Methodologies to Identify Metabolic Pathway Differences Between Emaciated and Moderately Conditioned Horses: A Review of Multiple Gene Expression Techniques
Simple Summary
Abstract
1. Introduction
2. Methodology
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Quality Assessment
3. Summary of Key Findings
3.1. Discussion of Major Themes
3.2. Methodological Approaches and Relative Limitations
3.3. Euthanasia Method and Gene Expression
3.4. Controversies in the Literature
3.5. Patterns and Inconsistencies
4. Metabolic Alteration to Starvation and Related Gene Expression in Equine Tissues
4.1. Carbohydrate Pathway(s) and Relevant Genes
4.2. Proteins
4.3. Lipids
5. Gaps Within the Current Available Literature on Nutrition, Metabolic, and Starvation Research in Equids
6. Implications and Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| RNA-seq | RNA Sequencing | 
| RT-qPCR | Real Time Quantitative Polymerase Chain Reaction | 
| BCS | Body Condition Score | 
| CHO | Carbohydrate | 
References
- Main, S.C.; Brown, L.P.; Melvin, K.R.; Campagna, S.R.; Voy, B.H.; Castro, H.F.; Strickland, L.G.; Hines, M.T.; Jacobs, R.D.; Gordon, M.E.; et al. Metabolomic Profiles in Starved Light Breed Horses during the Refeeding Process. Animals 2022, 12, 2527. [Google Scholar] [CrossRef]
- Whiting, T.L.; Salmon, R.H.; Wruck, G.C. Chronically starved horses: Predicting survival, economic, and ethical considerations. Can. Vet. J. 2005, 46, 320–324. [Google Scholar]
- Schneider, L.G.; Cox Self, A.; Hines, M.T.; Lin-Zambito Ivey, J. Clinical Factors Associated with Survival Outcomes in Starved Equids: A Retrospective Case Series. J. Equine Vet. Sci. 2021, 101, 103370. [Google Scholar] [CrossRef] [PubMed]
- Dugdale, A.H.A.; Grove-White, D.; Curtis, G.C.; Harris, P.A.; Argo, C.M. Body condition scoring as a predictor of body fat in horses and ponies. Vet. J. 2012, 194, 173–178. [Google Scholar] [CrossRef]
- Johns, I. Veterinary management of starved and neglected horses. Practice 2014, 36, 144–152. [Google Scholar] [CrossRef]
- Lenz, T.R. The Unwanted Horse in the United States: An Overview of the Issue. J. Equine Vet. Sci. 2009, 29, 253–258. [Google Scholar] [CrossRef]
- Wilson, J.; Fitzpatrick, D. How to manage starved horses and effectively work with humane and law enforcement officials. In Proceedings of the Lexington American Association of Equine Practitioners (AAEP), Denver, CO, USA, 4 December 2004; pp. 429–432. [Google Scholar]
- Kronfeld, D.S. Starvation and malnutrition of horses: Recognition and treatment. J. Equine Vet. Sci. 1993, 13, 298–304. [Google Scholar] [CrossRef]
- Holcomb, K.E.; Stull, C.L.; Kass, P.H. Unwanted horses: The role of nonprofit equine rescue and sanctuary organizations. J. Anim. Sci. 2010, 88, 4142–4150. [Google Scholar] [CrossRef]
- Argo, C.M. 29—Feeding thin and starved horses. In Equine Applied and Clinical Nutrition; Geor, R.J., Harris, P.A., Coenen, M., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2013; pp. 503–511. [Google Scholar] [CrossRef]
- Finn, P.F.; Dice, J.F. Proteolytic and lipolytic responses to starvation. Nutrition 2006, 22, 830–844. [Google Scholar] [CrossRef]
- Storey, K.B.; Storey, J.M. Gene Expression and Protein Adaptations in Mammalian Hibernation. In Life in the Cold; Springer: Berlin/Heidelberg, Germany, 2000; pp. 303–313. [Google Scholar]
- Wu, P.; Blair, P.V.; Sato, J.; Jaskiewicz, J.; Popov, K.M.; Harris, R.A. Starvation Increases the Amount of Pyruvate Dehydrogenase Kinase in Several Mammalian Tissues. Arch. Biochem. Biophys. 2000, 381, 1–7. [Google Scholar] [CrossRef]
- Galves, M.; Sperber, M.; Amer-Sarsour, F.; Elkon, R.; Ashkenazi, A. Transcriptional profiling of the response to starvation and fattening reveals differential regulation of autophagy genes in mammals. Proc. Biol. Sci. 2023, 290, 20230407. [Google Scholar] [CrossRef]
- Witham, C.L.; Stull, C.L. Metabolic responses of chronically starved horses to refeeding with three isoenergetic diets. J. Am. Vet. Med. Assoc. 1998, 212, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, A.; Riber, C.; Trigo, P.; Castejón, F. Hematology and Clinical Pathology Data in Chronically Starved Horses. J. Equine Vet. Sci. 2010, 30, 581–589. [Google Scholar] [CrossRef]
- Capomaccio, S.; Vitulo, N.; Verini-Supplizi, A.; Barcaccia, G.; Albiero, A.; D’Angelo, M.; Campagna, D.; Valle, G.; Felicetti, M.; Silvestrelli, M.; et al. RNA Sequencing of the Exercise Transcriptome in Equine Athletes. PLoS ONE 2014, 8, e83504. [Google Scholar] [CrossRef]
- Dai, X.; Shen, L. Advances and Trends in Omics Technology Development. Front. Med. 2022, 9, 911861. [Google Scholar] [CrossRef]
- Stratton-Phelps, M.; Remillard, R.L. Refeeding and Assisted Feeding of Horses. In Equine Clinical Nutrition; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Friedli, N.; Stanga, Z.; Sobotka, L.; Culkin, A.; Kondrup, J.; Laviano, A.; Mueller, B.; Schuetz, P. Revisiting the refeeding syndrome: Results of a systematic review. Nutrition 2017, 35, 151–160. [Google Scholar] [CrossRef]
- Mehanna, H.M.; Moledina, J.; Travis, J. Refeeding syndrome: What it is, and how to prevent and treat it. BMJ 2008, 336, 1495. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, N.; McKenzie, H.C., 3rd. Nutritional Considerations when Dealing with an Underweight Adult or Senior Horse. Vet. Clin. N. Am. Equine Pract. 2021, 37, 89–110. [Google Scholar] [CrossRef] [PubMed]
- Dulloo, A.G. Physiology of weight regain: Lessons from the classic Minnesota Starvation Experiment on human body composition regulation. Obes. Rev. 2021, 22, e13189. [Google Scholar] [CrossRef]
- Vikman, P.; Fadista, J.; Oskolkov, N. RNA sequencing: Current and prospective uses in metabolic research. J. Mol. Endocrinol. 2014, 53, R93–R101. [Google Scholar] [CrossRef]
- Jawahar, J.; McCumber, A.W.; Lickwar, C.R.; Amoroso, C.R.; de la Torre Canny, S.G.; Wong, S.; Morash, M.; Thierer, J.H.; Farber, S.A.; Bohannan, B.J.M.; et al. Starvation causes changes in the intestinal transcriptome and microbiome that are reversed upon refeeding. BMC Genom. 2022, 23, 225. [Google Scholar] [CrossRef] [PubMed]
- Hampton, M.; Melvin, R.G.; Kendall, A.H.; Kirkpatrick, B.R.; Peterson, N.; Andrews, M.T. Deep Sequencing the Transcriptome Reveals Seasonal Adaptive Mechanisms in a Hibernating Mammal. PLoS ONE 2011, 6, e27021. [Google Scholar] [CrossRef]
- Faherty, S.L.; Villanueva-Cañas, J.L.; Klopfer, P.H.; Albà, M.M.; Yoder, A.D. Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius. Genome Biol. Evol. 2016, 8, 2413–2426. [Google Scholar] [CrossRef]
- Fahlman, A.; Storey, J.M.; Storey, K.B. Gene Up-Regulation in Heart during Mammalian Hibernation. Cryobiology 2000, 40, 332–342. [Google Scholar] [CrossRef]
- Andrews, M.T. Molecular interactions underpinning the phenotype of hibernation in mammals. J. Exp. Biol. 2019, 222, jeb160606. [Google Scholar] [CrossRef] [PubMed]
- Andrews, M.T. Genes controlling the metabolic switch in hibernating mammals. Biochem. Soc. Trans. 2004, 32, 1021–1024. [Google Scholar] [CrossRef]
- Püschel, F.; Favaro, F.; Redondo-Pedraza, J.; Lucendo, E.; Iurlaro, R.; Marchetti, S.; Majem, B.; Eldering, E.; Nadal, E.; Ricci, J.E.; et al. Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells. Proc. Natl. Acad. Sci. USA 2020, 117, 9932–9941. [Google Scholar] [CrossRef]
- Saklatvala, J.; Dean, J.; Clark, A. Control of the expression of inflammatory response genes. Biochem. Soc. Symp. 2003, 70, 95–106. [Google Scholar] [CrossRef]
- Ren, J.M.; Semenkovich, C.F.; Gulve, E.A.; Gao, J.; Holloszy, J.O. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J. Biol. Chem. 1994, 269, 14396–14401. [Google Scholar] [CrossRef]
- Krook, A.; Wallberg-Henriksson, H.; Zierath, J.R. Sending the signal: Molecular mechanisms regulating glucose uptake. Med. Sci. Sports Exerc. 2004, 36, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Holness, M.J.; Sugden, M.C. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem. Soc. Trans. 2003, 31, 1143–1151. [Google Scholar] [CrossRef]
- Connaughton, S.; Chowdhury, F.; Attia, R.R.; Song, S.; Zhang, Y.; Elam, M.B.; Cook, G.A.; Park, E.A. Regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin. Mol. Cell. Endocrinol. 2010, 315, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Barthel, A.; Schmoll, D. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E685–E692. [Google Scholar] [CrossRef] [PubMed]
- Bodine, S.C.; Latres, E.; Baumhueter, S.; Lai, V.K.; Nunez, L.; Clarke, B.A.; Poueymirou, W.T.; Panaro, F.J.; Na, E.; Dharmarajan, K.; et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001, 294, 1704–1708. [Google Scholar] [CrossRef] [PubMed]
- Schlaepfer, I.R.; Joshi, M. CPT1A-mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology 2020, 161, bqz046. [Google Scholar] [CrossRef]
- Mason, E.; Hindmarch, C.C.T.; Dunham-Snary, K.J. Medium-chain Acyl-COA dehydrogenase deficiency: Pathogenesis, diagnosis, and treatment. Endocrinol. Diabetes Metab. 2023, 6, e385. [Google Scholar] [CrossRef]
- Kurtz, D.M.; Rinaldo, P.; Rhead, W.J.; Tian, L.; Millington, D.S.; Vockley, J.; Hamm, D.A.; Brix, A.E.; Lindsey, J.R.; Pinkert, C.A.; et al. Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc. Natl. Acad. Sci. USA 1998, 95, 15592–15597. [Google Scholar] [CrossRef]
- Overmyer, K.A.; Thonusin, C.; Qi, N.R.; Burant, C.F.; Evans, C.R. Impact of Anesthesia and Euthanasia on Metabolomics of Mammalian Tissues: Studies in a C57BL/6J Mouse Model. PLoS ONE 2015, 10, e0117232. [Google Scholar] [CrossRef]
- Mohamed, A.S.; Hosney, M.; Bassiony, H.; Hassanein, S.S.; Soliman, A.M.; Fahmy, S.R.; Gaafar, K. Sodium pentobarbital dosages for exsanguination affect biochemical, molecular and histological measurements in rats. Sci. Rep. 2020, 10, 378. [Google Scholar] [CrossRef]
- O’Sullivan, S.; Wang, J.; Radomski, M.W.; Gilmer, J.F.; Medina, C. Novel Barbiturate-Nitrate Compounds Inhibit the Upregulation of Matrix Metalloproteinase-9 Gene Expression in Intestinal Inflammation through a cGMP-Mediated Pathway. Biomolecules 2020, 10, 808. [Google Scholar] [CrossRef]
- Löscher, W.; Rogawski, M.A. How theories evolved concerning the mechanism of action of barbiturates. Epilepsia 2012, 53, 12–25. [Google Scholar] [CrossRef]
- Grieves, J.; Dick, E.J.; Schlabritz-Loutsevitch, N.; Butler, S.D.; Leland, M.; Price, S.E.; Schmidt, C.R.; Nathanielsz, P.; Hubbard, G.B. Barbiturate euthanasia solution-induced tissue artifact in nonhuman primates. J. Med. Primatol. 2008, 37, 154–161. [Google Scholar] [CrossRef]
- Chakkingal Bhaskaran, B.; Meyermans, R.; Gorssen, W.; Maes, G.; Janssens, S.; Buys, N. A Comparative Study on the Effect of Euthanasia Methods and Sample Storage Conditions on RNA Yield and Quality in Porcine Tissues. Animals 2023, 13, 698. [Google Scholar] [CrossRef]
- Otis, J.P.; Ackermann, L.W.; Denning, G.M.; Carey, H.V. Identification of qRT-PCR reference genes for analysis of opioid gene expression in a hibernator. J. Comp. Physiol. B 2010, 180, 619–629. [Google Scholar] [CrossRef]
- Bogaert, L.; Van Poucke, M.; De Baere, C.; Peelman, L.; Gasthuys, F.; Martens, A. Selection of a set of reliable reference genes for quantitative real-time PCR in normal equine skin and in equine sarcoids. BMC Biotechnol. 2006, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Sun, L.; Chen, B.; Han, Y.; Pang, J.; Wu, W.; Qi, R.; Zhang, T.M. Evaluation of candidate reference genes for RT-qPCR studies in three metabolism related tissues of mice after caloric restriction. Sci. Rep. 2016, 6, 38513. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Svec, D.; Tichopad, A.; Novosadova, V.; Pfaffl, M.W.; Kubista, M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol. Detect. Quantif. 2015, 3, 9–16. [Google Scholar] [CrossRef]
- Stefaniuk, M.; Ropka-Molik, K. RNA sequencing as a powerful tool in searching for genes influencing health and performance traits of horses. J. Appl. Genet. 2016, 57, 199–206. [Google Scholar] [CrossRef]
- Raspa, F.; Chessa, S.; Bergero, D.; Sacchi, P.; Ferrocino, I.; Cocolin, L.; Corvaglia, M.R.; Moretti, R.; Cavallini, D.; Valle, E. Microbiota characterization throughout the digestive tract of horses fed a high-fiber vs. a high-starch diet. Front. Vet. Sci. 2024, 11, 1386135. [Google Scholar] [CrossRef]
- Hirsch, C.D.; Springer, N.M.; Hirsch, C.N. Genomic limitations to RNA sequencing expression profiling. Plant J. 2015, 84, 491–503. [Google Scholar] [CrossRef]
- Bonadio, R.S.; Nunes, L.B.; Moretti, P.N.S.; Mazzeu, J.F.; Cagnin, S.; Pic-Taylor, A.; de Oliveira, S.F. Insights into how environment shapes post-mortem RNA transcription in mouse brain. Sci. Rep. 2021, 11, 13008. [Google Scholar] [CrossRef]
- Sharif-Islam, M.; van der Werf, J.H.J.; Henryon, M.; Chu, T.T.; Wood, B.J.; Hermesch, S. Genotyping both live and dead animals to improve post-weaning survival of pigs in breeding programs. Genet. Sel. Evol. 2024, 56, 65. [Google Scholar] [CrossRef]
- Ferreira, P.G.; Muñoz-Aguirre, M.; Reverter, F.; Sá Godinho, C.P.; Sousa, A.; Amadoz, A.; Sodaei, R.; Hidalgo, M.R.; Pervouchine, D.; Carbonell-Caballero, J.; et al. The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nat. Commun. 2018, 9, 490. [Google Scholar] [CrossRef] [PubMed]
- Javan, G.T.; Can, I.; Finley, S.J.; Soni, S. The apoptotic thanatotranscriptome associated with the liver of cadavers. Forensic Sci. Med. Pathol. 2015, 11, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Javan, G.T.; Hanson, E.; Finley, S.J.; Visonà, S.D.; Osculati, A.; Ballantyne, J. Identification of cadaveric liver tissues using thanatotranscriptome biomarkers. Sci. Rep. 2020, 10, 6639. [Google Scholar] [CrossRef]
- Li, W.; Hao, X.; Liu, Y.; Tong, T.; Xu, H.; Jia, L. Effects of anesthetic agents on inflammation in Caco-2, HK-2 and HepG2 cells. Exp. Ther. Med. 2021, 21, 487. [Google Scholar] [CrossRef] [PubMed]
- Aleman, M.; Davis, E.; Williams, D.C.; Madigan, J.E.; Smith, F.; Guedes, A. Electrophysiologic Study of a Method of Euthanasia Using Intrathecal Lidocaine Hydrochloride Administered during Intravenous Anesthesia in Horses. J. Vet. Intern. Med. 2015, 29, 1676–1682. [Google Scholar] [CrossRef]
- McGivney, B.A.; McGettigan, P.A.; Browne, J.A.; Evans, A.C.O.; Fonseca, R.G.; Loftus, B.J.; Lohan, A.; MacHugh, D.E.; Murphy, B.A.; Katz, L.M.; et al. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC Genom. 2010, 11, 398. [Google Scholar] [CrossRef]
- Eivers, S.S.; McGivney, B.A.; Fonseca, R.G.; MacHugh, D.E.; Menson, K.; Park, S.D.; Rivero, J.-L.L.; Taylor, C.T.; Katz, L.M.; Hill, E.W. Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Physiol. Genom. 2010, 40, 83–93. [Google Scholar] [CrossRef]
- Aldridge-Dean, B.E.; Lescun, T.B.; Radcliffe, J.S. Impact of a 24 h feed withdrawal on active nutrient transport, intestinal morphology, and gene expression in the equine small and large intestine. Transl. Anim. Sci. 2023, 9, txad003. [Google Scholar] [CrossRef] [PubMed]
- Budsuren, U.; Ulaangerel, T.; Shen, Y.; Liu, G.; Davshilt, T.; Yi, M.; Bold, D.; Zhang, X.; Bai, D.; Dorjgotov, D.; et al. MSTN Regulatory Network in Mongolian Horse Muscle Satellite Cells Revealed with miRNA Interference Technologies. Genes 2022, 13, 1836. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Kim, J.Y.; Kim, K.H.; Jeong, S.; Cho, Y.; Kim, N. Gene Expression Profile in Similar Tissues Using Transcriptome Sequencing Data of Whole-Body Horse Skeletal Muscle. Genes 2020, 11, 1359. [Google Scholar] [CrossRef] [PubMed]
- Mukai, K.; Ohmura, H.; Takahashi, Y.; Ebisuda, Y.; Yoneda, K.; Miyata, H. Physiological and skeletal muscle responses to high-intensity interval exercise in Thoroughbred horses. Front. Vet. Sci. 2023, 10, 1241266. [Google Scholar] [CrossRef]
- Echigoya, Y.; Okabe, H.; Itou, T.; Endo, H.; Sakai, T. Molecular characterization of glycogen synthase 1 and its tissue expression profile with type II hexokinase and muscle-type phosphofructokinase in horses. Mol. Biol. Rep. 2011, 38, 461–469. [Google Scholar] [CrossRef]
- Avila, F.; Mickelson, J.R.; Schaefer, R.J.; McCue, M.E. Genome-Wide Signatures of Selection Reveal Genes Associated with Performance in American Quarter Horse Subpopulations. Front. Genet. 2018, 9, 249. [Google Scholar] [CrossRef]
- de Matteis, R.; Pereira, G.L.; Casarotto, L.T.; Tavernaro, A.J.S.; Silva, J.A.I.I.V.; Chardulo, L.A.L.; Curi, R.A. Variants in the Chromosomal Region of the Myostatin Gene and Their Association with Lines, Performance, and Body Measurements of Quarter Horses. J. Equine Vet. Sci. 2018, 71, 75–83. [Google Scholar] [CrossRef]
- Hill, E.W.; Eivers, S.S.; McGivney, B.A.; Fonseca, R.G.; Gu, J.; Smith, N.A.; Browne, J.A.; MacHugh, D.E.; Katz, L.M. Moderate and high intensity sprint exercise induce differential responses in COX4I2 and PDK4 gene expression in Thoroughbred horse skeletal muscle. Equine Vet. J. Suppl. 2010, 42, 576–581. [Google Scholar] [CrossRef]
- Lacombe, V.A. Expression and regulation of facilitative glucose transporters in equine insulin-sensitive tissue: From physiology to pathology. ISRN Vet. Sci. 2014, 2014, 409547. [Google Scholar] [CrossRef]
- Valberg, S.J.; Velez-Irizarry, D.; Williams, Z.J.; Pagan, J.D.; Mesquita, V.; Waldridge, B.; Maresca-Fichter, H. Novel Expression of GLUT3, GLUT6 and GLUT10 in Equine Gluteal Muscle Following Glycogen-Depleting Exercise: Impact of Dietary Starch and Fat. Metabolites 2023, 13, 718. [Google Scholar] [CrossRef]
- Ropka-Molik, K.; Stefaniuk-Szmukier, M.; Żukowski, K.; Piórkowska, K.; Bugno-Poniewierska, M. Exercise-induced modification of the skeletal muscle transcriptome in Arabian horses. Physiol. Genom. 2017, 49, 318–326. [Google Scholar] [CrossRef]
- Srikanth, K.; Kim, N.Y.; Park, W.; Kim, J.M.; Kim, K.D.; Lee, K.T.; Son, J.H.; Chai, H.H.; Choi, J.W.; Jang, G.W.; et al. Comprehensive genome and transcriptome analyses reveal genetic relationship, selection signature, and transcriptome landscape of small-sized Korean native Jeju horse. Sci. Rep. 2019, 9, 16672. [Google Scholar] [CrossRef]
- Buck, M.J.; Squire, T.L.; Andrews, M.T. Coordinate expression of the PDK4 gene: A means of regulating fuel selection in a hibernating mammal. Physiol. Genom. 2002, 8, 5–13. [Google Scholar] [CrossRef]
- Fedorov, V.B.; Goropashnaya, A.V.; Tøien, Ø.; Stewart, N.C.; Chang, C.; Wang, H.; Yan, J.; Showe, L.C.; Showe, M.K.; Barnes, B.M. Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus). BMC Genom. 2011, 12, 171. [Google Scholar] [CrossRef]
- Vermillion, K.L.; Anderson, K.J.; Hampton, M.; Andrews, M.T. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal. Physiol. Genom. 2015, 47, 58–74. [Google Scholar] [CrossRef]
- Yan, J.; Barnes, B.M.; Kohl, F.; Marr, T.G. Modulation of gene expression in hibernating arctic ground squirrels. Physiol. Genom. 2008, 32, 170–181. [Google Scholar] [CrossRef]
- Freemark, M. Metabolomics in nutrition research: Biomarkers predicting mortality in children with severe acute malnutrition. Food Nutr. Bull. 2015, 36, S88–S92. [Google Scholar] [CrossRef] [PubMed]
- Viana, C.L.; Dodson, Z.; Santos, H.; Boyd, J.; Rosa, L.P. 95 Health parameter variation in emaciated stock-type horses going through two refeeding protocols. J. Equine Vet. Sci. 2023, 124, 104397. [Google Scholar] [CrossRef]
- Busechian, S.; Turini, L.; Sgorbini, M.; Bonelli, F.; Pisello, L.; Pieramati, C.; Orvieto, S.; Rueca, F. Body Condition Score Is Not Correlated to Gastric Ulcers in Non-Athlete Horses. Animals 2022, 12, 2637. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-D.; Park, J.; Ko, J.; Kim, B.C.; Kim, H.-S.; Ahn, K.; Do, K.-T.; Choi, H.; Kim, H.-M.; Song, S.; et al. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC Genom. 2012, 13, 473. [Google Scholar] [CrossRef]
- Stöckli, J.; Fazakerley, D.J.; James, D.E. GLUT4 exocytosis. J. Cell Sci. 2011, 124, 4147–4159. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Perry, R.P. Importance of introns for expression of mouse ribosomal protein gene rpL32. Mol. Cell. Biol. 1989, 9, 2075–2082. [Google Scholar] [CrossRef]
- Okar, D.A.; Lange, A.J. Fructose-2,6-bisphosphate and control of carbohydrate metabolism in eukaryotes. Biofactors 1999, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.L.; Distelmaier, K.; Lanza, I.R.; Irving, B.A.; Robinson, M.M.; Konopka, A.R.; Shulman, G.I.; Nair, K.S. Mechanism by Which Caloric Restriction Improves Insulin Sensitivity in Sedentary Obese Adults. Diabetes 2016, 65, 74–84. [Google Scholar] [CrossRef]
- Salway, J.G. Metabolism at a Glance, 4th ed.; At a Glance Series; John Wiley & Sons: Hoboken, NJ, USA; Wiley Blackwell: Hoboken, NJ, USA, 2017. [Google Scholar]
- Sato, T.; Itou, T.; Sato, G.; Kobayashi, Y.; Endo, H.; Sakai, T. Sequencing of cDNA and proximal promoter of equine hexokinase II gene. DNA Seq. 2007, 18, 203–208. [Google Scholar] [CrossRef]
- Roberts, D.J.; Miyamoto, S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. 2015, 22, 248–257. [Google Scholar] [CrossRef]
- Lynch, E.M.; Hansen, H.; Salay, L.; Cooper, M.; Timr, S.; Kollman, J.M.; Webb, B.A. Structural basis for allosteric regulation of human phosphofructokinase-1. Nat. Commun. 2024, 15, 7323. [Google Scholar] [CrossRef]
- Sato, T.; Itou, T.; Sakai, T. Molecular cloning of equine muscle-type phosphofructokinase cDNA. J. Vet. Med. Sci. 2003, 65, 645–648. [Google Scholar] [CrossRef]
- Kullmann, A.; Weber, P.S.; Bishop, J.B.; Roux, T.M.; Norby, B.; Burns, T.A.; McCutcheon, L.J.; Belknap, J.K.; Geor, R.J. Equine insulin receptor and insulin-like growth factor-1 receptor expression in digital lamellar tissue and insulin target tissues. Equine Vet. J. 2016, 48, 626–632. [Google Scholar] [CrossRef]
- McCue, M.E.; Valberg, S.J.; Miller, M.B.; Wade, C.; DiMauro, S.; Akman, H.O.; Mickelson, J.R. Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis. Genomics 2008, 91, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.P.; Baker, J.; Perkins, A.S.; Robertson, E.J.; Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993, 75, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Wilson, J.; Boyette, J. Differential Expression of IGF1, IGFBP5, MSTN, and MYH1 Across Different Age Classes in American Quarter Horses. J. Equine Vet. Sci. 2020, 94, 103226. [Google Scholar] [CrossRef]
- Loos, C.M.M.; McLeod, K.R.; Vanzant, E.S.; Stratton, S.A.; Bohannan, A.D.; Coleman, R.J.; van Doorn, D.A.; Urschel, K.L. Differential effect of two dietary protein sources on time course response of muscle anabolic signaling pathways in normal and insulin dysregulated horses. Front. Vet. Sci. 2022, 9, 896220. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Kim, K.H.; Kim, S.; So, J.R.; Cho, B.W.; Song, K.D. Comparative metabolomic analysis in horses and functional analysis of branched chain (alpha) keto acid dehydrogenase complex in equine myoblasts under exercise stress. J. Anim. Sci. Technol. 2022, 64, 800–811. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Zhu, Y.; Deng, C.; Liang, Z.; Chen, J.; Chen, Y.; Wang, X.; Liu, Y.; Tian, Y.; Yang, Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct. Target. Ther. 2024, 9, 50. [Google Scholar] [CrossRef]
- Hotamisligil, G.S.; Bernlohr, D.A. Metabolic functions of FABPs–mechanisms and therapeutic implications. Nat. Rev. Endocrinol. 2015, 11, 592–605. [Google Scholar] [CrossRef]
- Wu, S.A.; Kersten, S.; Qi, L. Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends Endocrinol. Metab. 2021, 32, 48–61. [Google Scholar] [CrossRef]
- Blaue, D.; Schedlbauer, C.; Starzonek, J.; Gittel, C.; Brehm, W.; Blüher, M.; Pfeffer, M.; Vervuert, I. The influence of equine body weight gain on inflammatory cytokine expressions of adipose tissue in response to endotoxin challenge. Acta Vet. Scand. 2020, 62, 17. [Google Scholar] [CrossRef]
- Knych, H.K.; Harrison, L.M.; Steinmetz, S.J.; Chouicha, N.; Kass, P.H. Differential expression of skeletal muscle genes following administration of clenbuterol to exercised horses. BMC Genom. 2016, 17, 596. [Google Scholar] [CrossRef]
- Linhart, C.; Shamir, R. The degenerate primer design problem. Bioinformatics 2002, 18 (Suppl. S1), S172–S181. [Google Scholar] [CrossRef]
- Goldansaz, S.A.; Guo, A.C.; Sajed, T.; Steele, M.A.; Plastow, G.S.; Wishart, D.S. Livestock metabolomics and the livestock metabolome: A systematic review. PLoS ONE 2017, 12, e0177675. [Google Scholar] [CrossRef] [PubMed]
- Nithya, B.; Ilango, V. Predictive analytics in health care using machine learning tools and techniques. In Proceedings of the 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 15–16 June 2017; pp. 492–499. [Google Scholar]
| Gene | Function Related to Starvation and CHO Metabolism | Citation | 
|---|---|---|
| SLC2A4 | Downregulated during starvation, reducing insulin-stimulated glucose uptake in skeletal muscle and adipose tissue, conserving glucose for essential tissues. | [33,85,88] | 
| HK2 | Decreased expression under energy deprivation, limiting glycolytic flux and preserving glucose for gluconeogenesis. | [34,91] | 
| PFKM | Key glycolytic enzyme that controls the commitment step of glucose breakdown; its activity can be modulated during starvation as glycolysis slows and glucose is conserved for essential tissues. | [92,93] | 
| PDK4 | Induced during fasting to inhibit pyruvate dehydrogenase, suppressing glucose oxidation and promoting fatty acid use. | [87] | 
| INSR | Reduced signaling in prolonged starvation decreases peripheral glucose uptake. | [81,94] | 
| GYS1 | Suppressed to prevent glycogen synthesis, preserving glucose. | [89,95] | 
| AMPK | Activated in low-ATP states during starvation, shifting metabolism toward fat oxidation. | [68,81] | 
| SLC2A2 | Alters hepatic glucose transport to favor endogenous production. | [73,89] | 
| Gene | Function | Citation | 
|---|---|---|
| MSTN | Elevated during starvation to suppress muscle growth and promote protein catabolism. | [66,71] | 
| IGF1 | Downregulated in starvation, reducing anabolic signaling and muscle protein synthesis. | [94,96,97] | 
| FBXO32 | Upregulated during energy deficiency, tagging proteins for degradation. | [38] | 
| TRIM63 | Promotes proteasomal degradation of myofibrillar proteins in starvation. | [38] | 
| MTOR | Suppressed to downregulate protein synthesis and activate autophagy. | [81,98] | 
| SLC1A5 | Facilitates glutamine uptake to fuel gluconeogenesis. | [41] | 
| BCAT2 | Catalyzes first step in BCAA catabolism. | [81,99] | 
| Gene | Function | Citation | 
|---|---|---|
| CPT1B | Transports long-chain fatty acids into mitochondria for β-oxidation. | [39] | 
| ACADM | Oxidizes medium-chain fatty acids. | [40,41,75] | 
| ACADL | Oxidizes long-chain fatty acids. | [75,100] | 
| PPARGC1A | Induced to promote mitochondrial biogenesis and fat utilization. | [64,101] | 
| FABP4 | Facilitates intracellular transport of mobilized fatty acids. | [102,103] | 
| LPL | Hydrolyzes triglycerides to free fatty acids. | [72,103] | 
| PPARA | Activates fatty acid uptake and oxidation genes. | [75,81] | 
| SCD1 | Converts saturated to monounsaturated fats. | [81,104] | 
| PLIN1 | Regulates lipid droplet breakdown. | [81] | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Austin, M.M.P.; Ivey, J.L.Z.; Shepherd, E.A.; Myer, P.R. Methodologies to Identify Metabolic Pathway Differences Between Emaciated and Moderately Conditioned Horses: A Review of Multiple Gene Expression Techniques. Animals 2025, 15, 2933. https://doi.org/10.3390/ani15202933
Austin MMP, Ivey JLZ, Shepherd EA, Myer PR. Methodologies to Identify Metabolic Pathway Differences Between Emaciated and Moderately Conditioned Horses: A Review of Multiple Gene Expression Techniques. Animals. 2025; 15(20):2933. https://doi.org/10.3390/ani15202933
Chicago/Turabian StyleAustin, Madeline M. P., Jennie L. Z. Ivey, Elizabeth A. Shepherd, and Phillip R. Myer. 2025. "Methodologies to Identify Metabolic Pathway Differences Between Emaciated and Moderately Conditioned Horses: A Review of Multiple Gene Expression Techniques" Animals 15, no. 20: 2933. https://doi.org/10.3390/ani15202933
APA StyleAustin, M. M. P., Ivey, J. L. Z., Shepherd, E. A., & Myer, P. R. (2025). Methodologies to Identify Metabolic Pathway Differences Between Emaciated and Moderately Conditioned Horses: A Review of Multiple Gene Expression Techniques. Animals, 15(20), 2933. https://doi.org/10.3390/ani15202933
 
        


 
       