Not Just Corticosterone: Further Characterization of the Endocrine Response of Kemp’s Ridley Sea Turtles (Lepidochelys kempii) Reveals Elevated Plasma Aldosterone Concentrations During Field Capture Events
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Animals and Blood Sample Collection
2.2.1. Trawl Net Capture and Sampling
2.2.2. Manual Capture and Sampling
2.3. Plasma Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguirre, A.A.; Balazs, G.H.; Spraker, T.R.; Gross, T.S. Adrenal and hematological responses to stress in juvenile green turtles (Chelonia mydas) with and without fibropapillomas. Physiol. Zool. 1995, 68, 831–854. [Google Scholar] [CrossRef]
- Wallace, B.P.; DiMatteo, A.D.; Bolten, A.B.; Chaloupka, M.Y.; Hutchinson, B.J.; Abreu-Grobois, F.A.; Mortimer, J.A.; Seminoff, J.A.; Amorocho, D.; Bjorndal, K.A.; et al. Global conservation priorities for marine turtles. PLoS ONE 2011, 6, e24510. [Google Scholar] [CrossRef]
- Wallace, B.P.; Kot, C.; DiMatteo, A.D.; Lee, T.; Crowder, L.B.; Lewison, R.L. Impacts of fisheries bycatch on marine turtle populations worldwide: Toward conservation and research priorities. Ecosphere 2013, 4, 40. [Google Scholar] [CrossRef]
- Roberts, K.; Collins, J.; Paxton, C.H.; Hardy, R.; Downs, J. Weather patterns associated with green turtle hypothermic stunning events in St. Joseph Bay and Mosquito Lagoon, Florida. Phys. Geogr. 2014, 35, 134–150. [Google Scholar] [CrossRef]
- Innis, C.J.; Graham, K.M.; Stacy, N.I.; Stacy, B.A.; Burgess, E.A. Endocrine data provide further evidence of physiologic derangement in sea turtles affected by the Deepwater Horizon oil spill. Endang. Sp. Res. 2024, 53, 533–545. [Google Scholar] [CrossRef]
- Foley, A.M.; Stacy, B.A.; Hardy, R.F.; Shea, C.P.; Minch, K.E.; Schroeder, B.A. Characterizing watercraft-related mortality of sea turtles in Florida. J. Wildl. Manag. 2019, 83, 1057–1072. [Google Scholar] [CrossRef]
- Griffin, L.P.; Griffin, C.R.; Finn, J.T.; Prescott, R.L.; Faherty, M.; Still, B.M.; Danylchuk, A.J. Warming seas increase cold-stunning events for Kemp’s ridley sea turtles in the northwest Atlantic. PLoS ONE 2019, 14, e0211503. [Google Scholar] [CrossRef]
- IUCN. The IUCN Red List of Threatened Species. Version 2023-1. Available online: https://www.iucnredlist.org (accessed on 2 January 2024).
- Bevan, E.; Wibbels, T.; Najera, B.M.Z.; Sarti, L.; Martinez, F.I.; Cuevas, J.M.; Gallaway, B.J.; Pena, L.J.; Burchfield, P.M. Estimating the historic size and current status of the Kemp’s ridley sea turtle (Lepidochelys kempii) population. Ecosphere 2016, 7, e01244. [Google Scholar] [CrossRef]
- Stabenau, E.K.; Heming, T.A.; Mitchell, J.F. Respiratory, acid-base and ionic status of Kemp’s ridley sea turtles (Lepidochelys kempii) subjected to trawling. Comp. Biochem. Physiol. A 1991, 99, 107–111. [Google Scholar] [CrossRef]
- Gregory, L.F.; Gross, T.S.; Bolten, A.B.; Bjorndal, K.A.; Guillette, L.J. Plasma corticosterone concentrations associated with acute captivity stress in wild loggerhead sea turtles (Caretta caretta). Gen. Comp. Endocrinol. 1996, 104, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Gregory, L.F.; Schmid, J.R. Stress responses and sexing of wild Kemp’s ridley sea turtles (Lepidochelys kempii) in the northeastern Gulf of Mexico. Gen. Comp. Endocrinol. 2001, 124, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Hoopes, L.A.; Landry, A.M.; Stabenau, E.K. Physiological effects of capturing Kemp’s ridley sea turtle, Lepidochelys kempii, in entanglement nets. Can. J. Zool. 2000, 78, 1941–1947. [Google Scholar] [CrossRef]
- Hunt, K.E.; Innis, C.J.; Merigo, C.; Rolland, R.M. Endocrine responses to diverse stressors of capture, entanglement and stranding in leatherback turtles (Dermochelys coriacea). Conserv. Physiol. 2016, 4, cow022. [Google Scholar] [CrossRef] [PubMed]
- Snoddy, J.E.; Landon, M.; Blanvillain, G.; Southwood, A. Blood biochemistry of sea turtles captured in gillnets in the lower Cape Fear River, North Carolina, USA. J. Wildl. Manag. 2009, 73, 1394–1401. [Google Scholar] [CrossRef]
- Perrault, J.R.; Arendt, M.D.; Schwenter, J.A.; Byrd, J.L.; Harms, C.A.; Cray, C.; Tuxbury, K.A.; Wood, L.D.; Stacy, N.I. Blood analytes of immature Kemp’s ridley sea turtles (Lepidochelys kempii) from Georgia, USA: Reference intervals and body size correlations. Conserv. Physiol. 2020, 8, coaa091. [Google Scholar] [CrossRef] [PubMed]
- Hart, K.M.; Lamont, M.M. Discerning Behavioral Patterns of Sea Turtles in the Gulf of Mexico to Inform Management Decisions (Corrected Version); Interagency Agreement No. M15PG00032. Report No.: BOEM 2021-088; US Department of the Interior, Bureau of Ocean Energy Management: New Orleans, LA, USA, 2021. Available online: https://espis.boem.gov/final%20reports/BOEM_2021-088.pdf (accessed on 15 November 2024).
- Fournier, D.; Luft, F.C.; Bader, M.; Ganten, D.; Andrade-Navarro, M.A. Emergence and evolution of the renin–angiotensin–aldosterone system. J. Molec. Med. 2012, 90, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Macchi, I.A.; Phillips, J.G. In vitro effects of adrenocorticotropin on corticoid secretion in the turtle, snake, and bullfrog. Gen. Comp. Endocrinol. 1996, 6, 170–182. [Google Scholar] [CrossRef]
- Mehdi, A.Z.; Carballeira, A. Steroid biosynthesis by painted turtles (Chrysemys picta picta) adrenals. Steroids 1972, 19, 137–150. [Google Scholar] [CrossRef]
- Bradshaw, S.D.; Grenot, C.J. Plasma aldosterone levels in two reptilian species, Uromastyx acanthinurus and Tiliqua rugosa, and the effect of several experimental treatments. J. Comp. Physiol. 1976, 111, 71–76. [Google Scholar] [CrossRef]
- Duggan, R.T.; Lofts, B. Adaptation to fresh water in the sea snake Hydrophis cyanocinctus: Tissue electrolytes and peripheral corticosteroids. Gen. Comp. Endocrinol. 1978, 36, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Balment, R.J.; Loveridge, J.P. Endocrine and osmoregulatory mechanisms in the Nile crocodile, Crocodylus niloticus. Gen. Comp. Endocrinol. 1989, 73, 361–367. [Google Scholar] [CrossRef]
- Brewer, K.J.; Ensor, D.M. Hormonal control of osmoregulation in the Chelonia I. The effects of prolactin and interrenal steroids in freshwater Chelonians. Gen. Comp. Endocrinol. 1980, 42, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Uva, B.; Vallarino, M.; Mandich, A.; Isola, G. Plasma aldosterone levels in the female tortoise Testudo hermanni Gmelin in different experimental conditions. Gen. Comp. Endocrinol. 1982, 46, 116–123. [Google Scholar] [CrossRef]
- Faulkner, P.C.; Elsey, R.M.; Hala, D.; Petersen, L.H. Correlations between environmental salinity levels, blood biochemistry parameters, and steroid hormones in wild juvenile American alligators (Alligator mississippiensis). Sci. Rep. 2021, 11, 15168. [Google Scholar] [CrossRef] [PubMed]
- Innis, C.J.; Graham, K.M.; Perrault, J.R.; Harms, C.A.; Christiansen, E.F.; Dodge, K.L.; Burgess, E.A. Further characterization of adrenocortical and thyroid hormone concentrations of leatherback turtles (Dermochelys coriacea) under various stressors, including validation of a plasma aldosterone assay. Conserv Physiol. 2024, 12, coae083. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, R.M.; Patterson, R.M.; Wade, C.E.; Byers, F.M. Effects of acute freshwater exposure in water flux rates and osmotic responses in Kemp’s ridley sea turtles (Lepidochelys kempii). Comp. Biochem. Physiol. A 2000, 127, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.L.; Butler, L.K. Endocrinology of stress. Internat. J. Comp. Psychol. 2007, 20, 89–95. [Google Scholar] [CrossRef]
- Jessop, T.S.; Hamann, M.; Read, M.A.; Limpus, C.J. Evidence for hormonal tactic maximizing green turtle reproduction in response to a pervasive ecological stressor. Gen. Comp. Endocrinol. 2000, 118, 407–417. [Google Scholar] [CrossRef]
- Jessop, T.S.; Knapp, R.; Whittier, J.M.; Limpus, C.J. Dynamic endocrine responses to stress: Evidence for energetic constraints and status dependence in breeding male green turtles. Gen. Comp. Endocrinol. 2002, 126, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Jessop, T.S.; Hamann, M. Hormonal and metabolic responses to nesting activities in the green turtle, Chelonia mydas. J. Exp. Mar. Biol. Ecol. 2004, 308, 253–267. [Google Scholar] [CrossRef]
- Hunt, K.E.; Innis, C.; Rolland, R.M. Corticosterone and thyroxine in cold-stunned Kemp’s ridley sea turtles (Lepidochelys kempii). J. Zoo Wildl. Med. 2012, 43, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Hunt, K.E.; Merigo, C.; Burgess, E.A.; Buck, C.L.; Davis, D.; Kennedy, A.; Lory, L.; Wocial, J.; McNally, K.; Innis, C. Effects of ground transport in Kemp’s ridley (Lepidochelys kempii) and loggerhead (Caretta caretta) turtles. Integr. Org. Biol. 2020, 2, obaa012. [Google Scholar] [CrossRef]
- Flower, J.E.; Norton, T.M.; Andrews, K.M.; Nelson, S.E.; Parker, C.E.; Romero, L.M.; Mitchell, M.A. Baseline plasma corticosterone concentrations and hematological parameters in nesting and rehabilitating loggerhead sea turtles (Caretta caretta). Conserv. Physiol. 2015, 3, cov003. [Google Scholar] [CrossRef]
- Ray, P.P.; Sarkar, S.; Chaudhuri-Sengupta, S.; Maiti, B.R. Adrenomedullary and glycemic alterations following diverse stress in soft-shelled turtles Lissemys punctata punctata Bonnoterre. Endocrinol. Res. 2008, 33, 119–127. [Google Scholar]
- Bergfelt, D.R.; Davis, S.; Conan, A.; Martinez, M.; Canales, R.; Sanchez-Okrucky, R. Evaluation of plasma corticosteroids associated with performance-based activity in bottlenose dolphins (Tursiops truncatus). J. Zoo Aquar. Res. 2020, 8, 152–158. [Google Scholar]
- Champagne, C.D.; Kellar, N.M.; Trego, M.L.; Delehanty, B.; Boonstra, R.; Wasser, S.K.; Booth, R.K.; Crocker, D.E.; Houser, D.S. Comprehensive endocrine response to acute stress in the bottlenose dolphin from serum, blubber, and feces. Gen. Comp. Endocrinol. 2018, 266, 178–193. [Google Scholar] [CrossRef]
- Zwahlen, J.; Gairin, E.; Vianello, S.; Mercader, M.; Roux, N.; Laudet, V. The ecological function of thyroid hormones. Philosoph. Trans. R. Soc. B. 2024, 379, 20220511. [Google Scholar] [CrossRef]
- Moon, D.; MacKenzie, D.S.; Owens, D.W. Serum thyroid hormones in wild and captive sea turtles. Korean J. Biol. Sci. 1998, 2, 177–181. [Google Scholar] [CrossRef]
- Moon, D.; Owens, D.W.; MacKenzie, D.S. The effects of fasting and increased feeding on plasma thyroid hormones, glucose, and total protein in sea turtles. Zool. Sci. 1999, 16, 579–596. [Google Scholar] [CrossRef]
- Rostal, D.C.; Owens, D.W.; Grumbles, J.S.; MacKenzie, D.S.; Amoss, M.S., Jr. Seasonal reproductive cycle of the Kemp’s ridley sea turtle (Lepidochelys kempii). Gen. Comp. Endocrinol. 1998, 109, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Licht, P.; Wood, J.F.; Wood, F.E. Annual and diurnal cycles in plasma testosterone and thyroxine in the male green sea turtle (Chelonia mydas). Gen. Comp. Endocrinol. 1985, 57, 335–344. [Google Scholar] [CrossRef]
- Valente, A.L.S.; Valerde, R.; Parga, M.L.; Marco, I.; Lavin, S.; Alegre, F.; Cuenca, R. Reproductive status of captive loggerhead sea turtles based on serum levels of gonadal steroid hormones, corticosterone and thyroxin. Vet. J. 2011, 187, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Chabot, R.M.; Welsh, R.C.; Mott, C.R.; Guertin, J.R.; Shamblin, B.M.; Witherington, B.E. A sea turtle population assessment for Florida’s Big Bend, northeastern Gulf of Mexico. Gulf Carib. Res. 2021, 32, 19–33. [Google Scholar] [CrossRef]
- Avens, L.; Goshe, L.R.; Coggins, L.; Shaver, D.J.; Higgins, B.; Landry, A.M., Jr.; Bailey, R. Variability in age and size at maturation, reproductive longevity, and long-term growth dynamics for Kemp’s ridley sea turtles in the Gulf of Mexico. PLoS ONE 2017, 12, e0173999. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Peitzsch, M.; Kaden, D.; Langton, K.; Pamporaki, C.; Masjkur, J.; Tsatsaronis, G.; Mangelis, A.; Williams, T.A.; Reincke, M.; et al. Reference intervals for plasma concentrations of adrenal steroids measured by LC-MS/MS: Impact of gender, age, oral contraceptives, body mass index and blood pressure status. Clin. Chim. Acta 2017, 470, 115–124. [Google Scholar] [CrossRef]
- Tan, X.; Li, F.; Wang, X.; Wang, Y. Quantitation and clinical evaluation of plasma aldosterone by ultra-performance liquid chromatography-mass spectrometry. J. Chromatogr. A 2020, 1609, 460456. [Google Scholar] [CrossRef] [PubMed]
- Meunier, C.; Blondelle, D.; Faure, P.; Baguet, J.P.; Le Goff, C.; Chabre, O.; Ducros, V. Development and validation of a method using supported liquid extraction for aldosterone determination in human plasma by LC-MS/MS. Clin. Chim. Acta 2015, 447, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Kai, M.; Ohishi, T.; Hikasa, Y. Plasma aldosterone concentration and the survival of dogs with chronic kidney disease. Thai J. Vet. Med. 2022, 52, 669–678. [Google Scholar]
- Vásquez-Bultrón, O.S.; Moreno-Espinoza, D.E.; Hernández-Salazar, L.T.; Morales-Mávil, J.E. Rapid stress response in post-nesting Kemp’s ridley turtle (Lepidochelys kempii). Salamandra 2021, 57, 146–150. [Google Scholar]
- Coleman, A.T.; Pulis, E.E.; Pitchford, J.L.; Crocker, K.; Heaton, A.J.; Carron, A.M.; Hatchett, W.; Shannon, D.; Austin, F.; Dalton, M.; et al. Population ecology and rehabilitation of incidentally captured Kemp’s ridley sea turtles (Lepidochelys kempii) in the Mississippi Sound, USA. Herp. Conserv. Biol. 2016, 11, 253–264. [Google Scholar]
- Keller, K.A.; Innis, C.J.; Tlusty, M.F.; Kennedy, A.E.; Bean, S.B.; Cavin, J.M.; Merigo, C. Metabolic and respiratory derangements associated with death in cold-stunned Kemp’s ridley turtles (Lepidochelys kempii): 32 cases (2005–2009). J. Am. Vet. Med. Assoc. 2012, 240, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Kley, H.K.; Rick, W. The effect of storage and temperature on the analysis of steroids in plasma and blood. J. Clin. Chem. Clin. Biochem. 1984, 22, 371–378. [Google Scholar] [PubMed]
- Lie, M.; Thorstensen, K. A precise, sensitive and stable LC-MSMS method for detection of picomolar levels of serum aldosterone. Scand. J. Clin. Lab. Investig. 2018, 78, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Mannisto, T.; Surcel, H.M.; Bloigu, A.; Ruokonen, A.; Hartikainen, A.L.; Järvelin, M.R.; Pouta, A.; Vaarasmaki, M.; Suvanto-Luukkonen, E. The effect of freezing, thawing, and short-and long-term storage on serum thyrotropin, thyroid hormones, and thyroid autoantibodies: Implications for analyzing samples stored in serum banks. Clin. Chem. 2007, 53, 1986–1987. [Google Scholar] [CrossRef] [PubMed]
Manual Capture (n = 21) | Trawl Capture (n = 40) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Median | Min | Max | Mean | SD | Median | Min | Max | p Value | |
Aldosterone (pg/mL) | 193.6 | 202.8 | 80.9 | 0.5 | 686 | 523.0 | 264.9 | 491.2 | 126 | 1152 | <0.001 |
Corticosterone (ng/mL) | 10.7 | 12.6 | 2.7 | 1.4 | 39 | 25.5 | 12.0 | 24.5 | 5.7 | 54 | <0.001 |
fT4 (pg/mL) | 1.89 | 0.85 | 1.95 | 0.3 | 3.3 | 2.13 | 0.64 | 2.11 | 1.0 | 3.8 | N.S. |
Na (mmol/L) | 152 | 5 | 152 | 141 | 162 | 151 | 2 | 152 | 146 | 156 | N.S. |
K (mmol/L) | 5.3 | 1.0 | 5.1 | 3.7 | 7.2 | 5.2 | 0.7 | 5.2 | 4.1 | 7.5 | N.S. |
Na:K ratio | 29.8 | 5.0 | 30.3 | 21.5 | 41.3 | 29.3 | 3.5 | 29.1 | 20.4 | 36.9 | N.S. |
Cl (mmol/L) | 121 | 4 | 121 | 110 | 129 | 119 | 2 | 119 | 114 | 124 | 0.005 |
iCa (mg/dL) | 0.69 | 0.22 | 0.69 | 0.33 | 1.14 | 0.94 | 0.13 | 0.96 | 0.62 | 1.16 | <0.001 |
iMg (mmol/L) | 1.28 | 0.31 | 1.25 | 0.81 | 2.10 | 1.32 | 0.31 | 1.30 | 0.77 | 2.67 | N.S. |
Glucose (mmol/L) | 4.6 | 0.7 | 4.3 | 3.4 | 6.1 | 5.2 | 1.5 | 4.8 | 1.8 | 9.2 | N.S. |
Lactate (mmol/L) | 12.1 | 5.2 | 12.5 | 2.3 | 19.0 | 18.8 | 4.1 | 19.1 | 11.6 | 26.1 | 0.008 |
BUN (mmol/L) | 25 | 7 | 25 | 10.7 | 37.5 | 21.1 | 7.4 | 21.1 | 9.6 | 40.4 | N.S. |
(a) Manual Capture | ||||||||||||
Aldo | Cort | fT4 | Na | K | Na:K Ratio | Cl | iCa | iMg | Glucose | Lactate | BUN | |
Aldo | 1 | |||||||||||
Cort | 0.735 ** | 1 | ||||||||||
fT4 | 0.12 | 0.24 | 1 | |||||||||
Na | −0.01 | 0.12 | 0.10 | 1 | ||||||||
K | 0.17 | −0.14 | −0.28 | 0.642 ** | 1 | |||||||
Na:K ratio | −0.19 | 0.17 | 0.36 | −0.540 * | −0.973 ** | 1 | ||||||
Cl | −0.01 | −0.06 | 0.14 | 0.842 ** | 0.643 ** | −0.526 * | 1 | |||||
iCa | 0.20 | 0.42 | 0.12 | −0.34 | −0.489 * | 0.529 * | −0.29 | 1 | ||||
iMg | 0.26 | 0.582 ** | 0.07 | −0.28 | −0.27 | 0.28 | −0.37 | 0 | 1 | |||
Glucose | 0.513 * | 0.515 * | 0.14 | 0.681 ** | 0.471 * | −0.42 | 0.456 * | −0.04 | 0.09 | 1 | ||
Lactate | 0.39 | 0.36 | −0.12 | 0.45 | 0.44 | −0.45 | 0.27 | 0.16 | 0.04 | 0.647 ** | 1 | |
BUN | −0.07 | −0.31 | 0.10 | 0.34 | 0.41 | −0.41 | 0.39 | −0.457 * | −0.43 | 0.07 | −0.08 | 1 |
(b) Trawl capture | ||||||||||||
Aldo | Cort | fT4 | Na | K | Na:K Ratio | Cl | iCa | iMg | Glucose | Lactate | BUN | |
Aldo | 1 | |||||||||||
Cort | 0.588 ** | 1 | ||||||||||
fT4 | 0.10 | 0.15 | 1 | |||||||||
Na | −0.04 | −0.14 | 0.05 | 1 | ||||||||
K | 0.405 * | 0.623 ** | −0.06 | −0.13 | 1 | |||||||
Na:K ratio | −0.421 ** | −0.654 ** | 0.05 | 0.27 | −0.981 ** | 1 | ||||||
Cl | 0.11 | −0.21 | −0.11 | 0.379 * | 0.03 | 0 | 1 | |||||
iCa | 0.2 | −0.05 | 0.13 | 0.19 | 0.02 | 0 | 0.2 | 1 | ||||
iMg | −0.05 | −0.07 | 0.01 | 0.07 | 0.16 | −0.14 | 0.23 | 0 | 1 | |||
Glucose | 0.19 | 0.442 ** | 0.332 * | −0.01 | 0.20 | −0.19 | −0.04 | −0.17 | −0.12 | 1 | ||
Lactate | 0.16 | 0.07 | −0.09 | 0.02 | 0.17 | −0.15 | −0.11 | 0.332 * | −0.28 | 0.02 | 1 | |
BUN | 0.414 ** | 0.374 * | −0.04 | −0.14 | 0.31 | −0.29 | −0.14 | 0.01 | −0.06 | 0.22 | 0.07 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Innis, C.J.; Graham, K.M.; Mott, C.R.; Hart, K.M.; Roche, D.; Cherkiss, M.S.; Burgess, E.A. Not Just Corticosterone: Further Characterization of the Endocrine Response of Kemp’s Ridley Sea Turtles (Lepidochelys kempii) Reveals Elevated Plasma Aldosterone Concentrations During Field Capture Events. Animals 2025, 15, 600. https://doi.org/10.3390/ani15040600
Innis CJ, Graham KM, Mott CR, Hart KM, Roche D, Cherkiss MS, Burgess EA. Not Just Corticosterone: Further Characterization of the Endocrine Response of Kemp’s Ridley Sea Turtles (Lepidochelys kempii) Reveals Elevated Plasma Aldosterone Concentrations During Field Capture Events. Animals. 2025; 15(4):600. https://doi.org/10.3390/ani15040600
Chicago/Turabian StyleInnis, Charles J., Katherine M. Graham, Cody R. Mott, Kristen M. Hart, David Roche, Michael S. Cherkiss, and Elizabeth A. Burgess. 2025. "Not Just Corticosterone: Further Characterization of the Endocrine Response of Kemp’s Ridley Sea Turtles (Lepidochelys kempii) Reveals Elevated Plasma Aldosterone Concentrations During Field Capture Events" Animals 15, no. 4: 600. https://doi.org/10.3390/ani15040600
APA StyleInnis, C. J., Graham, K. M., Mott, C. R., Hart, K. M., Roche, D., Cherkiss, M. S., & Burgess, E. A. (2025). Not Just Corticosterone: Further Characterization of the Endocrine Response of Kemp’s Ridley Sea Turtles (Lepidochelys kempii) Reveals Elevated Plasma Aldosterone Concentrations During Field Capture Events. Animals, 15(4), 600. https://doi.org/10.3390/ani15040600