to Investigate the Genetic Diversity and Mechanisms of Plateau Adaptation in Tibetan Sheep. J. Anim. Sci. Biotechnol. 2024, 15, 164. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.; Xiong, H.; Gao, Z.; Lu, Y.; Hong, J.; Wu, J.; He, X.; Xi, D.; Tu, X.; Deng, W. Genomic and Transcriptomic Landscape to Decipher the Genetic Basis of Hyperpigmentation in Lanping Black-Boned Sheep (Ovis aries). BMC Genom. 2024, 25, 845. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, M.; Li, T.; Lu, Z.; Wang, H.; Yuan, Z.; Wei, C. Whole-Genome Resequencing Reveals Selection Signal Related to Sheep Wool Fineness. Animals 2023, 13, 2944. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, M.; Lu, Z.; Li, T.; Wang, H.; Yuan, Z.; Wei, C. Whole Genome Resequencing Reveals Selection Signals Related to Wool Color in Sheep. Animals 2023, 13, 3265. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Zhang, X.-X.; Li, F.-D.; Yuan, L.-F.; Li, X.-L.; Zhang, Y.-K.; Zhao, Y.; Zhao, L.-M.; Wang, J.-H.; Xu, D.; et al. Whole-Genome Resequencing Reveals Molecular Imprints of Anthropogenic and Natural Selection in Wild and Domesticated Sheep. Zool. Res. 2022, 43, 695–705. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Li, H.; Ahmed, Z.; Luo, Y.; Qin, M.; Yang, Q.; Long, Z.; Lei, C.; Yi, K. Whole-Genome Resequencing Reveals Diversity and Selective Signals in the Wuxue Goat. Anim. Genet. 2024, 55, 575–587. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, Y.; Wang, Z.; Teng, S.; Hanif, Q.; Lei, C.; Sun, J. Whole-Genome Resequencing Reveals Diversity and Selective Signals in Longlin Goat. Gene 2021, 771, 145371. [Google Scholar] [CrossRef]
- Chang, L.; Zheng, Y.; Li, S.; Niu, X.; Huang, S.; Long, Q.; Ran, X.; Wang, J. Identification of Genomic Characteristics and Selective Signals in Guizhou Black Goat. BMC Genom. 2024, 25, 164. [Google Scholar] [CrossRef]
- Liu, J.; Dong, S.; Lv, J.; Li, Y.; Sun, B.; Guo, Y.; Deng, M.; Liu, D.; Liu, G. Screening of SNP Loci Related to Leg Length Trait in Leizhou Goats Based on Whole-Genome Resequencing. Int. J. Mol. Sci. 2024, 25, 12450. [Google Scholar] [CrossRef]
- Xiao, C.; Li, J.; Xie, T.; Chen, J.; Zhang, S.; Elaksher, S.H.; Jiang, F.; Jiang, Y.; Zhang, L.; Zhang, W.; et al. The Assembly of Caprine Y Chromosome Sequence Reveals a Unique Paternal Phylogenetic Pattern and Improves Our Understanding of the Origin of Domestic Goat. Ecol. Evol. 2021, 11, 7779–7795. [Google Scholar] [CrossRef] [PubMed]
- Naji, M.M.; Jiang, Y.; Utsunomiya, Y.T.; Rosen, B.D.; Sölkner, J.; Wang, C.; Jiang, L.; Zhang, Q.; Zhang, Y.; Ding, X.; et al. Favored Single Nucleotide Variants Identified Using Whole Genome Re-Sequencing of Austrian and Chinese Cattle Breeds. Front. Genet. 2022, 13, 974787. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, L.; Zhang, M.; Zhang, T.; Yan, M.; Zhai, M.; Huang, X. Whole Genome Resequencing Reveals the Genetic Contribution of Kazakh and Swiss Brown Cattle to a Population of Xinjiang Brown Cattle. Gene 2022, 839, 146725. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Sun, H.; Lai, W.; Hu, M.; Zhang, Y.; Bai, C.; Liu, J.; Ren, H.; Li, F.; Yan, S. Genome-Wide Re-Sequencing Reveals Population Structure and Genetic Diversity of Bohai Black Cattle. Anim. Genet. 2022, 53, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Zhang, B.; Luo, J.; Li, J.; Liang, J.; Wu, W.; Xie, Y.; Li, F.; Lei, C.; Yi, K. Genomics, Origin and Selection Signals of Loudi Cattle in Central Hunan. Biology 2022, 11, 1775. [Google Scholar] [CrossRef]
- Bo, D.; Feng, Y.; Bai, Y.; Li, J.; Wang, Y.; You, Z.; Shen, J.; Bai, Y. Whole-Genome Resequencing Reveals Genetic Diversity and Growth Trait-Related Genes in Pinan Cattle. Animals 2024, 14, 2163. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Zhao, Y.; Tang, Y.; Li, H.; Song, T.; An, T.; Guan, J.; Li, X.; Zhang, M. Whole-Genome Resequencing Reveals Genetic Diversity, Differentiation, and Selection Signatures of Yak Breeds/Populations in Southwestern China. Front. Genet. 2024, 15, 1382128. [Google Scholar] [CrossRef]
- Guo, S.; Yu, T.; Wang, X.; Zhao, S.; Zhao, E.; Ainierlitu; Ba, T.; Gan, M.; Dong, C.; Naerlima; et al. Whole-Genome Resequencing Reveals the Uniqueness of Subei Yak. J. Anim. Sci. 2024, 102, skae152. [Google Scholar] [CrossRef]
- Chai, Z.; Xin, J.; Zhang, C.; Dawayangla; Luosang; Zhang, Q.; Pingcuozhandui; Li, C.; Zhu, Y.; Cao, H.W.; et al. Whole-Genome Resequencing Provides Insights into the Evolution and Divergence of the Native Domestic Yaks of the Qinghai-Tibet Plateau. BMC Evol. Biol. 2020, 20, 137. [Google Scholar] [CrossRef]
- Zheng, Q.; Wu, X.; Ma, X.; Zhou, X.; Wang, T.; Ma, C.; Zhang, M.; Chu, M.; Guo, X.; Liang, C.; et al. Genetic Structure Analysis of Yak Breeds and Their Response to Adaptive Evolution. Genomics 2024, 116, 110933. [Google Scholar] [CrossRef]
- Kawęcka, A.; Pasternak, M.; Miksza-Cybulska, A.; Puchała, M. Native Sheep Breeds in Poland-Importance and Outcomes of Genetic Resources Protection Programmes. Animals 2022, 12, 1510. [Google Scholar] [CrossRef] [PubMed]
- Lan, D.; Xiong, X.; Mipam, T.D.; Fu, C.; Li, Q.; Ai, Y.; Hou, D.; Chai, Z.; Zhong, J.; Li, J. Genetic Diversity, Molecular Phylogeny, and Selection Evidence of Jinchuan Yak Revealed by Whole-Genome Resequencing. G3 Genes Genomes Genet. 2018, 8, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Han, B.; Li, X.; Liu, D.; Zhou, B.; Zhao, C.; Zhang, N.; Wang, L.; Pei, Q.; Zhao, K. Genetic Diversity and Selection of Tibetan Sheep Breeds Revealed by Whole-Genome Resequencing. Anim. Biosci. 2023, 36, 991–1002. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhao, H.; Chen, N.; Cao, X.; Hanif, Q.; Pi, L.; Hu, L.; Chaogetu, B.; Huang, Y.; Lan, X.; et al. Population structure, genetic diversity, and selective signature of Chaka sheep revealed by whole genome sequencing. BMC Genom. 2020, 21, 520. [Google Scholar] [CrossRef]
- Sun, X.; Guo, J.; Li, R.; Zhang, H.; Zhang, Y.; Liu, G.E.; Emu, Q.; Zhang, H. Whole-Genome Resequencing Reveals Genetic Diversity and Wool Trait-Related Genes in Liangshan Semi-Fine-Wool Sheep. Animals 2024, 14, 444. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Luo, Y.; Li, J.; Sun, A.; Ahmed, Z.; Zhang, B.; Lei, C.; Yi, K. Comprehensive Whole-Genome Resequencing Unveils Genetic Diversity and Selective Signatures of the Xiangdong Black Goat. Front. Genet. 2024, 15, 1326828. [Google Scholar] [CrossRef]
- Chen, Q.; Chai, Y.; Zhang, W.; Cheng, Y.; Zhang, Z.; An, Q.; Chen, S.; Man, C.; Du, L.; Zhang, W.; et al. Whole-Genome Sequencing Reveals the Genomic Characteristics and Selection Signatures of Hainan Black Goat. Genes 2022, 13, 1539. [Google Scholar] [CrossRef]
- An, Z.X.; Shi, L.G.; Hou, G.Y.; Zhou, H.L.; Xun, W.J. Genetic Diversity and Selection Signatures in Hainan Black Goats Revealed by Whole-Genome Sequencing Data. Anim. Int. J. Anim. Biosci. 2024, 18, 101147. [Google Scholar] [CrossRef]
- Zhao, Q.; Huang, C.; Chen, Q.; Su, Y.; Zhang, Y.; Wang, R.; Su, R.; Xu, H.; Liu, S.; Ma, Y.; et al. Genomic Inbreeding and Runs of Homozygosity Analysis of Cashmere Goat. Animals 2024, 14, 1246. [Google Scholar] [CrossRef]
- Chen, Q.; Zhan, J.; Shen, J.; Qu, K.; Hanif, Q.; Liu, J.; Zhang, J.; Chen, N.; Chen, H.; Huang, B.; et al. Whole-Genome Resequencing Reveals Diversity, Global and Local Ancestry Proportions in Yunling Cattle. J. Anim. Breed. Genet. 2020, 137, 641–650. [Google Scholar] [CrossRef]
- Ma, J.; Fan, A.-P.; Wang, W.-S.; Zhang, J.-C.; Jiang, X.-J.; Ma, R.-J.; Jia, S.-Q.; Liu, F.; Lei, C.-C.; Huang, Y.-Z. Analysis of Genetic Diversity and Genetic Structure of Qinchuan Cattle Conservation Population Using Whole-Genome Resequencing. Yi Chuan Hered. 2023, 45, 602–616. [Google Scholar]
- Ahmed, Z.; Xiang, W.; Wang, F.; Nawaz, M.; Kuthu, Z.H.; Lei, C.; Xu, D. Whole-Genome Resequencing Deciphers Patterns of Genetic Diversity, Phylogeny, and Evolutionary Dynamics in Kashmir Cattle. Anim. Genet. 2024, 55, 511–526. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Z.; Zhang, M.; Wang, S.; Gao, T.; Huang, H.; Zhang, T.; Cai, H.; Liu, X.; Fu, T.; et al. Population Structure and Selection Signal Analysis of Nanyang Cattle Based on Whole-Genome Sequencing Data. Genes 2024, 15, 351. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Li, J.; Xiao, C.; Sun, L.; Xiang, W.; Chen, N.; Lei, C.; Lei, H.; Long, Y.; Long, T.; et al. Whole-Genome Resequencing of Xiangxi Cattle Identifies Genomic Diversity and Selection Signatures. Front. Genet. 2022, 13, 816379. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhang, P.; Liu, Q.; Liu, C.; Cheng, L.; Yu, B.; Chen, H. Genome-Wide Analysis of Genetic Diversity and Selection Signatures in Zaobei Beef Cattle. Animals 2024, 14, 2447. [Google Scholar] [CrossRef]
- Xu, S.; Akhatayeva, Z.; Liu, J.; Feng, X.; Yu, Y.; Badaoui, B.; Esmailizadeh, A.; Kantanen, J.; Amills, M.; Lenstra, J.A.; et al. Genetic advancements and future directions in ruminant livestock breeding: From reference genomes to multiomics innovations. Sci. China Life Sci. 2024. [Google Scholar] [CrossRef]
- Wang, B.; Chen, L.; Wang, W. Genomic insights into ruminant evolution: From past to future prospects. Zool. Res. 2019, 40, 476–487. [Google Scholar] [CrossRef]
- Zhong, T.; Hou, D.; Zhao, Q.; Zhan, S.; Wang, L.; Li, L.; Zhang, H.; Zhao, W.; Yang, S.; Niu, L. Comparative Whole-Genome Resequencing to Uncover Selection Signatures Linked to Litter Size in Hu Sheep and Five Other Breeds. BMC Genom. 2024, 25, 480. [Google Scholar] [CrossRef]
- Zhao, L.; Yuan, L.; Li, F.; Zhang, X.; Tian, H.; Ma, Z.; Zhang, D.; Zhang, Y.; Zhao, Y.; Huang, K.; et al. Whole-Genome Resequencing of Hu Sheep Identifies Candidate Genes Associated with Agronomic Traits. J. Genet. Genom. 2024, 51, 866–876. [Google Scholar] [CrossRef]
- Yang, P.; Shang, M.; Bao, J.; Liu, T.; Xiong, J.; Huang, J.; Sun, J.; Zhang, L. Whole-Genome Resequencing Revealed Selective Signatures for Growth Traits in Hu and Gangba Sheep. Genes 2024, 15, 551. [Google Scholar] [CrossRef]
- YuYuan, C.; Lu, Z.; Guo, T.; Yue, Y.; Wang, X.; Wang, T.; Zhang, Y.; Hou, F.; Niu, C.; Sun, X.; et al. A Global Analysis of CNVs in Chinese Indigenous Fine-Wool Sheep Populations Using Whole-Genome Resequencing. BMC Genom. 2021, 22, 78. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Bai, L.; Li, S.; Li, W.; Wang, J.; Tao, J.; Hickford, J.G.H. Genetics of Wool and Cashmere Fibre: Progress, Challenges, and Future Research. Animals 2024, 14, 3228. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhu, S.; Guo, T.; Han, M.; Chen, B.; Qiao, G.; Wu, Y.; Yuan, C.; Liu, J.; Lu, Z.; et al. Whole-Genome Re-Sequencing Association Study on Yearling Wool Traits in Chinese Fine-Wool Sheep. J. Anim. Sci. 2021, 99, skab210. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, J.; Shen, M.; Xie, X.-L.; Liu, G.-J.; Xu, Y.-X.; Lv, F.-H.; Yang, H.; Yang, Y.-L.; Liu, C.-B.; et al. Whole-Genome Resequencing of Wild and Domestic Sheep Identifies Genes Associated with Morphological and Agronomic Traits. Nat. Commun. 2020, 11, 2815. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Y.; Ma, T.; Wu, D.; Yang, Y.; Wang, D.; Li, X.; Guo, S.; Yang, S.; Song, Y.; et al. Whole-Genome Resequencing of Ujimqin Sheep Identifies Genes Associated with Vertebral Number. Animals 2024, 14, 677. [Google Scholar] [CrossRef]
- Xiong, J.; Bao, J.; Hu, W.; Shang, M.; Zhang, L. Whole-Genome Resequencing Reveals Genetic Diversity and Selection Characteristics of Dairy Goat. Front. Genet. 2022, 13, 1044017. [Google Scholar] [CrossRef]
- Zhao, J.; Mu, Y.; Gong, P.; Liu, B.; Zhang, F.; Zhu, L.; Shi, C.; Lv, X.; Luo, J. Whole-Genome Resequencing of Native and Imported Dairy Goat Identifies Genes Associated with Productivity and Immunity. Front. Vet. Sci. 2024, 11, 1409282. [Google Scholar] [CrossRef]
- Fang, X.; Gu, B.; Chen, M.; Sun, R.; Zhang, J.; Zhao, L.; Zhao, Y. Genome-Wide Association Study of the Reproductive Traits of the Dazu Black Goat (Capra hircus) Using Whole-Genome Resequencing. Genes 2023, 14, 1960. [Google Scholar] [CrossRef]
- Li, J.; Xu, H.; Liu, X.; Xu, H.; Cai, Y.; Lan, X. Insight into the Possible Formation Mechanism of the Intersex Phenotype of Lanzhou Fat-Tailed Sheep Using Whole-Genome Resequencing. Animals 2020, 10, 944. [Google Scholar] [CrossRef]
- Wang, K.; Liu, X.; Qi, T.; Hui, Y.; Yan, H.; Qu, L.; Lan, X.; Pan, C. Whole-Genome Sequencing to Identify Candidate Genes for Litter Size and to Uncover the Variant Function in Goats (Capra hircus). Genomics 2021, 113 Pt 1, 142–150. [Google Scholar] [CrossRef]
- Guan, X.; Zhao, S.; Xiang, W.; Jin, H.; Chen, N.; Lei, C.; Jia, Y.; Xu, L. Genetic Diversity and Selective Signature in Dabieshan Cattle Revealed by Whole-Genome Resequencing. Biology 2022, 11, 1327. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Yao, Z.; Zhang, Z.; Lyu, S.; Chen, N.; Qi, X.; Liu, X.; Ma, W.; Wang, W.; Lei, C.; et al. Whole-Genome Sequencing Reveals Genomic Diversity and Selection Signatures in Xia’nan Cattle. BMC Genom. 2024, 25, 559. [Google Scholar] [CrossRef]
- Li, S.; Lei, H.; Li, J.; Sun, A.; Ahmed, Z.; Duan, H.; Chen, L.; Zhang, B.; Lei, C.; Yi, K. Analysis of Genetic Diversity and Selection Signals in Chaling Cattle of Southern China Using Whole-Genome Scan. Anim. Genet. 2023, 54, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Dang, D.; Zhang, L.; Gao, L.; Peng, L.; Chen, J.; Yang, L. Analysis of Genomic Copy Number Variations through Whole-Genome Scan in Yunling Cattle. Front. Vet. Sci. 2024, 11, 1413504. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Jung, H.-J.; Jung, M.; Yoo, S.-I.; Subramaniyam, S.; Markkandan, K.; Kang, J.-M.; Rai, R.; Park, J.; Kim, J.-J. Discovery of Gene Sources for Economic Traits in Hanwoo by Whole-genome Resequencing. Asian-Australas. J. Anim. Sci. 2016, 29, 1353–1362. [Google Scholar] [CrossRef]
- Ahmad, S.F.; Chandrababu Shailaja, C.; Vaishnav, S.; Kumar, A.; Gaur, G.K.; Janga, S.C.; Ahmad, S.M.; Malla, W.A.; Dutt, T. Read-Depth Based Approach on Whole Genome Resequencing Data Reveals Important Insights into the Copy Number Variation (CNV) Map of Major Global Buffalo Breeds. BMC Genom. 2023, 24, 616. [Google Scholar] [CrossRef]
- Peng, W.; Fu, C.; Shu, S.; Wang, G.; Wang, H.; Yue, B.; Zhang, M.; Liu, X.; Liu, Y.; Zhang, J.; et al. Whole-Genome Resequencing of Major Populations Revealed Domestication-Related Genes in Yaks. BMC Genom. 2024, 25, 69. [Google Scholar] [CrossRef]
- Meng, G.; Bao, Q.; Ma, X.; Chu, M.; Huang, C.; Guo, X.; Liang, C.; Yan, P. Analysis of Copy Number Variation in the Whole Genome of Normal-Haired and Long-Haired Tianzhu White Yaks. Genes 2022, 13, 2405. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, H.; Luo, X.; Ai, Y.; Jiang, M.; Wen, Y. Insight into Unique Somitogenesis of Yak (Bos grunniens) with One Additional Thoracic Vertebra. BMC Genom. 2020, 21, 201. [Google Scholar] [CrossRef]
- Henry, B.K.; Eckard, R.J.; Beauchemin, K.A. Review: Adaptation of ruminant livestock production systems to climate changes. Animal 2018, 12, s445–s456. [Google Scholar] [CrossRef]
- Jin, M.; Wang, H.; Liu, G.; Lu, J.; Yuan, Z.; Li, T.; Liu, E.; Lu, Z.; Du, L.; Wei, C. Whole-Genome Resequencing of Chinese Indigenous Sheep Provides Insight into the Genetic Basis Underlying Climate Adaptation. Genet. Sel. Evol. GSE 2024, 56, 26. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zhang, L.; Li, Q.; Liu, H.; Xu, T.; Zhao, N.; Han, X.; Xu, S.; Zhao, X.; Zhang, C. Genome-Wide Analysis of CNVs in Three Populations of Tibetan Sheep Using Whole-Genome Resequencing. Front. Genet. 2022, 13, 971464. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Cui, Y.; Yang, Y.; Guo, D.; Zhang, D.; Fan, Y.; Li, X.; Zou, J.; Xie, J. Runx1 Protects against the Pathological Progression of Osteoarthritis. Bone Res. 2021, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Chen, K.; Chi, Y.; Jin, H.; Li, L.; Zhang, W.; Xu, J.; Zhang, Y. Runx1 Regulates Zebrafish Neutrophil Maturation via Synergistic Interaction with C-Myb. J. Biol. Chem. 2021, 296, 100272. [Google Scholar] [CrossRef]
- Lee, S.H.; Manandhar, S.; Lee, Y.M. Roles of RUNX in Hypoxia-Induced Responses and Angiogenesis. Adv. Exp. Med. Biol. 2017, 962, 449–469. [Google Scholar]
- Wang, W.; Zhang, X.; Zhou, X.; Zhang, Y.; La, Y.; Zhang, Y.; Li, C.; Zhao, Y.; Li, F.; Liu, B.; et al. Deep Genome Resequencing Reveals Artificial and Natural Selection for Visual Deterioration, Plateau Adaptability and High Prolificacy in Chinese Domestic Sheep. Front. Genet. 2019, 10, 300. [Google Scholar] [CrossRef]
- Shen, J.; Hanif, Q.; Cao, Y.; Yu, Y.; Lei, C.; Zhang, G.; Zhao, Y. Whole Genome Scan and Selection Signatures for Climate Adaption in Yanbian Cattle. Front. Genet. 2020, 11, 94. [Google Scholar] [CrossRef]
- Buggiotti, L.; Yudin, N.S.; Larkin, D.M. Copy Number Variants in Two Northernmost Cattle Breeds Are Related to Their Adaptive Phenotypes. Genes 2022, 13, 1595. [Google Scholar] [CrossRef]
- Wang, T.; Ma, X.; Ma, C.; Wu, X.; Xi, T.; Yin, L.; Li, W.; Li, Y.; Liang, C.; Yan, P. Whole Genome Resequencing-Based Analysis of Plateau Adaptation in Meiren Yak (Bos grunniens). Anim. Biotechnol. 2024, 35, 2298406. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, F.; Cheng, H.; Han, J.; Dang, R.; Xia, X.; Wang, H.; Zhong, J.; Lenstra, J.A.; Zhang, H.; et al. Recent Selection and Introgression Facilitated High-Altitude Adaptation in Cattle. Sci. Bull. 2024, 69, 3415–3424. [Google Scholar] [CrossRef]
- Igoshin, A.; Yudin, N.; Aitnazarov, R.; Yurchenko, A.A.; Larkin, D.M. Whole-Genome Resequencing Points to Candidate DNA Loci Affecting Body Temperature under Cold Stress in Siberian Cattle Populations. Life 2021, 11, 959. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Qu, K.; Ma, X.; Hanif, Q.; Zhang, J.; Liu, J.; Chen, N.; Suolang, Q.; Lei, C.; Huang, B. Whole-Genome Analyses Reveal Genomic Characteristics and Selection Signatures of Lincang Humped Cattle at the China-Myanmar Border. Front. Genet. 2022, 13, 833503. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Wang, Z.; Xie, X.; Pan, D.; Su, Z.; Fan, J.; Xiao, Q.; Sun, R. Insights into Adaption and Growth Evolution: Genome-Wide Copy Number Variation Analysis in Chinese Hainan Yellow Cattle Using Whole-Genome Re-Sequencing Data. Int. J. Mol. Sci. 2024, 25, 11919. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhou, K.; Huang, X.; Chen, H.; Dong, H.; Chen, Q. Whole-Genome Resequencing Provides Insights into the Diversity and Adaptation to Desert Environment in Xinjiang Mongolian Cattle. BMC Genom. 2024, 25, 176. [Google Scholar] [CrossRef]
- Huang, N.; Zhao, L.; Wang, J.; Jiang, Q.; Ju, Z.; Wang, X.; Yang, C.; Gao, Y.; Wei, X.; Zhang, Y.; et al. Signatures of Selection in Indigenous Chinese Cattle Genomes Reveal Adaptive Genes and Genetic Variations to Cold Climate. J. Anim. Sci. 2023, 101, skad006. [Google Scholar] [CrossRef]
- Rafiepour, M.; Ebrahimie, E.; Vahidi, M.F.; Salekdeh, G.H.; Niazi, A.; Dadpasand, M.; Liang, D.; Si, J.; Ding, X.; Han, J.; et al. Whole-Genome Resequencing Reveals Adaptation Prior to the Divergence of Buffalo Subspecies. Genome Biol. Evol. 2021, 13, evaa231. [Google Scholar] [CrossRef]
- Sun, T.; Shen, J.; Achilli, A.; Chen, N.; Chen, Q.; Dang, R.; Zheng, Z.; Zhang, H.; Zhang, X.; Wang, S.; et al. Genomic Analyses Reveal Distinct Genetic Architectures and Selective Pressures in Buffaloes. GigaScience 2020, 9, giz166. [Google Scholar] [CrossRef]
- Surati, U.; Niranjan, S.K.; Pundir, R.K.; Koul, Y.; Vohra, V.; Gandham, R.K.; Kumar, A. Genome-Wide Comparative Analyses Highlight Selection Signatures Underlying Saline Adaptation in Chilika Buffalo. Physiol. Genom. 2024, 56, 609–620. [Google Scholar] [CrossRef]
- Bian, C.; Luo, Y.; Li, J.; Cheng, H.; He, F.; Duan, H.; Ahmed, Z.; Lei, C.; Yi, K. Inference of Genetic Diversity, Population Structure, and Selection Signatures in Xiangxi White Buffalo of China Through Whole-Genome Resequencing. Genes 2024, 15, 1450. [Google Scholar] [CrossRef]
- Place, S.E. Examining the role of ruminants in sustainable food systems. Grass Forage Sci. 2024, 79, 135–143. [Google Scholar] [CrossRef]
- Lyu, Y.; Yao, T.; Chen, Z.; Huangfu, R.; Cheng, H.; Ma, W.; Qi, X.; Li, F.; Chen, N.; Lei, C. Genomic characterization of dryland adaptation in endangered Anxi cattle in China. Anim. Genet. 2024, 55, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lan, T.; Li, H.; Sahu, S.K.; Shi, M.; Zhu, Y.; Han, L.; Yang, S.; Li, Q.; Zhang, L.; et al. Whole-genome resequencing of Chinese pangolins reveals a population structure and provides insights into their conservation. Commun. Biol. 2022, 5, 821. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, X.; Qi, Y.; Li, Y.; Na, Q.; Yuan, H.; Rong, Y.; Ao, X.; Guo, F.; Zhang, L.; et al. Genetic Diversity Analysis of Inner Mongolia Cashmere Goats (Erlangshan subtype) Based on Whole Genome Re-Sequencing. BMC Genom. 2024, 25, 698. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, C.; Guo, T.; Zhang, M.; Bai, Y.; Lu, Z.; Liu, J. Resequencing Reveals Population Structure and Genetic Diversity in Tibetan Sheep. BMC Genom. 2024, 25, 906. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Min, Q.; Sun, X.; Guo, X.; Song, M.; Zeng, X.; Guo, J.; Zhang, H.; Han, Y.; Li, L. Comparative Whole-Genome Analysis of Production Traits and Genetic Structure in Baiyu and Chuanzhong Black Goats. Animals 2024, 14, 3616. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Guo, Y.; Chen, Q.; Zhang, M.; Chen, H.; Geng, J.; Huang, X. Whole-Genome Resequencing Uncovers Diversity and Selective Sweep in Kazakh Cattle. Anim. Genet. 2024, 55, 377–386. [Google Scholar] [CrossRef]
- Sun, W.; Ren, H.; Li, M.; Mei, L.; Zhang, B.; Jia, X.; Chen, S.; Wang, J.; Lai, S. Genomic Insights and Conservation Priorities for Kongshan Cattle: A Whole-Genome Resequencing Approach. Animals 2024, 14, 3056. [Google Scholar] [CrossRef]
- Jin, L.; Qu, K.; Hanif, Q.; Zhang, J.; Liu, J.; Chen, N.; Suolang, Q.; Lei, C.; Huang, B. Whole-Genome Sequencing of Endangered Dengchuan Cattle Reveals Its Genomic Diversity and Selection Signatures. Front. Genet. 2022, 13, 833475. [Google Scholar] [CrossRef]
- Li, S.; Yu, J.; Kang, H.; Liu, J. Genomic Selection in Chinese Holsteins Using Regularized Regression Models for Feature Selection of Whole Genome Sequencing Data. Animals 2022, 12, 2419. [Google Scholar] [CrossRef]
- Zhou, D.K.; Zheng, Z.Q.; Yang, B.G.; Li, X.L.; Li, L.H.; Zhou, R.Y.; Nai, W.H.; Jiang, X.P.; Zhang, J.H.; Hong, Q.H.; et al. Identification of a Goat Intersexuality-Associated Novel Variant Through Genome-Wide Resequencing and Hi-C. Front. Genet. 2021, 11, 616743. [Google Scholar]
- Caballero, A.; Tenesa, A.; Keightley, P.D. The Nature of Genetic Variation for Complex Traits Revealed by GWAS and Regional Heritability Mapping Analyses. Genetics 2015, 201, 1601–1613. [Google Scholar] [CrossRef] [PubMed]
- Bekele, R.; Taye, M.; Abebe, G.; Meseret, S. Genomic Regions and Candidate Genes Associated with Milk Production Traits in Holstein and Its Crossbred Cattle: A Review. Int. J. Genom. 2023, 2023, 8497453. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, X.; Zhang, D.; Zhang, Y.; Li, X.; Zhao, Y.; Xu, D.; Zhao, L.; Li, W.; Wang, J.; et al. Sheep fecal transplantation affects growth performance in mouse models by altering gut microbiota. J. Anim. Sci. 2022, 100, skac303. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Luo, H.; Huang, X.; Wei, C.; Di, J.; Tian, Y.; Fu, X.; Li, B.; Liu, G.E.; Fang, L.; et al. Integration of a single-step genome-wide association study with a multi-tissue transcriptome analysis provides novel insights into the genetic basis of wool and weight traits in sheep. Genet. Sel. Evol. 2021, 53, 56. [Google Scholar] [CrossRef]
- Qi, G.; Si, Z.; Xuan, L.; Han, Z.; Hu, Y.; Fang, L.; Dai, F.; Zhang, T. Unravelling the genetic basis and regulation networks related to fibre quality improvement using chromosome segment substitution lines in cotton. Plant Biotechnol. J. 2024, 22, 3135–3150. [Google Scholar] [CrossRef]
- Jia, Y.; Shen, T.; Wen, Z.; Chen, J.; Liu, Q. Combining Transcriptome and Whole Genome Re-Sequencing to Screen Disease Resistance Genes for Wheat Dwarf Bunt. Int. J. Mol. Sci. 2023, 24, 17356. [Google Scholar] [CrossRef]
- Hu, Q.; Lian, Z.; Xia, X.; Tian, H.; Li, Z. Integrated chromatin accessibility and DNA methylation analysis to reveal the critical epigenetic modification and regulatory mechanism in gonadal differentiation of the sequentially hermaphroditic fish, Monopterus albus. Biol. Sex. Differ. 2022, 13, 73. [Google Scholar] [CrossRef]
- Horgusluoglu, E.; Neff, R.; Song, W.M.; Wang, M.; Wang, Q.; Arnold, M.; Krumsiek, J.; Galindo-Prieto, B.; Ming, C.; Nho, K.; et al. Integrative metabolomics-genomics approach reveals key metabolic pathways and regulators of Alzheimer’s disease. Alzheimers Dement. 2022, 18, 1260–1278. [Google Scholar] [CrossRef]
- Kumar, R.; Ruhel, R.; van Wijnen, A.J. Unlocking biological complexity: The role of machine learning in integrative multi-omics. Acad. Biol. 2024, 2, 1–3. [Google Scholar] [CrossRef]
- Bravo-Egana, V.; Sanders, H.; Chitnis, N. New Challenges, New Opportunities: Next Generation Sequencing and Its Place in the Advancement of HLA Typing. Hum. Immunol. 2021, 82, 478–487. [Google Scholar] [CrossRef]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [PubMed]
- Oyewole, G.J.; Thopil, G.A. Data Clustering: Application and Trends. Artif. Intell. Rev. 2023, 56, 6439–6475. [Google Scholar] [CrossRef]
- Alharbi, W.S.; Rashid, M. A Review of Deep Learning Applications in Human Genomics Using Next-Generation Sequencing Data. Hum. Genom. 2022, 16, 26. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, J.; Pan, D.; Wang, X.; Xu, Y.; Yan, J.; Wang, L.; Yang, X.; Yang, M.; Liu, G.-P. Applications of Multi-Omics Analysis in Human Diseases. MedComm 2023, 4, e315. [Google Scholar] [CrossRef]
- Aggarwal, V.; Banday, A.Z.; Jindal, A.K.; Das, J.; Rawat, A. Recent Advances in Elucidating the Genetics of Common Variable Immunodeficiency. Genes Dis. 2020, 7, 26–37. [Google Scholar] [CrossRef]
Traits | Bovidae | Candidate Gene | Reference | |
---|---|---|---|---|
Bovina | Caprinae | |||
Reproduction | Dabieshan Cattle, Huanhu yaks, Maiwa yaks, Yushu yaks | Hu Sheep, Saanen, Nubian, Alpine, Toggenburg, Guanzhong dairy goat | BMPR1B, BMP2, PGFS, CYP19, CAMK4, GGT5, GNAQ, TSHR, TSHB, PTGS2, ESR2, ATP5E, AURKA, ENDOG, SOX2, RORA, GJA10, RXFP2, CDC25C, NANOS3, GPX5, GPX6, BTBD11, ARFIP1 | [79,86,87,90,91,97] |
Vision | Hu Sheep | ALDH1A2, SAG, PDE6B | [79] | |
Immunity | Dabieshan Cattle, Xia’nan cattle, Huanhu yaks, Maiwa yaks, Yushu yaks | Hu Sheep, Saanen, Nubian, Alpine, Toggenburg, Guanzhong dairy goat, Xinong Saanen Dairy Goat, Laoshan Dairy Goat | GPR35, SH2B2, PIK3R3, HRAS, JAK1, POU2F2, LRRC66, CTSZ, NELFCD, IGLL1, BOLA-DQA2, BOLA-DQB, IL11RA, CNTFR, CCL27, SLAMF1, SLAMF7, NAA35, GOLM1, INPP5D, ADCYAP1R1 | [79,86,87,91,92,97] |
Growth | Xia’nan cattle, Huanhu yaks, Maiwa yaks, Yushu yaks | Gangba sheep, Hu Sheep, Saanen, Nubian, Alpine, Toggenburg, Guanzhong dairy goat, Xinong Saanen Dairy Goat, Laoshan Dairy Goat | HDAC1, YH7B, LCK, ACVR1, GNAI2, RBBP8, ACSL3, FBXW11, PLAT, CRB1, CTSZ, GHR, NR6A1, WSCD1, TMEM68, MFN1, NCKAP5, GRHL2, GRID2, SMARCAL1, EPHB2 | [80,87,92,97] |
Yearling Staple Length | Alpine Merino sheep, Chinese Merino sheep, Qinghai fine-wool sheep, Aohan fine-wool sheep | FAM46A, LOC105607652, SGCD, PLCE1, RAB3C, AIM1, FAT3, C6H4orf22, PLA2R1, ANKRD42, KANSL2, ZNF804A, DPYD, LOC101114228, LOC101122569, LOC105607993, PLA2R1, LOC105611292, PRTFDC1, LOC101122517, C21H11orf85, BATF2 | [83] | |
Yearling Mean Fiber Diameter | Alpine Merino sheep, Chinese Merino sheep, Qinghai fine-wool sheep, Aohan fine-wool sheep | LOC106990409, ARID1A, MGMT, U2AF1, CRYAA, SLIT3, ARHGAP15, N4BP2, TRNAG-UCC, LOC105611432, LOC105603404, SLC4A11, LOC105603112, LOC105606895, LOC101115632 | [83] | |
Milk Production | Ankole, Kenana, Huanhu yaks, Maiwa yaks, Yushu yaks | Saanen, Nubian, Alpine, Toggenburg, Guanzhong dairy goat, Laoshan Dairy Goat | GHR, DGAT2, ELF5, GLYCAM1, ACSBG2, ACSS2, STK3, PRELID3B, HECW1, HECW2, OSBPL2 | [86,87,97] |
Udder Traits | Dazu Black Goat | ATP1A1, LRRC4C, SPCS2, XRRA1, CELF4, NTM, TMEM45B, ATE1, FGFR2 | [88] | |
Litter Size | Dazu Black Goat, Shaanbei White Cashmere Goat | ENSCHIG00000017110, SLC9A8, GLRB, GRIA2, GASK1B, ENSCHIG00000026285, CDC25C, ENDOG, NANOS3 | [88,90] | |
Meat | Xia’nan cattle, Huanhu yaks, Maiwa yaks, Yushu yaks | MCCC1, BZW1, AOX1, LOC100138449, SPATA5, GRHL2 | [92,97] | |
Hair Growth And Hair-Follicle Development | Tianzhu white yaks | ASTN2, ATM, COL22A1, GK5, SLIT3, PM20D1, SGCZ | [98] |
Adaptive Traits | Bovidae | Candidate Gene | Reference | |
---|---|---|---|---|
Bovina | Caprinae | |||
Drought-prone | Kazakh sheep, Mongolian sheep, Tibetan sheep, Yunnan sheep, | TBXT, TG, HOXA1 | [101] | |
High-altitude | Kazakh sheep, Mongolian sheep, Tibetan sheep, Yunnan sheep | DYSF, EPAS1, JAZF1, PDGFD, NF1 | [101] | |
Hypoxia | Tibetan cattle | Tibetan sheep | RUNX1, CYP17, MBP2, ACVR2B, EGLN1 | [102,106,110] |
Heat tolerance | Siberian cattle, Lincang humped cattle | Duolang sheep, Hainan black goat, Kazakh sheep, Mongolian sheep, Tibetan sheep, Yunnan sheep, | DNAJB5, GNG2, MAPK8, CAPN2, SLC1A1, LEPR, GRIA4, COX17, MAATS1, UPK1B, IFNGR1, DDX23, PPT1, THBS1, CCL5, ATF1, PLA1A, PRKAG1, NR1I2, MED16, DNAJC8, HSPA4, FILIP1L, HELB, BCL2L1, TPX2, COMMD1, TSHR, ABCD4, TEX11 | [68,101,106,111] |
Stress resistance | Hainan black goat | TLR2, IFI44, ENPP1, STK3, NFATC1 | [68] | |
Cold tolerance | Yanbian cattle, Tibetan cattle | CORT, FGF5, CD36, LRP11, UQCR11, STING1, EGR1 | [107,110,115] | |
Water reabsorption and osmoregulation (desert adaptation) | Xinjiang Mongolian cattle | PDE11A, DIS3L2, SLIT2, KCNIP4, OSGEP, PKHD1, LOC617141, LOC112442378, LOC527385, FECH, LOC530929, LOC511936, CLIC4, FGF10 | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Lu, Y.; Li, M.; Gao, Z.; Li, D.; Gao, Y.; Deng, W.; Wu, J. Leveraging Whole-Genome Resequencing to Uncover Genetic Diversity and Promote Conservation Strategies for Ruminants in Asia. Animals 2025, 15, 831. https://doi.org/10.3390/ani15060831
Wang Q, Lu Y, Li M, Gao Z, Li D, Gao Y, Deng W, Wu J. Leveraging Whole-Genome Resequencing to Uncover Genetic Diversity and Promote Conservation Strategies for Ruminants in Asia. Animals. 2025; 15(6):831. https://doi.org/10.3390/ani15060831
Chicago/Turabian StyleWang, Qinqian, Ying Lu, Mengfei Li, Zhendong Gao, Dongfang Li, Yuyang Gao, Weidong Deng, and Jiao Wu. 2025. "Leveraging Whole-Genome Resequencing to Uncover Genetic Diversity and Promote Conservation Strategies for Ruminants in Asia" Animals 15, no. 6: 831. https://doi.org/10.3390/ani15060831
APA StyleWang, Q., Lu, Y., Li, M., Gao, Z., Li, D., Gao, Y., Deng, W., & Wu, J. (2025). Leveraging Whole-Genome Resequencing to Uncover Genetic Diversity and Promote Conservation Strategies for Ruminants in Asia. Animals, 15(6), 831. https://doi.org/10.3390/ani15060831