Microvillus in LBW Meishan Piglets Preserved Microvillus Integrity Alongside Impaired Intestinal Barrier Function in Low-Birth-Weight Meishan Neonatal Piglets
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sample Collections
2.3. Histological Analysis
2.4. Goblet Cell Counting
2.5. Activities of the Anti-Oxidant Enzymes
2.6. mRNA Expression Analysis
2.7. Immunohistochemical Staining
2.8. Statistical Analysis
3. Results
3.1. Development of Small Intestine
3.2. Intestinal Morphology
3.3. Goblet Cell Numbers and Activity of the Anti-Oxidant Enzymes
3.4. Gene Expression of CD8 and Cytokines
3.5. Expression of Mucin2 and Tight Junction Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tuchscherer, M.; Puppe, B.; Tuchscherer, A.; Tiemann, U. Early identification of neonates at risk: Traits of newborn piglets with respect to survival. Theriogenology 2000, 54, 371–388. [Google Scholar] [CrossRef]
- Damgaard, L.H.; Rydhmer, L.; Løvendahl, P.; Grandinson, K. Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling. J. Anim. Sci. 2003, 81, 604–610. [Google Scholar] [CrossRef]
- Lee, G.J.; Haley, C.S. Comparative farrowing to weaning performance in Meishan and Large White pigs and their crosses. Anim. Sci. 1995, 60, 269–280. [Google Scholar] [CrossRef]
- Le Dividich, J.; Mormède, P.; Catheline, M.; Caritez, J.C. Body composition and cold resistance of the neonatal pig from European (Large White) and Chinese (Meishan) breeds. Neonatology 1991, 59, 268–277. [Google Scholar] [CrossRef]
- Dong, L.; Li, H.M.; Wang, S.N.; Wang, T.L.; Yu, L.H.; Wang, H.R. Meishan neonatal piglets tend to have higher intestinal barrier function than crossbred neonatal piglets. Animal 2021, 15, 100037. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.M.; Duckworth, C.A.; Burkitt, M.D.; Watson, A.J.M.; Campbell, B.J.; Pritchard, D.M. Epithelial cell shedding and barrier function: A matter of life and death at the small intestinal villus tip. Vet. Pathol. 2015, 52, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Wang, J.; Tan, B.; Liao, S.; Long, C.; Yin, Y. Postnatal growth retardation is associated with intestinal mucosa mitochondrial dysfunction and aberrant energy status in piglets. J. Cell. Mol. Med. 2020, 24, 10100–10111. [Google Scholar] [CrossRef] [PubMed]
- Crawley, S.W.; Mooseker, M.S.; Tyska, M.J. Shaping the intestinal brush border. J. Cell Biol. 2023, 223, e202311140. [Google Scholar] [CrossRef]
- Bozzola, J.J.; Russell, L.D. Electron Microscopy: Principles and Techniques for Biologists, 2nd ed.; Jones and Bartlett Publishers: Burlington, MA, USA, 1999. [Google Scholar]
- Takeuchi, A.; Sprinz, H. A cellular reticulum of fibroblast-like cells in the rat intestine: Scanning and transmission electron microscopy. Arch. Histol. Jpn. 1967, 47, 179–186. [Google Scholar] [CrossRef]
- Hayat, M.A. Principles and Techniques of Electron Microscopy: Biological Applications, 4th ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques, 6th ed.; Churchill Livingstone Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Flohe, L.; Otting, F. Superoxide dismutase assays. Methods Enzymol. 1984, 105, 93–104. [Google Scholar]
- Esterbauer, H.; Cheeseman, K.H. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990, 186, 407–421. [Google Scholar]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Vara, J.A. Technical aspects of immunohistochemistry. Vet. Pathol. 2005, 42, 405–426. [Google Scholar] [CrossRef]
- Dong, L.; Zhong, X.; Ahmad, H.; Li, W.; Wang, Y.; Zhang, L.; Wang, T. Intrauterine growth restriction impairs small intestinal mucosal immunity in neonatal piglets. J. Histochem. Cytochem. 2014, 62, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Chen, G.; Cao, G.; Xu, Y.; Wang, Y.; Yang, C. Effects of Clostridium butyricum and Lactobacillus plantarum on growth performance, immune function and intestinal morphology of weaned piglets. Anim. Biosci. 2022, 35, 1901–1911. [Google Scholar]
- Xie, Q.Z.; Xu, K.; Wang, G.W.; Huang, P.; Che, L.Q.; Feng, B.; Lin, Y.; Xu, S.Y.; Li, J.; Zhuo, Y.; et al. Research progress on intestinal development and breed differences in pigs. Chin. J. Anim. Nutr. 2025, 37, 2119–2133. [Google Scholar]
- Zhang, S.; Wang, Y.; Wang, H.; Wang, Y.; Liu, Q.; Xia, Y. Ezrin and villin are critical regulators of intestinal epithelial barrier function and the restoration of the intestinal barrier by berberine. Front. Pharmacol. 2022, 13, 1032530. [Google Scholar]
- Birchenough, G.M.; Johansson, M.E.; Gustafsson, J.K.; Bergström, J.H.; Hansson, G.C. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 2015, 8, 712–719. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Li, Y.; Zhang, T.; Ying, Z.; Su, W.; Zhang, L.; Wang, T. l-Threonine improves intestinal mucin synthesis and immune function of intrauterine growth-retarded weanling piglets. Nutrition 2019, 59, 182–187. [Google Scholar] [CrossRef]
- Li, H.; van der Hee, B.; Wang, J.; Ding, J.; Ligthart, K.; van Limpt, K.; van de Wiele, T.; de Vos, P.; Bruno-Barcena, J.M.; Bruno-Barcena, J.M. The short-chain fatty acid butyrate promotes mucin synthesis and intestinal maturation in vitro and in vivo. Front. Nutr. 2021, 8, 714878. [Google Scholar]
- Chen, J.; Yu, B.; Chen, D.; Huang, Z.; Mao, X.; Zheng, P.; Yu, J.; Luo, J.; He, J. Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. J. Nutr. Biochem. 2018, 59, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T. Regulation of intestinal epithelial permeability by tight junctions. Cell. Mol. Life Sci. 2013, 70, 631–659. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, J.; Zhang, H.; Han, J.; Liu, Z.; Liu, X. Intrauterine growth restriction alters the genome-wide DNA methylation profiles in small intestine, liver and longissimus dorsi muscle of newborn piglets. Curr. Protein Pept. Sci. 2020, 21, 766–776. [Google Scholar]
- Li, P.; Li, X.; Li, J.; Zhang, H.; Li, Y.; Wang, L.; Liu, X.; Wang, F. Age-dependent changes in serum biochemical parameters and their correlations with fatty acid signaling, innate immunity, and barrier function in the intestinal development of neonatal piglets. J. Anim. Sci. 2025, 103, skae001. [Google Scholar]
- Liu, Y.; Chen, L.; Shen, Y.; Tan, T.; Xie, N.; Luo, M.; Yu, J.; Zhang, L.; Yang, M.; Yang, D.; et al. Curcumin and berberine co-ameliorated dextran sulfate sodium-induced colitis by regulating the gut microbiota and activating the autophagy-AMPK-mTOR signaling pathway. Front. Pharmacol. 2022, 13, 1022765. [Google Scholar]
- Xu, Z.; Li, J.; Yang, X.; Zhang, Y.; Yin, L.; Chi, R.; Li, Y. Curcumin and sodium butyrate synergistically modulate the intestinal barrier function in piglets via activating the AMPK signaling pathway. Front. Nutr. 2023, 10, 1123465. [Google Scholar]
- Wang, J.; Chen, L.; Li, D.; Yin, Y.; Wang, X.; Li, P.; Dangott, L.J.; Hu, W.; Wu, G. Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs. J. Nutr. 2018, 148, 1549–1559. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Wu, Z.; Zhang, H.; Lei, L.; Li, H.; Xu, H.; Zhang, Z.; Che, L.; Zhao, X.; et al. Integrated transcriptomic and metabolomic analysis reveals the breed-specific regulatory mechanisms in intestinal metabolism between Meishan and Duroc pigs. J. Anim. Sci. Biotechnol. 2023, 14, 148. [Google Scholar]
- Zhu, L.H.; Zhao, K.L.; Chen, X.L.; Xu, J.X. Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs. J. Anim. Sci. 2012, 90, 2581–2589. [Google Scholar] [CrossRef]
- Ranson, N.; Kunde, D.; Eri, R. Regulation and sensing of inflammasomes and their impact on intestinal health. Int. J. Mol. Sci. 2017, 18, 2379. [Google Scholar] [CrossRef]
- He, X.; Li, Y.; Li, M.; Jia, G.; Liu, G.; Huang, Z.; Wang, J.; Fang, Z.; Wang, A.; Cao, W.; et al. Early-life malnutrition programs long-term intestinal and immune dysfunction through microbiome-metabolite interactions. Nat. Commun. 2023, 14, 7311. [Google Scholar]
- Guevarra, R.B.; Hong, S.H.; Cho, J.H.; Kim, B.R.; Shin, J.; Lee, J.H.; Na Kang, B.; Kim, Y.H.; Wattanaphansak, S.; Isaacson, R.; et al. The dynamics of the piglet gut microbiome during the weaning transition in association with health and nutrition. J. Anim. Sci. Biotechnol. 2022, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Alston-Mills, B.; Iverson, S.J.; Thompson, M.P. A comparison of the composition of milks from Meishan and crossbred pigs. Livest. Prod. Sci. 2000, 63, 85–91. [Google Scholar] [CrossRef]
- Muhlhausler, B.S.; Gugusheff, J.R.; Ong, Z.Y.; Vithayathil, M.A. Early-life origins of metabolic dysfunction: Role of the adipocyte. Trends Endocrinol. Metab. 2013, 24, 68–75. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Wallace, J.M.; Spencer, T.E. Board-invited review: Intrauterine growth retardation: Implications for the animal sciences. J. Anim. Sci. 2006, 84, 2316–2337. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.; Braber, S.; Akbari, P.; Garssen, J.; Fink-Gremmels, J. Deoxynivalenol and its modified forms: Are there major differences? Toxins 2015, 8, 334. [Google Scholar] [CrossRef]
- Rooke, J.A.; Bland, I.M. The acquisition of passive immunity in the newborn piglet. Livest. Prod. Sci. 2002, 78, 13–23. [Google Scholar] [CrossRef]

| Ingredients | Content (%) | Nutrient Levels § | Content (%) |
|---|---|---|---|
| Corn | 44.75 | DE (kcal/kg) CP Lysine Threonine Tryptophan Crude Fiber Starch Ca Ap | 2987.58 13.95 0.69 0.46 0.14 5.5 30 0.96 0.48 |
| Soybean meal | 13.60 | ||
| Wheat bran | 27.8 | ||
| Soybean oil | 4.50 | ||
| Wheat fiber | 2.554 | ||
| Soybean fiber | 1.10 | ||
| Corn fiber | 0.96 | ||
| NaCl | 0.40 | ||
| Choline | 0.14 | ||
| CaCO3 | 1.24 | ||
| CaHpO3 | 1.99 | ||
| Vitamin premix † | 0.25 | ||
| Mineral premix ‡ | 0.50 | ||
| Lysine | 0.10 | ||
| Threonine | 0.10 |
| Gene | Accession No. | Sequence (5′to 3′) | Length, bp |
|---|---|---|---|
| β-actin | XM 003357928 | F TGCGGGACATCAAGGAGAAG R AGTTGAAGGTGGTCTCGTGG | 216 |
| CD8 | NM_001001907.1 | F AGCATTTGGGCCTCTCTTCC R ACTTACTGCATTGCCTCCCC | 140 |
| IL2 | NM 213861.1 | F TGCACTAACCCTTGCACTCA R GCAATGGCTCCAGTTGTTTCT | 83 |
| IL4 | NM_214123 | F CTCCCAACTGATCCCAACCC R TGCACGAGTTCTTTCTCGCT | 134 |
| IFN-γ | NM 213948.1 | F ACCAGGCCATTCAAAGGAGC R CGAAGTCATTCAGTTTCCCAGAG | 90 |
| Item | Groups | p-Value | |
|---|---|---|---|
| NBW | LBW | ||
| body weight (kg) | 0.85 ± 0.06 | 0.65 ± 0.02 | 0.028 |
| length of duodenum (cm) | 11.58 ± 1.22 | 11.70 ± 0.89 | 0.938 |
| weight of duodenum (g) | 0.89 ± 0.11 | 0.80 ± 0.03 | 0.460 |
| length of jejunum (cm) | 194.40 ± 9.43 | 176.64 ± 6.90 | 0.167 |
| weight of jejunum (g) | 11.58 ± 1.26 | 8.99 ± 0.72 | 0.113 |
| length of ileum (cm) | 135.00 ± 10.78 | 117.76 ± 4.60 | 0.179 |
| weight of ileum (g) | 11.26 ± 1.40 | 7.96 ± 0.37 | 0.076 |
| length of duodenum: BW (cm/kg) | 13.56 ± 1.07 | 18.19 ± 1.60 | 0.043 |
| weight of duodenum: BW (g/kg) | 1.03 ± 0.12 | 1.24 ± 0.07 | 0.187 |
| jejunum length: BW (cm/kg) | 230.48 ± 8.44 | 273.88 ± 13.40 | 0.025 |
| jejunum weight: BW (g/kg) | 13.48 ± 0.67 | 13.83 ± 0.90 | 0.764 |
| ileum length: BW (cm/kg) | 159.13 ± 7.05 | 182.59 ± 8.94 | 0.073 |
| ileum weight: BW (g/kg) | 13.07 ± 0.85 | 12.38 ± 0.86 | 0.587 |
| Sites | Items | Groups | p-Value | |
|---|---|---|---|---|
| NBW | LBW | |||
| duodenum | Villus length (μm) | 352.34 ± 3.71 | 346.85 ± 12.68 | 0.696 |
| Crypt depth (μm) | 37.56 ± 1.31 | 39.24 ± 0.85 | 0.315 | |
| Villus width (μm) | 53.23 ± 1.27 | 51.83 ± 2.86 | 0.665 | |
| V/C | 9.41 ± 0.24 | 8.83 ± 0.17 | 0.082 | |
| Villus surface area (mm2) | 0.030 ± 0.001 | 0.028 ± 0.002 | 0.521 | |
| number of goblet cells | 28.37 ± 2.46 | 20.41 ± 1.00 | 0.028 | |
| jejunum | Villus length (μm) | 496.68 ± 4.78 | 373.25 ± 16.92 | 0.001 |
| Crypt depth (μm) | 49.50 ± 0.24 | 41.12 ± 1.40 | 0.003 | |
| Villus width (μm) | 52.07 ± 1.37 | 47.91 ± 3.65 | 0.334 | |
| V/C | 10.08 ± 0.10 | 9.08 ± 0.15 | <0.001 | |
| Villus surface area (mm2) | 0.041 ± 0.001 | 0.029 ± 0.003 | 0.018 | |
| numbers of goblet cells | 26.28 ± 0.94 | 19.98 ± 1.43 | 0.006 | |
| ileum | Villus length (μm) | 475.01 ± 7.38 | 394.35 ± 5.52 | <0.001 |
| Crypt depth (μm) | 50.13 ± 0.46 | 55.58 ± 1.83 | 0.039 | |
| Villus width (μm) | 61.50 ± 2.15 | 65.53 ± 2.27 | 0.233 | |
| V/C | 9.49 ± 0.10 | 7.17 ± 0.18 | <0.001 | |
| Villus surface area (mm2) | 0.046 ± 0.002 | 0.041 ± 0.002 | 0.121 | |
| numbers of goblet cells | 19.81 ± 0.79 | 17.89 ± 0.89 | 0.148 | |
| Sites | Items | Groups | p-Value | |
|---|---|---|---|---|
| NBW | LBW | |||
| jejunum | CAT(U/mg prot) | 4.48 ± 0.55 | 2.04 ± 0.30 | 0.005 |
| GSH-px (U) | 26.77 ± 2.98 | 16.42 ± 4.89 | 0.109 | |
| MDA (nmol/mg prot) | 20.56 ± 1.22 | 21.87 ± 0.93 | 0.417 | |
| SOD (U/mg prot) | 5.59 ± 0.11 | 5.55 ± 0.03 | 0.742 | |
| T-AOC (mmol/g) | 1.23 ± 0.02 | 1.24 ± 0.01 | 0.891 | |
| ileum | CAT(U/mg prot) | 5.54 ± 0.62 | 3.91 ± 0.31 | 0.047 |
| GSH-px (U) | 26.96 ± 4.67 | 11.18 ± 1.25 | 0.025 | |
| MDA (nmol/mg prot) | 16.77 ± 0.70 | 14.56 ± 0.88 | 0.086 | |
| SOD (U/mg prot) | 5.49 ± 0.01 | 5.50 ± 0.01 | 0.085 | |
| T-AOC (mmol/g) | 1.29 ± 0.01 | 1.19 ± 0.03 | 0.025 | |
| Sites | Items | Groups | p-Value | |
|---|---|---|---|---|
| NBW | LBW | |||
| jejunum | CD8 | 1.00 ± 0.01 | 0.67 ± 0.07 | 0.002 |
| IL2 | 1.00 ± 0.04 | 2.19 ± 0.08 | <0.001 | |
| IL4 | 1.00 ± 0.02 | 0.37 ± 0.01 | <0.001 | |
| IFNγ | 1.00 ± 0.02 | 0.13 ± 0.01 | <0.001 | |
| ileum | CD8 | 1.00 ± 0.04 | 0.24 ± 0.01 | 0.002 |
| IL2 | 1.00 ± 0.03 | 0.22 ± 0.003 | <0.001 | |
| IL4 | 1.00 ± 0.04 | 1.30 ± 0.06 | 0.004 | |
| IFNγ | 1.00 ± 0.02 | 0.11 ± 0.004 | <0.001 | |
| Sites | Items | Groups | p-Value | |
|---|---|---|---|---|
| NBW | LBW | |||
| duodenum | MUC2 | 0.26 ± 0.006 | 0.16 ± 0.009 | 0.001 |
| occludin | 0.25 ± 0.010 | 0.200 ± 0.026 | 0.038 | |
| ZO-1 | 0.25 ± 0.010 | 0.22 ± 0.015 | 0.034 | |
| jejunum | MUC2 | 0.23 ± 0.015 | 0.20 ± 0.023 | 0.336 |
| occludin | 0.20 ± 0.010 | 0.17 ± 0.015 | 0.034 | |
| ZO-1 | 0.24 ± 0.015 | 0.18 ± 0.010 | 0.006 | |
| ileum | MUC2 | 0.27 ± 0.015 | 0.20 ± 0.030 | 0.027 |
| occludin | 0.23 ± 0.025 | 0.17 ± 0.015 | 0.035 | |
| ZO-1 | 0.26 ± 0.025 | 0.18 ± 0.015 | 0.009 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Wu, Y.; Sun, Z.; Wang, H.; Yu, L. Microvillus in LBW Meishan Piglets Preserved Microvillus Integrity Alongside Impaired Intestinal Barrier Function in Low-Birth-Weight Meishan Neonatal Piglets. Animals 2025, 15, 3085. https://doi.org/10.3390/ani15213085
Dong L, Wu Y, Sun Z, Wang H, Yu L. Microvillus in LBW Meishan Piglets Preserved Microvillus Integrity Alongside Impaired Intestinal Barrier Function in Low-Birth-Weight Meishan Neonatal Piglets. Animals. 2025; 15(21):3085. https://doi.org/10.3390/ani15213085
Chicago/Turabian StyleDong, Li, You Wu, Zhixuan Sun, Hongrong Wang, and Lihuai Yu. 2025. "Microvillus in LBW Meishan Piglets Preserved Microvillus Integrity Alongside Impaired Intestinal Barrier Function in Low-Birth-Weight Meishan Neonatal Piglets" Animals 15, no. 21: 3085. https://doi.org/10.3390/ani15213085
APA StyleDong, L., Wu, Y., Sun, Z., Wang, H., & Yu, L. (2025). Microvillus in LBW Meishan Piglets Preserved Microvillus Integrity Alongside Impaired Intestinal Barrier Function in Low-Birth-Weight Meishan Neonatal Piglets. Animals, 15(21), 3085. https://doi.org/10.3390/ani15213085
