Complementary Effects of Essential Oils and Organic Acids on Rumen Physiology as Alternatives to Antibiotic Feed Additives
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Article Selection Criteria
2.4. Data Extraction
3. Characteristics and Properties of Essential Oils and Organic Acids
4. Impact of Antibiotics and Ionophores on Rumen Physiology
5. Potential Effect of Essential Oils and Organic Acids in Animal Nutrition
5.1. Rumen Physiology
5.2. Complementary Effect of Essential Oils and Organic Acids on Rumen Development
5.3. Complementary Effect of Essential Oils and Organic Acids on Rumen Environment
5.4. Complementary Effect of Essential Oils and Organic Acids on Microbial Ecology
5.5. Complementary Effect of Essential Oils and Organic Acids on Rumen Fermentation Parameters
5.6. Complementary Effect of Essential Oils and Organic Acids on Absorption and Nutrient Uptake
5.7. Complementary Effect of Essential Oils and Organic Acids on Rumen Degradation and Nutrient Digestion in the Abomasum
6. Future Perspective and Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dutta, T.K.; Yadav, S.K.; Chatterjee, A. Antibiotics as Feed Additives for Livestock: Human Health Concerns. Indian J. Anim. Health 2019, 58, 121–136. [Google Scholar] [CrossRef]
- Kholif, A.E.; Olafadehan, O.A. Essential Oils and Phytogenic Feed Additives in Ruminant Diet: Chemistry, Ruminal Microbiota and Fermentation, Feed Utilization and Productive Performance. Phytochem. Rev. 2021, 20, 1087–1108. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Callaway, T.R.; Muir, J.P.; Anderson, R.C. Potential Environmental Benefits of Feed Additives and Other Strategies for Ruminant Production. Rev. Bras. Zootec. 2011, 40, 291–309. [Google Scholar]
- Caroprese, M.; Ciliberti, M.G.; Marino, R.; Santillo, A.; Sevi, A.; Albenzio, M. Essential Oil Supplementation in Small Ruminants: A Review on Their Possible Role in Rumen Fermentation, Microbiota, and Animal Production. Dairy 2023, 4, 497–508. [Google Scholar] [CrossRef]
- Carro, M.D.; Ungerfeld, E.M. Utilization of Organic Acids to Manipulate Ruminal Fermentation and Improve Ruminant Productivity. In Rumen Microbiology: From Evolution to Revolution; Springer: New Delhi, India, 2015; pp. 177–197. [Google Scholar]
- Benchaar, C.; Greathead, H. Essential Oils and Opportunities to Mitigate Enteric Methane Emissions from Ruminants. Anim. Feed. Sci. Technol. 2011, 166–167, 338–355. [Google Scholar] [CrossRef]
- Abdillah, A.E.; Sarah, D.; Ardian, A.A.; Al Anas, M.; Aprianto, M.A.; Hanim, C.; Kurniawati, A.; Muhlisin; Yusiati, L.M. Effect of Nutmeg Essential Oil (Myristica fragrans Houtt.) on Methane Production, Rumen Fermentation, and Nutrient Digestibility in Vitro. Sci. Rep. 2024, 14, 3554. [Google Scholar] [CrossRef]
- Faniyi, T.O.; Owolabi, A.; Soyelu, O.T. Rumen PH and Microbial Shift: Implications for Ruminant Nutrition-a Review. Niger. J. Anim. Prod. 2024, 51, 103–120. [Google Scholar]
- Hodge, I.; Quille, P.; Ayyachamy, M.; O’Connell, S. In Vitro Comparison of Naturally Bioactive Plant Extracts, Essential Oils, and Marine Algae Targeting Different Modes of Action for Mitigation of Enteric Methane Emissions in Ruminants. Front. Anim. Sci. 2025, 6, 1546486. [Google Scholar] [CrossRef]
- Ünlü, H.B.; İpçak, H.H. Kandemir Effects of Oregano Essential Oil and Capsicum Extract Supplementation on Slaughter Characteristics, Meat Quality, and Fatty Acid Composition of Lambs. S. Afr. J. Anim. Sci. 2022, 52, 780–791. [Google Scholar] [CrossRef]
- Ortiz Heredia, M.A.; Hernández, P.A.M.; Mendoza, O.V.V.; Cipriano-Salazar, M.; Pacheco, E.B.F.; Elghandour, M.M.M.Y.; Salem, A.Z.M. Effect of Essential Oils, Monensin Sodium, and Calcium Malate on in Vitro Gas Production, in Vivo Nutrient Digestibility, and Growth Performance of Finishing Lambs. Small Rumin. Res. 2024, 240, 107363. [Google Scholar] [CrossRef]
- Schären, M.; Drong, C.; Kiri, K.; Riede, S.; Gardener, M.; Meyer, U.; Hummel, J.; Urich, T.; Breves, G.; Dänicke, S. Differential Effects of Monensin and a Blend of Essential Oils on Rumen Microbiota Composition of Transition Dairy Cows. J. Dairy Sci. 2017, 100, 2765–2783. [Google Scholar] [CrossRef]
- DE MATOS, L.G. In Vitro Evaluation of Essential Oils and Organic Acids: Toxicity and Ruminal Fermentation. 2025. Available online: https://tesidottorato.depositolegale.it/handle/20.500.14242/208605 (accessed on 4 July 2025).
- Cobellis, G.; Trabalza-Marinucci, M.; Yu, Z. Critical Evaluation of Essential Oils as Rumen Modifiers in Ruminant Nutrition: A Review. Sci. Total Environ. 2016, 545, 556–568. [Google Scholar] [CrossRef]
- Alabi, J.O.; Dele, P.A.; Okedoyin, D.O.; Wuaku, M.; Anotaenwere, C.C.; Adelusi, O.O.; Gray, D.; Ike, K.A.; Oderinwale, O.A.; Subedi, K. Synergistic Effects of Essential Oil Blends and Fumaric Acid on Ruminal Fermentation, Volatile Fatty Acid Production and Greenhouse Gas Emissions Using the Rumen Simulation Technique (RUSITEC). Fermentation 2024, 10, 114. [Google Scholar] [CrossRef]
- Bolouri, P.; Salami, R.; Kouhi, S.; Kordi, M.; Asgari Lajayer, B.; Hadian, J.; Astatkie, T. Applications of Essential Oils and Plant Extracts in Different Industries. Molecules 2022, 27, 8999. [Google Scholar] [CrossRef] [PubMed]
- Lago, S.; Rodríguez, H.; Arce, A.; Soto, A. Improved Concentration of Citrus Essential Oil by Solvent Extraction with Acetate Ionic Liquids. Fluid Phase Equilib. 2014, 361, 37–44. [Google Scholar] [CrossRef]
- Jha, V.; Shaikh, D.; Bhargava, A.; Marick, A.; Khan, F.; Dhamapurkar, V.; Jhangiani, A.; Narvekar, S.; Shinde, R.; Nair, M. Characterization of Physio-Chemical Properties and Evaluation of Bioactive Potentials of Essential Oils from Elettaria Cardamomum. J. Plant Biol. Crop Res. 2022, 5, 1068. [Google Scholar]
- Lin, L.-Y.; Chuang, C.-H.; Chen, H.-C.; Yang, K.-M. Lime (Citrus aurantifolia (Christm.) Swingle) Essential Oils: Volatile Compounds, Antioxidant Capacity, and Hypolipidemic Effect. Foods 2019, 8, 398. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shang, S.; Yan, F.; Jiang, H.; Zhao, G.; Tian, S.; Chen, R.; Chen, D.; Dang, Y. Antioxidant Activities of Essential Oils and Their Major Components in Scavenging Free Radicals, Inhibiting Lipid Oxidation and Reducing Cellular Oxidative Stress. Molecules 2023, 28, 4559. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Kiani, A.; Santhiravel, S.; Holman, B.W.B.; Lauridsen, C.; Dunshea, F.R. The Importance of Dietary Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant Action, Animal Health, and Product Quality—Invited Review. Animals 2022, 12, 3279. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.H.; Iqbal, J. Recent Advances in the Role of Organic Acids in Poultry Nutrition. J. Appl. Anim. Res. 2016, 44, 359–369. [Google Scholar] [CrossRef]
- Ma, J.; Mahfuz, S.; Wang, J.; Piao, X. Effect of Dietary Supplementation with Mixed Organic Acids on Immune Function, Antioxidative Characteristics, Digestive Enzymes Activity, and Intestinal Health in Broiler Chickens. Front. Nutr. 2021, 8, 673316. [Google Scholar] [CrossRef]
- Ebeid, T.A.; Al-Homidan, I.H. Organic Acids and Their Potential Role for Modulating the Gastrointestinal Tract, Antioxidative Status, Immune Response, and Performance in Poultry. Worlds Poult. Sci. J. 2022, 78, 83–101. [Google Scholar] [CrossRef]
- Peh, E.; Kittler, S.; Reich, F.; Kehrenberg, C. Antimicrobial Activity of Organic Acids against Campylobacter Spp. and Development of Combinations—A Synergistic Effect? PLoS ONE 2020, 15, e0239312. [Google Scholar] [CrossRef]
- Pearlin, B.V.; Muthuvel, S.; Govidasamy, P.; Villavan, M.; Alagawany, M.; Ragab Farag, M.; Dhama, K.; Gopi, M. Role of Acidifiers in Livestock Nutrition and Health: A Review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 558–569. [Google Scholar] [CrossRef]
- Nhara, R.B.; Marume, U.; Nantapo, C.W.T. Potential of Organic Acids, Essential Oils and Their Blends in Pig Diets as Alternatives to Antibiotic Growth Promoters. Animals 2024, 14, 762. [Google Scholar] [CrossRef]
- Liu, Y.; Espinosa, C.D.; Abelilla, J.J.; Casas, G.A.; Lagos, L.V.; Lee, S.A.; Kwon, W.B.; Mathai, J.K.; Navarro, D.M.D.L.; Jaworski, N.W. Non-Antibiotic Feed Additives in Diets for Pigs: A Review. Anim. Nutr. 2018, 4, 113–125. [Google Scholar] [CrossRef]
- Yang, X.; Xin, H.; Yang, C.; Yang, X. Impact of Essential Oils and Organic Acids on the Growth Performance, Digestive Functions and Immunity of Broiler Chickens. Anim. Nutr. 2018, 4, 388–393. [Google Scholar] [CrossRef]
- Вудмаска, І.В.; Salyha, Y.; Сачко, С.Р. Ionophore Antibiotics and Hop Cones as Regulators of Digestion and Metabolism in Ruminants. Stud. Biol. 2024, 18, 155–170. [Google Scholar] [CrossRef]
- Marques, R.d.S.; Cooke, R.F. Effects of Ionophores on Ruminal Function of Beef Cattle. Animals 2021, 11, 2871. [Google Scholar] [CrossRef] [PubMed]
- El-Waziry, A.M.; Basmaeil, S.M.; Alhidary, I.A.; Suliman, G.M.; Abdelrahman, M.M.; Al-Garadi, M.A. Ionophores: Their Effects on Ruminal Fermentation, Animal Performance and Carcass Characteristics and Meat Quality. Adv. Anim. Vet. Sci. 2022, 10, 2641–2649. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Morsy, A.S.; Hashem, N.; Sallam, S.M.A. Impact of Supplementary Moringa Oleifera Leaf Extract on Ruminal Nutrient Degradation and Mitigating Methane Formation in Vitro. Egypt. J. Nutr. Feed. 2019, 22, 55–62. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Morsy, A.S.; Hashem, N.M.; Elazab, M.A.; Sultan, M.; Marey, H.N.; El Lail, G.A.; El-Desoky, N.; Hosny, N.S.; Mahdy, A.; et al. Modified Nano-Montmorillonite and Monensin Modulate in Vitro Ruminal Fermentation, Nutrient Degradability, and Methanogenesis Differently. Animals 2021, 11, 3005. [Google Scholar] [CrossRef]
- Al Adawi, S.A.; El-Zaiat, H.M.; Morsy, A.S.; Soltan, Y.A. Lactation Performance and Rumen Fermentation in Dairy Cows Fed a Diet Supplemented With Monensin or Gum Arabic-Nano Montmorillonite Compost. Animals 2024, 14, 1649. [Google Scholar] [CrossRef]
- Kim, H.; Park, T.; Kwon, I.; Seo, J. Specific Inhibition of Streptococcus Bovis by Endolysin LyJH307 Supplementation Shifts the Rumen Microbiota and Metabolic Pathways Related to Carbohydrate Metabolism. J. Anim. Sci. Biotechnol. 2021, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Abd’quadri-Abojukoro, A.N.; Yobo, K.S.; Nsahlai, I.V. Screening of Some Medicinal Plant Extracts for Antibacterial Effects: A Step Towards Natural Feed Additive Formulation. Lett. Anim. Biol. 2022, 2, 1–11. [Google Scholar] [CrossRef]
- Soares, S.B.; Garcia, I.F.F.; Pereira, I.G.; Alves, D.d.O.; da Silva, G.R.; Almeida, A.K.; Lopes, C.M.; Sena, J.A.B. Performance, Carcass Characteristics and Non-Carcass Components of Texel × Santa Inês Lambs Fed Fat Sources and Monensin. Rev. Bras. Zootec. 2012, 41, 421–431. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Y.; Yu, Z.; Xu, Q.; Zheng, N.; Zhao, S.; Huang, G.; Wang, J. Ruminal Microbiota–Host Interaction and Its Effect on Nutrient Metabolism. Anim. Nutr. 2021, 7, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Krehbiel, C.R. Invited Review: Applied Nutrition of Ruminants: Fermentation and Digestive Physiology. Prof. Anim. Sci. 2014, 30, 129–139. [Google Scholar] [CrossRef]
- Khalouei, H.; Seranatne, V.; Fehr, K.; Guo, J.; Yoon, I.; Khafipour, E.; Plaizier, J.C. Effects of Saccharomyces cerevisiae fermentation products and subacute ruminal acidosis on feed intake, fermentation, and nutrient digestibilities in lactating dairy cows. Can. J. Anim. Sci. 2021, 101, 143–157. [Google Scholar] [CrossRef]
- Millen, D.; Pacheco, R.; Cabral, L.S.; Cursino, L.L. Ruminal Acidosis. In Rumenology; Springer: Cham, Switzerland, 2016; pp. 127–156. [Google Scholar] [CrossRef]
- Yáñez-Ruiz, D.R.; Abecia, L.; Newbold, C.J. Manipulating Rumen Microbiome and Fermentation through Interventions during Early Life: A Review. Front. Microbiol. 2015, 6, 1133. [Google Scholar] [CrossRef]
- Malmuthuge, N.; Liang, G.; Guan, L.L. Regulation of Rumen Development in Neonatal Ruminants through Microbial Metagenomes and Host Transcriptomes. Genome Biol. 2019, 20, 172. [Google Scholar] [CrossRef]
- Baaske, L.; Gäbel, G.; Dengler, F. Ruminal Epithelium: A Checkpoint for Cattle Health. J. Dairy Res. 2020, 87, 322–329. [Google Scholar] [CrossRef]
- Shen, H.; Lu, Z.; Xu, Z.; Shen, Z. Diet-Induced Reconstruction of Mucosal Microbiota Associated with Alterations of Epithelium Lectin Expression and Regulation in the Maintenance of Rumen Homeostasis. Sci. Rep. 2017, 7, 3941. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wu, J.; Lei, Y.; Bai, Y.; Jia, L.; Li, Z.; Liu, T.; Xu, Y.; Sun, J.; Wang, Y. Oregano Essential Oils Promote Rumen Digestive Ability by Modulating Epithelial Development and Microbiota Composition in Beef Cattle. Front. Nutr. 2021, 8, 722557. [Google Scholar] [CrossRef]
- Reddy, P.R.K.; Hyder, I. Ruminant Digestion. In Textbook of Veterinary Physiology; Springer: Berlin/Heidelberg, Germany, 2023; pp. 353–366. [Google Scholar]
- Jiao, J.; Li, X.; Beauchemin, K.A.; Tan, Z.; Tang, S.; Zhou, C. Rumen Development Process in Goats as Affected by Supplemental Feeding v. Grazing: Age-Related Anatomic Development, Functional Achievement and Microbial Colonisation. Br. J. Nutr. 2015, 113, 888–900. [Google Scholar] [CrossRef]
- Beiranvand, H.; Ghorbani, G.R.; Khorvash, M.; Nabipour, A.; Dehghan-Banadaky, M.; Homayouni, A.; Kargar, S. Interactions of Alfalfa Hay and Sodium Propionate on Dairy Calf Performance and Rumen Development. J. Dairy Sci. 2014, 97, 2270–2280. [Google Scholar] [CrossRef] [PubMed]
- Foskolos, A.; Ferret, A.; Siurana, A.; Castillejos, L.; Calsamiglia, S. Effects of Capsicum and Propyl-Propane Thiosulfonate on Rumen Fermentation, Digestion, and Milk Production and Composition in Dairy Cows. Animals 2020, 10, 859. [Google Scholar] [CrossRef]
- Haque, M.N. Dietary Manipulation: A Sustainable Way to Mitigate Methane Emissions from Ruminants. J. Anim. Sci. Technol. 2018, 60, 15. [Google Scholar] [CrossRef] [PubMed]
- De Nardi, R.; Marchesini, G.; Li, S.; Khafipour, E.; Plaizier, K.J.C.; Gianesella, M.; Ricci, R.; Andrighetto, I.; Segato, S. Metagenomic Analysis of Rumen Microbial Population in Dairy Heifers Fed a High Grain Diet Supplemented with Dicarboxylic Acids or Polyphenols. BMC Vet. Res. 2016, 12, 29. [Google Scholar] [CrossRef]
- Stevanović, Z.D.; Bošnjak-Neumüller, J.; Pajić-Lijaković, I.; Raj, J.; Vasiljević, M. Essential Oils as Feed Additives—Future Perspectives. Molecules 2018, 23, 1717. [Google Scholar] [CrossRef]
- Tayyab, U.; Sinclair, L.A.; Wilkinson, R.G.; Humphries, D.J.; Reynolds, C.K. Milk Production, Rumen Function, and Digestion in Dairy Cows Fed Diets Differing in Predominant Forage and Concentrate Type. Anim. Feed. Sci. Technol. 2022, 284, 115151. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of Essential Oils on Methane Production and Fermentation by, and Abundance and Diversity of, Rumen Microbial Populations. Appl. Environ. Microbiol. 2012, 78, 4271–4280. [Google Scholar] [CrossRef]
- Freetly, H.C.; Dickey, A.; Lindholm-Perry, A.K.; Thallman, R.M.; Keele, J.W.; Foote, A.P.; Wells, J.E. Digestive Tract Microbiota of Beef Cattle That Differed in Feed Efficiency. J. Anim. Sci. 2020, 98, skaa008. [Google Scholar] [CrossRef]
- Mao, J.; Wang, L. Rumen Acidosis in Ruminants: A Review of the Effects of High-Concentrate Diets and the Potential Modulatory Role of Rumen Foam. Front. Vet. Sci. 2025, 12, 1595615. [Google Scholar] [CrossRef]
- Faehnrich, B.; Franz, C.; Nemaz, P.; Kaul, H.-P. Medicinal Plants and Their Secondary Metabolites—State of the Art and Trends in Breeding, Analytics and Use in Feed Supplementation—With Special Focus on German Chamomile. J. Appl. Bot. Food Qual. 2021, 94, 61–74. [Google Scholar]
- Niderkorn, V.; Yanza, Y.R.; Jayanegara, A. The Potential of Bioactive Forage Legumes for Ruminant Production in Temperate and Tropical Areas: A One Health Approach: This Title Will Be Presented on Friday, December 15, 2023 at 13.00-13.15 GMT+ 7. In Proceedings of the 2024 Frontier in Sustainable Agromaritime and Environmental Development Conference, Bogor, Indonesia, 14 December 2023–15 December 2023; p. 13. [Google Scholar]
- Niderkorn, V.; Jayanegara, A. Opportunities Offered by Plant Bioactive Compounds to Improve Silage Quality, Animal Health and Product Quality for Sustainable Ruminant Production: A Review. Agronomy 2021, 11, 86. [Google Scholar] [CrossRef]
- Linde, I. The Influence of Diet and Feed Additives on the Rumen Microbiome. AFMA Matrix 2023, 32, 66–67. [Google Scholar]
- Dey, A.; Paul, S.S.; Lailer, P.C.; Dahiya, S.S. Reducing Enteric Methane Production from Buffalo (Bubalus bubalis) by Garlic Oil Supplementation in in Vitro Rumen Fermentation System. SN Appl. Sci. 2021, 3, 187. [Google Scholar] [CrossRef]
- Cusiayuni, A.; Nurfatahillah, R.K.; Evvyernie, D.; Jayanegara, A.; Wiryawan, K.G. Coconut Oil Effects on in Vitro Ruminal Fermentation and Methanogenesis. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Online, 22 September 2021–23 September 2021; IOP Publishing: Bristol, UK, 2022; Volume 1041, p. 012065. [Google Scholar]
- Sutton, J.D.; Knight, R.; McAllan, A.B.; Smith, R.H. Digestion and Synthesis in the Rumen of Sheep given Diets Supplemented with Free and Protected Oils. Br. J. Nutr. 1983, 49, 419–432. [Google Scholar] [CrossRef]
- Adeyemi, K.D.; Ebrahimi, M.; Samsudin, A.A.; Alimon, A.R.; Karim, R.; Karsani, S.A.; Sazili, A.Q. Influence of C Arotino Oil on in Vitro Rumen Fermentation, Metabolism and Apparent Biohydrogenation of Fatty Acids. Anim. Sci. J. 2015, 86, 270–278. [Google Scholar] [CrossRef]
- Kumar, K.; Dey, A.; Rose, M.K.; Dahiya, S.S. Impact of Dietary Phytogenic Composite Feed Additives on Immune Response, Antioxidant Status, Methane Production, Growth Performance and Nutrient Utilization of Buffalo (Bubalus bubalis) Calves. Antioxidants 2022, 11, 325. [Google Scholar] [CrossRef]
- Mohamed Khattab, I.M.; Fathy Elgandy, M.F. Essential Oils in Animal Diets to Improve the Fatty Acids Composition of Meat and Milk Quality in Ruminant. In Essential Oils—Recent Advances, New Perspectives and Applications; Viskelis, J., Ed.; IntechOpen: Rijeka, Yugoslavia, 2024; ISBN 978-0-85014-205-1. [Google Scholar]
- Zhou, R.; Wu, J.; Zhang, L.; Liu, L.; Casper, D.P.; Jiao, T.; Liu, T.; Wang, J.; Lang, X.; Song, S. Effects of Oregano Essential Oil on the Ruminal PH and Microbial Population of Sheep. PLoS ONE 2019, 14, e0217054. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Morales, E.; Bolton, E.; Lyons, L.; Carreño, D.; Jones, E.; Mayorga, O.; Ariza-Nieto, C.; Newbold, C.J. Evaluation of a Colombian Oregano Oil (Lippia origanoides Kunth) and a Novel Yeast Product from Pichia Guilliermondii, Alone or in Combination, on Rumen Fermentation, Methanogenesis and the Microbiome in the Rumen Simulation Technique. Front. Anim. Sci. 2022, 3, 951789. [Google Scholar] [CrossRef]
- Zhang, H.; Lang, X.; Li, X.; Chen, G.; Wang, C. Effect of Zanthoxylum Bungeanum Essential Oil on Rumen Enzyme Activity, Microbiome, and Metabolites in Lambs. PLoS ONE 2022, 17, e0272310. [Google Scholar] [CrossRef]
- Khateri, N.; Azizi, O.; Jahani-Azizabadi, H. Effects of a specific blend of essential oils on apparent nutrient digestion, rumen fermentation and rumen microbial populations in sheep fed a 50:50 alfalfa hay:concentrate diet. Asian-Australas. J. Anim. Sci. 2017, 30, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, K.D.; Ahmed, M.A.; Jotham, S.; Roslan, N.A.; Jahromi, M.F.; Samsudin, A.A.; Sazili, A.Q. Rumen Microbial Community and Nitrogen Metabolism in Goats Fed Blend of Palm Oil and Canola Oil. Ital. J. Anim. Sci. 2016, 15, 666–672. [Google Scholar] [CrossRef]
- Nur Atikah, I.; Alimon, A.R.; Yaakub, H.; Abdullah, N.; Jahromi, M.F.; Ivan, M.; Samsudin, A.A. Profiling of Rumen Fermentation, Microbial Population and Digestibility in Goats Fed with Dietary Oils Containing Different Fatty Acids. BMC Vet. Res. 2018, 14, 344. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Oba, M. Relationship of Severity of Subacute Ruminal Acidosis to Rumen Fermentation, Chewing Activities, Sorting Behavior, and Milk Production in Lactating Dairy Cows Fed a High-Grain Diet. J. Dairy Sci. 2014, 97, 3006–3016. [Google Scholar] [CrossRef]
- Cavallini, D.; Mammi, L.M.E.; Palmonari, A.; García-González, R.; Chapman, J.D.; McLean, D.J.; Formigoni, A. Effect of an Immunomodulatory Feed Additive in Mitigating the Stress Responses in Lactating Dairy Cows to a High Concentrate Diet Challenge. Animals 2022, 12, 2129. [Google Scholar] [CrossRef]
- Wang, D.; Tang, G.; Wang, Y.; Yu, J.; Chen, L.; Chen, J.; Wu, Y.; Zhang, Y.; Cao, Y.; Yao, J. Rumen Bacterial Cluster Identification and Its Influence on Rumen Metabolites and Growth Performance of Young Goats. Anim. Nutr. 2023, 15, 34–44. [Google Scholar] [CrossRef]
- Ogata, T.; Makino, H.; Ishizuka, N.; Iwamoto, E.; Masaki, T.; Kizaki, K.; Kim, Y.-H.; Sato, S. Long-Term High-Grain Diet Alters Ruminal PH, Fermentation, and Epithelial Transcriptomes, Leading to Restored Mitochondrial Oxidative Phosphorylation in Japanese Black Cattle. Sci. Rep. 2020, 10, 6381. [Google Scholar] [CrossRef]
- Steele, M.A.; Penner, G.B.; Chaucheyras-Durand, F.; Guan, L.L. Development and Physiology of the Rumen and the Lower Gut: Targets for Improving Gut Health1. J. Dairy Sci. 2016, 99, 4955–4966. [Google Scholar] [CrossRef] [PubMed]
- Dieho, K.; Dijkstra, J.; Klop, G.; Schonewille, J.T.; Bannink, A. The Effect of Supplemental Concentrate Fed during the Dry Period on Morphological and Functional Aspects of Rumen Adaptation in Dairy Cattle during the Dry Period and Early Lactation. J. Dairy Sci. 2017, 100, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Marwan, A.A.; Mousa, S.A. Influence of Basil Oil as an Essential Oil on Buffalo Calves Performance, Digestibility, Haemobiochemical Profile and Rumen Fermentation Indicators. Egypt. J. Nutr. Feed. 2021, 24, 211–221. [Google Scholar] [CrossRef]
- Devi, S.M.; Lee, K.Y.; Kim, I.H.; Devi, S.M.; Lee, K.Y.; Kim, I.H. Analysis of the Effect of Dietary Protected Organic Acid Blend on Lactating Sows and Their Piglets. Rev. Bras. Zootec. 2016, 45, 39–47. [Google Scholar] [CrossRef]
- Lavrenčič, A.; Levart, A. In Vitro Dry Matter and Crude Protein Rumen Degradation and Abomasal Digestibility of Soybean Meal Treated with Chestnut and Quebracho Wood Extracts. Food Sci. Nutr. 2021, 9, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, G.; Li, Y.; Zhang, Y. Effects of High Forage/Concentrate Diet on Volatile Fatty Acid Production and the Microorganisms Involved in VFA Production in Cow Rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Lee, K.Y.; Kim, I.H. Influence of Protected Organic Acid Blends and Diets with Different Nutrient Densities on Growth Performance, Nutrient Digestibility and Faecal Noxious Gas Emission in Growing Pigs. Veterinární Medicína 2014, 2014, 491–497. [Google Scholar] [CrossRef]
- Castillo, A.R.; Rienzo, J.A.D.; Cavallini, D. Effect of a Mix of Condense and Hydrolysable Tannins Feed Additive on Lactating Dairy Cows’ Services per Conception and Days Open. Vet. Anim. Sci. 2025, 27, 100434. [Google Scholar] [CrossRef]
- Abbasi, I.H.R.; Abbasi, F.; Abd El-Hack, M.E.; Abdel-Latif, M.A.; Soomro, R.N.; Hayat, K.; Mohamed, M.A.E.; Bodinga, B.M.; Yao, J.; Cao, Y. Critical Analysis of Excessive Utilization of Crude Protein in Ruminants Ration: Impact on Environmental Ecosystem and Opportunities of Supplementation of Limiting Amino Acids—A Review. Environ. Sci. Pollut. Res. 2018, 25, 181–190. [Google Scholar] [CrossRef]
- Atole, A.F.; Bestil, L. Extrapolating Bypass Protein Potential of Treated Soybean Meal by In Situ Degradation in Rumen-Fistulated Brahman Cattle. Ann. Trop. Res. 2014, 36, 50–62. [Google Scholar] [CrossRef]
- Rodrigues, P.H.M. Control and Manipulation of Ruminal Fermentation. In Rumenology; Millen, D.D., De Beni Arrigoni, M., Lauritano Pacheco, R.D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 157–187. ISBN 978-3-319-30533-2. [Google Scholar]
- Puniya, A.K.; Singh, R.; Kamra, D.N. (Eds.) Rumen Microbiology: From Evolution to Revolution; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Ahmed, M.G.; Elwakeel, E.A.; El-Zarkouny, S.Z.; Al-Sagheer, A.A. Environmental Impact of Phytobiotic Additives on Greenhouse Gas Emission Reduction, Rumen Fermentation Manipulation, and Performance in Ruminants: An Updated Review. Environ. Sci. Pollut. Res. 2024, 31, 37943–37962. [Google Scholar] [CrossRef] [PubMed]
- Matsuba, T.; Kubozono, H.; Saegusa, A.; Obata, K.; Gotoh, K.; Miki, K.; Akiyama, T.; Oba, M. Short Communication: Effects of Feeding Purple Corn (Zea mays L.) Silage on Productivity and Blood Superoxide Dismutase Concentration in Lactating Cows. J. Dairy Sci. 2019, 102, 7179–7182. [Google Scholar] [CrossRef] [PubMed]
PICO Element | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Essential oil and organic acid feed additives blend | Other feed additives |
Intervention | Additives in ruminant animal diets | Monogastric animals |
Comparator | Studies with control groups | No control groups |
Outcomes | Quantitative data, reviews on rumen physiology parameters (rumen pH, rumen microbes, methane production) | Qualitative studies, reviews, and abstracts without complete data integrity |
Study design | Original experimental studies, systematic reviews, meta-analysis | Case reports, editorials, conference abstracts without full methods |
Study period | Studies from 2010 to 2025 | Studies before 2010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nhara, R.B.; Baloyi, J.J. Complementary Effects of Essential Oils and Organic Acids on Rumen Physiology as Alternatives to Antibiotic Feed Additives. Animals 2025, 15, 2910. https://doi.org/10.3390/ani15192910
Nhara RB, Baloyi JJ. Complementary Effects of Essential Oils and Organic Acids on Rumen Physiology as Alternatives to Antibiotic Feed Additives. Animals. 2025; 15(19):2910. https://doi.org/10.3390/ani15192910
Chicago/Turabian StyleNhara, Rumbidzai Blessing, and Joseph Jimu Baloyi. 2025. "Complementary Effects of Essential Oils and Organic Acids on Rumen Physiology as Alternatives to Antibiotic Feed Additives" Animals 15, no. 19: 2910. https://doi.org/10.3390/ani15192910
APA StyleNhara, R. B., & Baloyi, J. J. (2025). Complementary Effects of Essential Oils and Organic Acids on Rumen Physiology as Alternatives to Antibiotic Feed Additives. Animals, 15(19), 2910. https://doi.org/10.3390/ani15192910