Novel Insights into Systemic Hyaluronic Acid Therapy in Dogs with Osteoarthritis from an Exploratory Postmarketing Study: Clinical Improvements Linked to Biomarker Changes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Animals
2.2. Study Protocol
2.3. Treatment Protocol
2.4. Blood Drawing and Plasma Separation
2.5. Quantification of the Plasma Concentrations of IL-6, TNF-α, MMP-3, and MMP-13
2.6. Quantification of HA and Chondroitin Sulphate
2.7. Quantification of Plasma Oxylipins, Pro-Hyp, and Hydroxybutyrate
2.8. Quantification of MDA
2.9. Statistical Analysis
3. Results
3.1. Clinical Assessments
3.2. Biomarkers in Plasma
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| OA | Osteoarthritis | 
| IL-6 | Interleukin-6 | 
| TNF-α | Tumor necrosis factor-alpha | 
| PGE2 | Prostaglandin E2 | 
| MMP-3 | Matrix metalloproteinase-3 | 
| HA | Hyaluronic acid | 
| MDA | Malondialdehyde | 
| NSAIDs | Nonsteroidal anti-inflammatory drugs | 
| IA | Intra-articular | 
| IV | Intravenous | 
| MMP-13 | Matrix metalloproteinase-13 | 
| CS | Chondroitin sulphate | 
| LC-MS | Liquid chromatography-mass spectrometry | 
| Pro-Hyp | Prolyl-hydroxyproline | 
| Δ17 6k PGF1α | Δ17-6-keto prostaglandin F1α | 
| MSCs | mesenchymal stem cells | 
References
- Enomoto, M.; De Castro, N.; Hash, J.; Thomson, A.; Nakanishi-Hester, A.; Perry, E.; Aker, S.; Haupt, E.; Opperman, L.; Roe, S.; et al. Prevalence of Radiographic Appendicular Osteoarthritis and Associated Clinical Signs in Young Dogs. Sci. Rep. 2024, 14, 2827. [Google Scholar] [CrossRef]
- Wright, A.; Amodie, D.M.; Cernicchiaro, N.; Lascelles, B.D.X.; Pavlock, A.M.; Roberts, C.; Bartram, D.J. Identification of Canine Osteoarthritis Using an Owner-reported Questionnaire and Treatment Monitoring Using Functional Mobility Tests. J. Small Anim. Pract. 2022, 63, 609–618. [Google Scholar] [CrossRef]
- Cachon, T.; Frykman, O.; Innes, J.F.; Lascelles, B.D.X.; Okumura, M.; Sousa, P.; Staffieri, F.; Steagall, P.V.; Van Ryssen, B. COAST Development Group’s International Consensus Guidelines for the Treatment of Canine Osteoarthritis. Front. Vet. Sci. 2023, 10, 1137888. [Google Scholar] [CrossRef]
- Pettitt, R.A.; German, A.J. Investigation and Management of Canine Osteoarthritis. In Pract. 2015, 37, 1–8. [Google Scholar] [CrossRef]
- Goranov, N.V. Serum Markers of Lipid Peroxidation, Antioxidant Enzymatic Defense, and Collagen Degradation in an Experimental (Pond-Nuki) Canine Model of Osteoarthritis. Vet. Clin. Pathol. 2007, 36, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Tan, Q.; Li, F.; Chen, Z.; Zhang, K.; Li, F.; Yang, B.; Xing, Z.; Zhou, F.; Tian, Y.; et al. Potential Value of Matrix Metalloproteinase-13 as a Biomarker for Osteoarthritis. Front. Surg. 2021, 8, 750047. [Google Scholar] [CrossRef] [PubMed]
- Henrotin, Y. Osteoarthritis in Year 2021: Biochemical Markers. Osteoarthr. Cartil. 2022, 30, 237–248. [Google Scholar] [CrossRef]
- Lotz, M.; Martel-Pelletier, J.; Christiansen, C.; Brandi, M.-L.; Bruyère, O.; Chapurlat, R.; Collette, J.; Cooper, C.; Giacovelli, G.; Kanis, J.A.; et al. Value of Biomarkers in Osteoarthritis: Current Status and Perspectives. Ann. Rheum. Dis. 2013, 72, 1756–1763. [Google Scholar] [CrossRef]
- Molnar, V.; Matišić, V.; Kodvanj, I.; Bjelica, R.; Jeleč, Ž.; Hudetz, D.; Rod, E.; Čukelj, F.; Vrdoljak, T.; Vidović, D.; et al. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int. J. Mol. Sci. 2021, 22, 9208. [Google Scholar] [CrossRef]
- Kukanich, B.; Bidgood, T.; Knesl, O. Clinical Pharmacology of Nonsteroidal Anti-Inflammatory Drugs in Dogs. Vet. Anaesth. Analg. 2012, 39, 69–90. [Google Scholar] [CrossRef]
- Michels, G.M.; Honsberger, N.A.; Walters, R.R.; Kira, S.; Tena, J.; Cleaver, D.M. A Prospective, Randomized, Double-Blind, Placebo-Controlled Multisite, Parallel-Group Field Study in Dogs with Osteoarthritis Conducted in the United States of America Evaluating Bedinvetmab, a Canine Anti-Nerve Growth Factor Monoclonal Antibody. Vet. Anaesth. Analg. 2023, 50, 446–458. [Google Scholar] [CrossRef] [PubMed]
- Reid, J.; Gildea, E.; Davies, V.; Thompson, J.; Scott, M. Measuring the Effect of the Anti-Nerve Growth Factor Antibodies Bedinvetmab and Frunevetmab on Quality of Life in Dogs and Cats with Osteoarthritis Using a Validated Health-Related Quality of Life Outcome Measure: An Observational Real-World Study. Front. Vet. Sci. 2024, 11, 1395360. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, X.; Elazab, S.T.; Huang, J.; Hsu, W.H. Current Review of Monoclonal Antibody Therapeutics in Small Animal Medicine. Animals 2025, 15, 472. [Google Scholar] [CrossRef]
- Lee, E.; Lee, M.-I.; Kim, S.; Kang, B.-J. Spontaneous Osteoarthritis in Dogs: Clinical Effects of Single and Multiple Intra-Articular Injections of Hyaluronic Acid. Acta Sci. Vet. 2023, 51, 1901. [Google Scholar] [CrossRef]
- Ortolano, G.A.; Wenz, B. A Review of the Pathogenesis of Osteoarthritis and the Use of Intra-Articular Platelet Therapy for Joint Disease in Animals and Humans. Bone Tissue Regen. Insights 2014, 5, BTRI.S14578. [Google Scholar] [CrossRef]
- Vilar, J.M.; Batista, M.; Morales, M.; Santana, A.; Cuervo, B.; Rubio, M.; Cugat, R.; Sopena, J.; Carrillo, J.M. Assessment of the Effect of Intraarticular Injection of Autologous Adipose-Derived Mesenchymal Stem Cells in Osteoarthritic Dogs Using a Double Blinded Force Platform Analysis. BMC Vet. Res. 2014, 10, 143. [Google Scholar] [CrossRef]
- Šimek, M.; Rubanová, D.; Nešporová, K.; Skoroplyas, S.; Lehká, K.; Raptová, P.; Velebný, V.; Kubala, L. Pharmacokinetics of the Systemic Application of Hyaluronic Acid for Joint Arthritis Treatment. Int. J. Biol. Macromol. 2025, 307, 141937. [Google Scholar] [CrossRef]
- Kawcak, C.E.; Frisbie, D.D.; Trotter, G.W.; McIlwraith, C.W.; Gillette, S.M.; Powers, B.E.; Walton, R.M. Effects of Intravenous Administration of Sodium Hyaluronate on Carpal Joints in Exercising Horses after Arthroscopic Surgery and Osteochondral Fragmentation. Am. J. Vet. Res. 1997, 58, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Gannon, J. Clinical Experiences with Intravenous Use of Sodium Hyaluronate in Racing Greyhounds. Aust. Vet. J. 1998, 76, 474–475. [Google Scholar] [CrossRef] [PubMed]
- Canapp, S.O.; Cross, A.R.; Brown, M.P.; Lewis, D.D.; Hernandez, J.; Merritt, K.A.; Tran-Son-Tay, R. Examination of Synovial Fluid and Serum Following Intravenous Injections of Hyaluronan for the Treatment of Osteoarthritis in Dogs. Vet. Comp. Orthop. Traumatol. 2005, 18, 169–174. [Google Scholar] [CrossRef]
- Baldwin, K.; Bartges, J.; Buffington, T.; Freeman, L.M.; Grabow, M.; Legred, J.; Ostwald, D. AAHA Nutritional Assessment Guidelines for Dogs and Cats. J. Am. Anim. Hosp. Assoc. 2010, 46, 285–296. [Google Scholar] [CrossRef]
- Goh, C. The Efficient Orthopedic Exam. World Small Animal Veterinary Association Congress Proceedings, Fort Collins, CO, USA, 2019. Available online: https://www.vin.com/doc/?id=9382820 (accessed on 7 July 2025).
- Kampa, N.; Kaenkangploo, D.; Jitpean, S.; Srithunyarat, T.; Seesupa, S.; Hoisang, S.; Yongvanit, K.; Kamlangchai, P.; Tuchpramuk, P.; Lascelles, B.D.X. Study of the Effectiveness of Glucosamine and Chondroitin Sulfate, Marine Based Fatty Acid Compounds (PCSO-524 and EAB-277), and Carprofen for the Treatment of Dogs with Hip Osteoarthritis: A Prospective, Block-Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Front. Vet. Sci. 2023, 10, 1033188. [Google Scholar] [CrossRef]
- Šimek, M.; Hermannová, M.; Šmejkalová, D.; Foglová, T.; Souček, K.; Binó, L.; Velebný, V. LC–MS/MS Study of In Vivo Fate of Hyaluronan Polymeric Micelles Carrying Doxorubicin. Carbohydr. Polym. 2019, 209, 181–189. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, Q. Comprehensive Analysis of Oxylipins in Human Plasma Using Reversed-Phase Liquid Chromatography-Triple Quadrupole Mass Spectrometry with Heatmap-Assisted Selection of Transitions. Anal. Bioanal. Chem. 2019, 411, 367–385. [Google Scholar] [CrossRef]
- Chocholoušková, M.; Jirásko, R.; Vrána, D.; Gatěk, J.; Melichar, B.; Holčapek, M. Reversed Phase UHPLC/ESI-MS Determination of Oxylipins in Human Plasma: A Case Study of Female Breast Cancer. Anal. Bioanal. Chem. 2019, 411, 1239–1251. [Google Scholar] [CrossRef]
- Shi, X.; Wang, S.; Jasbi, P.; Turner, C.; Hrovat, J.; Wei, Y.; Liu, J.; Gu, H. Database-Assisted Globally Optimized Targeted Mass Spectrometry (dGOT-MS): Broad and Reliable Metabolomics Analysis with Enhanced Identification. Anal. Chem. 2019, 91, 13737–13745. [Google Scholar] [CrossRef]
- Domijan, A.; Ralić, J.; Radić Brkanac, S.; Rumora, L.; Žanić-Grubišić, T. Quantification of Malondialdehyde by HPLC-FL—Application to Various Biological Samples. Biomed. Chromatogr. 2015, 29, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Gregg, S.R.; Barshick, M.R.; Johnson, S.E. Intravenous Injection of Sodium Hyaluronate Diminishes Basal Inflammatory Gene Expression in Equine Skeletal Muscle. Animals 2023, 13, 3030. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Shi, M.; Wang, Q.; Hui, J.; Shofaro, J.H.; Erkhembayar, R.; Hui, M.; Gao, C.; Gantumur, M.-A. Anti-Inflammatory Effects of the 35kDa Hyaluronic Acid Fragment (B-HA/HA35). J. Inflamm. Res. 2023, 16, 209–224. [Google Scholar] [CrossRef]
- Echigo, R.; Mochizuki, M.; Nishimura, R.; Sasaki, N. Suppressive Effect of Hyaluronan on Chondrocyte Apoptosis in Experimentally Induced Acute Osteoarthritis in Dogs. J. Vet. Med. Sci. 2006, 68, 899–902. [Google Scholar] [CrossRef] [PubMed]
- Fraser, J.R.F.; Laurent, T.C.; Pertoft, H.; Baxter, E. Plasma Clearance, Tissue Distribution and Metabolism of Hyaluronic Acid Injected Intravenously in the Rabbit. Biochem. J. 1981, 200, 415–424. [Google Scholar] [CrossRef]
- Popot, M.-A.; Bonnaire, Y.; Guéchot, J.; Toutain, P.-L. Hyaluronan in Horses: Physiological Production Rate, Plasma and Synovial Fluid Concentrations in Control Conditions and Following Sodium Hyaluronate Administration. Equine Vet. J. 2004, 36, 482–487. [Google Scholar] [CrossRef]
- Šimek, M.; Nešporová, K.; Kocurková, A.; Foglová, T.; Ambrožová, G.; Velebný, V.; Kubala, L.; Hermannová, M. How the Molecular Weight Affects the in Vivo Fate of Exogenous Hyaluronan Delivered Intravenously: A Stable-Isotope Labelling Strategy. Carbohydr. Polym. 2021, 263, 117927. [Google Scholar] [CrossRef] [PubMed]
- Nazifi, S.; Shojaee Tabrizi, A.; Mohammadi, S.; Erjaee, H.; Mirzaie, A. The Effect of Tramadol and Meloxicam, Alone and in Combination on Oxidative Stress Status in Dogs. Comp. Clin. Pathol. 2019, 28, 1055–1060. [Google Scholar] [CrossRef]
- Barrouin-Melo, S.M.; Anturaniemi, J.; Sankari, S.; Griinari, M.; Atroshi, F.; Ounjaijean, S.; Hielm-Björkman, A.K. Evaluating Oxidative Stress, Serological- and Haematological Status of Dogs Suffering from Osteoarthritis, after Supplementing Their Diet with Fish or Corn Oil. Lipids Health Dis. 2016, 15, 139. [Google Scholar] [CrossRef]
- AbdelHamid, M.A.; Ali, K.M.; Elsayaad, M.E. Experimental Study on Synovial Fluid Matrix Metalloproteinases in Dogs Affected with Osteoarthritis. Vet. Med. J. 2022, 68, 49–63. [Google Scholar] [CrossRef]
- Nganvongpanit, K.; Itthiarbha, A.; Ong-Chai, S.; Kongtawelert, P. Evaluation of Serum Chondroitin Sulfate and Hyaluronan: Biomarkers for Osteoarthritis in Canine Hip Dysplasia. J. Vet. Sci. 2008, 9, 317. [Google Scholar] [CrossRef]
- Oh, J.; Son, Y.S.; Kim, W.H.; Kwon, O.-K.; Kang, B.-J. Mesenchymal Stem Cells Genetically Engineered to Express Platelet-Derived Growth Factor and Heme Oxygenase-1 Ameliorate Osteoarthritis in a Canine Model. J. Orthop. Surg. Res. 2021, 16, 43. [Google Scholar] [CrossRef] [PubMed]
- Dearmin, M.G.; Trumble, T.N.; García, A.; Chambers, J.N.; Budsberg, S.C. Chondroprotective Effects of Zoledronic Acid on Articular Cartilage in Dogs with Experimentally Induced Osteoarthritis. Am. J. Vet. Res. 2014, 75, 329–337. [Google Scholar] [CrossRef]
- Goldberg, R.L.; Huff, J.P.; Lenz, M.E.; Glickman, P.; Katz, R.; Thonar, E.J.A. Elevated Plasma Levels of Hyaluronate in Patients with Osteoarthritis and Rheumatoid Arthritis. Arthritis Rheum. 1991, 34, 799–807. [Google Scholar] [CrossRef]
- Paimela, L.; Heiskanen, A.; Kurki, P.; Helve, T.; Leirisalo-Repo, M. Serum Hyaluronate Level as a Predictor of Radiologic Progression in Early Rheumatoid Arthritis. Arthritis Rheum. 1991, 34, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Emlen, W.; Niebur, J.; Flanders, G.; Rutledge, J. Measurement of Serum Hyaluronic Acid in Patients with Rheumatoid Arthritis: Correlation with Disease Activity. J. Rheumatol. 1996, 23, 974–978. [Google Scholar] [PubMed]
- Majeed, M.; McQueen, F.; Yeoman, S.; McLean, L. Relationship between Serum Hyaluronic Acid Level and Disease Activity in Early Rheumatoid Arthritis. Ann. Rheum. Dis. 2004, 63, 1166–1168. [Google Scholar] [CrossRef]
- Mazzi, G.; Fioravanzo, F.; Burti, E. New Marker of Bone Resorption: Hydroxyproline-Containing Peptide High-Performance Liquid Chromatographic Assay without Hydrolysis as an Alternative to Hydroxyproline Determination: A Preliminary Report. J. Chromatogr. B Biomed. Sci. App. 1996, 678, 165–172. [Google Scholar] [CrossRef]
- Inoue, H.; Iguch, H.; Kouno, A.; Tsuruta, Y. Fluorometric Determination of N-Terminal Prolyl Dipeptides, Proline and Hydroxyproline in Human Serum by Pre-Column High-Performance Liquid Chromatography Using 4-(5,6-Dimethoxy-2-phthalimidinyl)-2-methoxyphenylsufonyl Chloride. J. Chromatogr. B Biomed. Sci. App. 2001, 757, 369–373. [Google Scholar] [CrossRef]
- Iwai, K.; Hasegawa, T.; Taguchi, Y.; Morimatsu, F.; Sato, K.; Nakamura, Y.; Higashi, A.; Kido, Y.; Nakabo, Y.; Ohtsuki, K. Identification of Food-Derived Collagen Peptides in Human Blood after Oral Ingestion of Gelatin Hydrolysates. J. Agric. Food Chem. 2005, 53, 6531–6536. [Google Scholar] [CrossRef]
- Berton, R.; Conceição, M.S.; Libardi, C.A.; Canevarolo, R.R.; Gáspari, A.F.; Chacon-Mikahil, M.P.T.; Zeri, A.C.; Cavaglieri, C.R. Metabolic Time-Course Response after Resistance Exercise: A Metabolomics Approach. J. Sports Sci. 2017, 35, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Contrepois, K.; Wu, S.; Moneghetti, K.J.; Hornburg, D.; Ahadi, S.; Tsai, M.-S.; Metwally, A.A.; Wei, E.; Lee-McMullen, B.; Quijada, J.V.; et al. Molecular Choreography of Acute Exercise. Cell 2020, 181, 1112–1130.e16. [Google Scholar] [CrossRef]




| Criterion | Clinical Scoring | 
|---|---|
| Lameness | 0 = no detectable lameness at any gait; 1 = barely perceptible lameness (discernible to a trained eye); 2 = mild or inconsistently apparent, weight-bearing lameness; 3 = moderate, obviously apparent, weight-bearing lameness; 4 = severe, predominantly weight-bearing lameness; 5 = severe, predominantly non-weight-bearing lameness. | 
| Pain on palpation | 0 = no pain; 1 = mild pain, dog turns head; 2 = moderate pain, dog retracts limb; 3 = severe pain, dog vocalizes or becomes aggressive; 4 = palpation not tolerated. | 
| Joint range of motion | 1 = full range of motion; 2 = slight restriction (10–20%), no crepitus; 3 = slight restriction (10–20%) with crepitus; 4 = moderate restriction (20–50%) with crepitus; 5 = severe restriction (>50%) with crepitus. | 
| Joint swelling | 1 = no swelling; 2 = soft swelling without increased local temperature; 3 = soft swelling with increased local temperature; 4 = firm swelling without increased local temperature; 5 = firm swelling with increased local temperature. | 
| Criterion | Response Options | 
|---|---|
| Change in dog’s physical activity | Increased activity No change Decreased activity | 
| Satisfaction with treatment outcome | Very satisfied Satisfied No effect Condition worsened | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matonohová, J.; Šimek, M.; Berka, V.; Bystroňová, L.; Lžičařová, I.; Rubanová, D.; Kubala, L.; Velebný, V.; Nešporová, K. Novel Insights into Systemic Hyaluronic Acid Therapy in Dogs with Osteoarthritis from an Exploratory Postmarketing Study: Clinical Improvements Linked to Biomarker Changes. Animals 2025, 15, 3140. https://doi.org/10.3390/ani15213140
Matonohová J, Šimek M, Berka V, Bystroňová L, Lžičařová I, Rubanová D, Kubala L, Velebný V, Nešporová K. Novel Insights into Systemic Hyaluronic Acid Therapy in Dogs with Osteoarthritis from an Exploratory Postmarketing Study: Clinical Improvements Linked to Biomarker Changes. Animals. 2025; 15(21):3140. https://doi.org/10.3390/ani15213140
Chicago/Turabian StyleMatonohová, Jana, Matěj Šimek, Vratislav Berka, Lucie Bystroňová, Iva Lžičařová, Daniela Rubanová, Lukáš Kubala, Vladimír Velebný, and Kristina Nešporová. 2025. "Novel Insights into Systemic Hyaluronic Acid Therapy in Dogs with Osteoarthritis from an Exploratory Postmarketing Study: Clinical Improvements Linked to Biomarker Changes" Animals 15, no. 21: 3140. https://doi.org/10.3390/ani15213140
APA StyleMatonohová, J., Šimek, M., Berka, V., Bystroňová, L., Lžičařová, I., Rubanová, D., Kubala, L., Velebný, V., & Nešporová, K. (2025). Novel Insights into Systemic Hyaluronic Acid Therapy in Dogs with Osteoarthritis from an Exploratory Postmarketing Study: Clinical Improvements Linked to Biomarker Changes. Animals, 15(21), 3140. https://doi.org/10.3390/ani15213140
 
        



 
       