Comparative Analysis of Genetic Parameters for Test-Day Egg Production in Four Thai Native Synthetic Chicken Lines Under Heat Stress
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Data Management
2.2. Genetic Estimation
3. Results
3.1. Descriptive Statistics and Identification of THI Model and Heat Stress Onset
3.2. Heritability, Genetic Correlation, and Permanent Environmental Correlation
3.3. Rate of Decline in Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Q.; Lu, X.; Li, G.; Zhang, H.; Zhou, C.; Yin, J.; Han, W.; Yang, H. Genetic analysis of egg production traits in Lihua chickens: Insights from a multi-trait animal model and a genome-wide association study. Genes 2024, 15, 796. [Google Scholar] [CrossRef]
- Udeh, I.; Omeje, S.I. Genetic parameters for egg production traits in crosses between local and exotic chickens estimated by Bayesian inference. Nig. J. Anim. Prod. 2017, 44, 1–8. [Google Scholar] [CrossRef]
- Jaturasitha, S.; Chaiwang, N.; Kreuzer, M. Thai native chicken meat: An option to meet the demands for specific meat quality by certain groups of consumers; a review. Anim. Prod. Sci. 2016, 57, 1582–1587. [Google Scholar] [CrossRef]
- Chomchuen, K.; Tuntiyasawasdikul, V.; Chankitisakul, V.; Boonkum, W. Genetic evaluation of body weights and egg production traits using a multi-trait animal model and selection index in Thai native synthetic chickens (Kaimook e-san2). Animals 2022, 12, 335. [Google Scholar] [CrossRef]
- Loengbudnark, W.; Chankitisakul, V.; Duangjinda, M.; Boonkum, W. Sustainable growth through Thai native chicken farming: Lessons from rural communities. Sustainability 2024, 16, 7811. [Google Scholar] [CrossRef]
- Charoensin, S.; Laopaiboon, B.; Boonkum, W.; Phetcharaburanin, J.; Villareal, M.O.; Isoda, H.; Duangjinda, M. Thai native chicken as a potential functional meat source rich in anserine, anserine/carnosine, and antioxidant substances. Animals 2021, 11, 902. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H. Current status and prospects of genetic resources of native chickens of Japan. Animals 2025, 15, 1703. [Google Scholar] [CrossRef]
- Castro Rojas, L.A.; Ceccobelli, S.; Gayozo, E.; Méndez Morán, N.; Marchegiani, S.; Martínez Martínez, A.; Camacho Vallejo, M.E.; Toalombo Vargas, P.A.; de Carvalho, D.A.; Pons Barro, A.L.; et al. Understanding the genetic variation and structure of the Rustipollos chicken synthetic population locally adapted to Paraguay: Opportunities for a sustainable chicken productivity. Poultry 2024, 3, 224–238. [Google Scholar] [CrossRef]
- Taye, S. Poultry genetic resource conservation and utilization: A review article on current status and future prospects in Ethiopia. Asian J. Biol. Sci. 2024, 17, 763–770. [Google Scholar] [CrossRef]
- Vandana, G.D.; Sejian, V.; Lees, A.M.; Pragna, P.; Silpa, M.V.; Maloney, S.K. Heat stress and poultry production: Impact and amelioration. Int. J. Biometeorol. 2021, 65, 163–179. [Google Scholar] [CrossRef]
- Bhawa, S.; Morêki, J.C.; Machete, J.B. Poultry management strategies to alleviate heat stress in hot climates: A review. J. World Poult. Res. 2023, 13, 1–19. [Google Scholar] [CrossRef]
- Boonkum, W.; Chankitisakul, V.; Kananit, S.; Kenchaiwong, W. Heat stress effects on the genetics of growth traits in Thai native chickens (Pradu Hang dum). Anim. Biosci. 2024, 37, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Nawab, A.; Ibtisham, F.; Li, G.; Kieser, B.; Wu, J.; Liu, W. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 2018, 78, 131–139. [Google Scholar] [CrossRef]
- Kim, H.-R.; Ryu, C.; Lee, S.-D.; Cho, J.-H.; Kang, H. Effects of heat stress on the laying performance, egg quality, and physiological response of laying hens. Animals 2024, 14, 1076. [Google Scholar] [CrossRef]
- Gençoğlan, S. The effects of heat stress on yield and fertility of laying hens and precautions to be taken. Turk. J. Agric. Food Sci. Technol. 2023, 11, 140–150. [Google Scholar]
- Kim, D.H.; Lee, K.W. An update on heat stress in laying hens. World. Poult. Sci. J. 2023, 79, 689–712. [Google Scholar] [CrossRef]
- Tirawattanawanich, C.; Chantakru, S.; Nimitsantiwong, W.; Tongyai, S. The effects of tropical environmental conditions on the stress and immune responses of commercial broilers, Thai indigenous chickens, and crossbred chickens. J. Appl. Poult. Res. 2011, 20, 409–420. [Google Scholar] [CrossRef]
- Duangjinda, M.; Tunim, S.; Duangdaen, C.; Boonkum, W. Hsp70 genotypes and heat tolerance of commercial and native chickens reared in hot and humid conditions. Braz. J. Poult. Sci. 2017, 19, 7–18. [Google Scholar] [CrossRef]
- Renaudeau, D.; Collin, A.; Yahav, S.; de Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [PubMed]
- Oguntunji, A.O.; Oladejo, O.A.; Ayoola, M.O.; Oluwatomini, I.; Oriye, L.O.; Egunjobi, I.M. Genetic variation in physiological adaptation of local, exotic and crossbred ducks to heat stress in a tropical environment. Genet. Biodiv. J. 2019, 3, 35–45. [Google Scholar] [CrossRef]
- Loyau, T.; Zerjal, T.; Rodenburg, T.B.; Fablet, J.; Tixier-Boichard, M.; Pinard-van der Laan, M.H.; Mignon-Grasteau, S. Heritability of body surface temperature in hens estimated by infrared thermography at normal or hot temperatures and genetic correlations with egg and feather quality. Animal 2016, 10, 1594–1601. [Google Scholar] [CrossRef]
- Loengbudnark, W.; Chankitisakul, V.; Boonkum, W. The genetic impact of heat stress on the egg production of Thai native chickens (Pradu Hang dum). PLoS ONE 2023, 18, e0281328. [Google Scholar] [CrossRef] [PubMed]
- Jongbo, A.O.; Olajide, S.S.; Deniz, M.; Vieira, F.M.C. Thermal characterization and ventilation assessment of a battery-caged laying hen housing in the humid tropic climate. Int. J. Biometeorol. 2024, 68, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Lallo, C.H.O.; Cohen, J.; Rankine, D.; Taylor, M.; Cambell, J.; Stephenson, T. Characterizing heat stress on livestock using the temperature humidity index (THI)—Prospects for a warmer Caribbean. Reg. Environ. Change 2018, 18, 2329–2340. [Google Scholar] [CrossRef]
- El-Tarabany, M.S. Impact of temperature-humidity index on egg-laying characteristics and related stress and immunity parameters of Japanese quails. Int. J. Biometeorol. 2016, 60, 957–964. [Google Scholar] [CrossRef]
- Asadollahi, H.; Vaez Torshizi, R.; Ehsani, A.; Masoudi, A.A. An association of CEP78, MEF2C, VPS13A and ARRDC3 genes with survivability to heat stress in an F2 chicken population. J. Anim. Breed. Genet. 2022, 139, 574–582. [Google Scholar] [CrossRef]
- Nawaz, A.H.; Setthaya, P.; Feng, C. Exploring evolutionary adaptations and genomic advancements to improve heat tolerance in chickens. Animals 2024, 14, 2215. [Google Scholar] [CrossRef]
- Wolc, A.; Szwaczkowski, T. Estimation of genetic parameters for monthly egg production in laying hens based on random regression models. J. Appl. Genet. 2009, 50, 41–46. [Google Scholar] [CrossRef]
- Anang, A.; Mielenz, N.; Schüler, L. Genetic and phenotypic parameters for monthly egg production in White Leghorn hens. J. Anim. Breed. Genet. 2000, 117, 407–415. [Google Scholar] [CrossRef]
- Promwatee, N.; Laopaiboon, B.; Vongpralub, T.; Phasuk, Y.; Kunhareang, S.; Boonkum, W.; Duangjinda, M. Insulin-like growth factor I gene polymorphism associated with growth and carcass traits in Thai synthetic chickens. Genet. Mol. Res. 2013, 12, 4332–4341. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. Livestock Hot Weather Stress; Operations Manual Letter C-31-76; Department of Commerce, NOAA, National Weather Service Central Region: Kansas City, MO, USA, 1976.
- Tao, X.; Xin, H. Acute synergistic effects of air temperature, humidity, and velocity on homeostasis of market–size broilers. Trans. Am. Soc. Agric. Eng. 2003, 46, 491–497. [Google Scholar]
- Zulovich, J.M.; DeShazer, J.A. Estimating egg production declines at high environmental temperatures and humidity. Am. Soc. Agric. Eng. 1990, 15, 11. [Google Scholar]
- Marai, I.F.M.; Ayyat, M.S.; Abd El-Monem, U.M. Growth performance and reproductive traits at first parity of New Zealand white female rabbits as affected by heat stress and its alleviation, under Egyptian conditions. Trop. Anim. Health. Prod. 2001, 33, 451–462. [Google Scholar] [CrossRef]
- Misztal, I.; Tsuruta, S.; Lourenco, D.; Masuda, Y.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family of Programs. Available online: https://nce.ads.uga.edu/html/projects/programs/docs/blupf90_all8.pdf (accessed on 24 April 2024).
- Ding, J.; Ying, F.; Li, Q.; Zhang, G.; Zhang, J.; Liu, R.; Zheng, M.; Wen, J.; Zhao, G. A significant quantitative trait locus on chromosome Z and its impact on egg production traits in seven maternal lines of meat-type chicken. J. Anim. Sci. Biotechnol. 2022, 13, 96. [Google Scholar] [CrossRef]
- Ni, A.; Calus, M.P.L.; Bovenhuis, H.; Yuan, J.; Wang, Y.; Sun, Y.; Chen, J. Genetic parameters, reciprocal cross differences, and age-related heterosis of egg-laying performance in chickens. Genet. Sel. Evol. 2023, 55, 87. [Google Scholar] [CrossRef] [PubMed]
- Bain, M.M.; Nys, Y.; Dunn, I.C. Increasing persistency in lay and stabilising egg quality in longer laying cycles. What are the challenges? Br. Poult. Sci. 2016, 57, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Etim, N.N.; Offiong, E.E.A.; Udo, M.D.; Williams, M.E.; Evans, E.I. Physiological relationship between stress and reproductive efficiency. Agric. Biol. J. N. Am. 2013, 4, 600–604. [Google Scholar]
- Chen, A.; Zhao, X.; Wen, J.; Zhao, X.; Wang, G.; Zhang, X.; Ren, X.; Zhang, Y.; Cheng, X.; Yu, X.; et al. Genetic parameter estimation and molecular foundation of chicken egg-laying trait. Poult Sci. 2024, 103, 103627. [Google Scholar] [CrossRef]
- Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Oguntunji, A.O.; Alabi, O.M. Influence of high environmental temperature on egg production and shell quality: A review. World Poult. Sci. J. 2010, 66, 739–750. [Google Scholar] [CrossRef]
- Case, L.A.; Kelly, M.J.; Miller, S.P.; Wood, B.J. Genotype × environment interaction as it relates to egg production in turkeys (Meleagris gallopavo). J. Anim. Sci. 2010, 88, 1957–1966. [Google Scholar] [CrossRef]
- Montaldo, H.H. Genotype by environment interactions in livestock breeding programs: A review. Interciencia. 2001, 26, 229–235. [Google Scholar]
- Falconer, D.S.; Mackay, T.F.C. Variance in Introduction to Quantitative Genetics, 4th ed.; Longman Group: Essex, UK, 1996. [Google Scholar]
- Melesse, A.; Maak, S.; Schmidt, R.; von Lengerken, G. Effect of long-term heat stress on some performance traits and plasma enzyme activities in Naked-neck chickens and their F1 crosses with commercial layer breeds. Livest. Sci. 2011, 141, 227–231. [Google Scholar] [CrossRef]
- Melesse, A.; Maak, S.; von Lengerken, G. Productive and physiological adaptive responses of Ethiopian naked-neck chickens and their f1 crosses with commercial chicken breeds to high environmental temperature. Ethiop. J. Sci. 2012, 35, 107–116. [Google Scholar]
- Mignon-Grasteau, S.; Moreri, U.; Narcy, A.; Rousseau, X.; Rodenburg, T.B.; Tixier-Boichard, M.; Zerjal, T. Robustness to chronic heat stress in laying hens: A meta-analysis. Poult. Sci. 2015, 94, 586–600. [Google Scholar] [CrossRef]
- Liang, H.-M.; Lin, D.-Y.; Hsuuw, Y.-D.; Huang, T.-P.; Chang, H.-L.; Lin, C.-Y.; Wu, H.-H.; Hung, K.-H. Association of heat shock protein 70 gene polymorphisms with acute thermal tolerance, growth, and egg production traits of native chickens in Taiwan. Arch. Anim. Breed. 2016, 59, 173–181. [Google Scholar] [CrossRef]
- Ali, M.Y.; Faruque, S.; Ahmadi, S.; Ohkubo, T. Genetic analysis of HSP70 and HSF3 polymorphisms and their associations with the egg production traits of Bangladeshi Hilly chickens. Animals 2024, 14, 3552. [Google Scholar] [CrossRef]
- Avi, R. Responses of poultry to heat stress and mitigation strategies during summer in tropical countries: A review. Iraqi J. Vet. Med. 2024, 48, 55–65. [Google Scholar] [CrossRef]
- Mangan, M.; Siwek, M. Strategies to combat heat stress in poultry production—A review. J. Anim. Physiol. Anim. Nutr. 2024, 108, 576–595. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, G.; Devaraj, C.; Silpa, M.; Sejian, V. Thermoregulation in Birds. In Textbook of Veterinary Physiology; Springer: Berlin/Heidelberg, Germany, 2023; pp. 751–764. [Google Scholar]
- Al-Zghoul, M.B.; Hundam, S.; Mayyas, M.; Gerrard, D.E.; Dalloul, R.A. Impact of thermal manipulation of broiler eggs on growth performance, splenic inflammatory cytokine levels, and heat shock protein responses to post-hatch lipopolysaccharide (LPS) challenge. Animals 2025, 15, 1736. [Google Scholar] [CrossRef]
- Lu, B.B.; Liang, W.; Liang, C.; Yu, Z.Q.; Xie, X.Z.; Chen, Z. Effect of heat stress on expression of main reproductive hormone in hypothalamic-pituitary-gonadal axis of Wenchang chicks. Braz. J. Poult. Sci. 2021, 23, eRBCA-2019-1056. [Google Scholar] [CrossRef]
- Deeb, N.; Cahaner, A. Genotype-by-environment interaction with broiler genotypes differing in growth rate. 3. Growth rate and water consumption of broiler progeny from weight-selected versus nonselected parents under normal and high ambient temperatures. Poult. Sci. 2002, 81, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Mashaly, M.M.; Hendricks, G.L.; Kalama, M.A.; Gehad, A.E.; Abass, A.O.; Patterson, P.H. Effects of heat stress on production parameters and immune response of commercial laying hens. Poult Sci. 2004, 83, 889–894. [Google Scholar] [CrossRef]
- Tóth, R.; Tokodyné Szabadi, N.; Lázár, B.; Buda, K.; Végi, B.; Barna, J.; Patakiné Várkonyi, E.; Liptói, K.; Pain, B.; Gócza, E. Effect of post-hatch heat-treatment in heat-stressed transylvanian naked neck chicken. Animals 2021, 11, 1575. [Google Scholar] [CrossRef] [PubMed]


| Categories | Total | Thai Native Synthetic Chicken Lines | |||
|---|---|---|---|---|---|
| Soi Nin | Soi Pet | Kaen Thong | Kaimook e-San | ||
| Animals with records (n) | 1134 | 233 | 354 | 181 | 366 |
| Animals with pedigrees (n) | 2898 | 616 | 858 | 512 | 912 |
| Number of records (n) | 11,887 | 2330 | 3540 | 1991 | 4026 |
| Average test-day egg production (eggs/month/bird ± SD) | 14.44 ± 2.5 | 14.86 ± 3.0 | 15.14 ± 3.8 | 16.25 ± 4.4 | |
| Average annual egg production (eggs/year/bird ± SD) | 173 ± 3.7 | 178 ± 4.0 | 182 ± 5.6 | 195 ± 6.2 | |
| Average age at first egg (days ± SD) | 175 ± 24 | 177 ± 29 | 196 ± 26 | 185 ± 26 | |
| Average air temperature (°C ± SD) | 27.6 ± 2.3 | ||||
| Average relative humidity (% ± SD) | 76.9 ± 8.8 | ||||
| THI Equations | THI Levels | Thai Native Synthetic Chicken Lines | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Soi Nin | Soi Pet | Kaen Thong | Kaimook e-san | ||||||
| R2 | MSE | R2 | MSE | R2 | MSE | R2 | MSE | ||
| THI1 | 70 | 0.337 | 8.427 | 0.348 | 8.422 | 0.368 | 8.382 | 0.371 | 8.358 |
| 71 | 0.338 | 8.425 | 0.349 | 8.420 | 0.370 | 8.380 | 0.373 | 8.356 | |
| 72 | 0.339 | 8.424 | 0.350 | 8.419 | 0.371 | 8.379 | 0.375 | 8.355 | |
| 73 | 0.342 | 8.421 | 0.352 | 8.416 | 0.373 | 8.376 | 0.375 | 8.352 | |
| 74 | 0.341 | 8.422 | 0.351 | 8.417 | 0.372 | 8.377 | 0.374 | 8.353 | |
| 75 | 0.340 | 8.423 | 0.350 | 8.418 | 0.371 | 8.378 | 0.373 | 8.354 | |
| 76 | 0.338 | 8.424 | 0.349 | 8.419 | 0.370 | 8.379 | 0.373 | 8.355 | |
| 77 | 0.338 | 8.426 | 0.348 | 8.421 | 0.369 | 8.381 | 0.372 | 8.357 | |
| 78 | 0.336 | 8.428 | 0.347 | 8.423 | 0.368 | 8.383 | 0.371 | 8.359 | |
| 79 | 0.333 | 8.431 | 0.345 | 8.426 | 0.366 | 8.386 | 0.369 | 8.362 | |
| 80 | 0.332 | 8.434 | 0.343 | 8.429 | 0.365 | 8.389 | 0.368 | 8.365 | |
| THI2 | 70 | 0.231 | 8.454 | 0.227 | 8.441 | 0.243 | 8.419 | 0.264 | 8.404 |
| 71 | 0.232 | 8.451 | 0.228 | 8.438 | 0.244 | 8.416 | 0.265 | 8.401 | |
| 72 | 0.233 | 8.450 | 0.229 | 8.437 | 0.245 | 8.415 | 0.267 | 8.400 | |
| 73 | 0.235 | 8.445 | 0.230 | 8.432 | 0.245 | 8.410 | 0.267 | 8.395 | |
| 74 | 0.234 | 8.447 | 0.229 | 8.434 | 0.244 | 8.412 | 0.266 | 8.397 | |
| 75 | 0.234 | 8.448 | 0.228 | 8.435 | 0.244 | 8.413 | 0.266 | 8.398 | |
| 76 | 0.232 | 8.449 | 0.228 | 8.436 | 0.244 | 8.414 | 0.266 | 8.399 | |
| 77 | 0.232 | 8.450 | 0.228 | 8.437 | 0.243 | 8.415 | 0.266 | 8.400 | |
| 78 | 0.231 | 8.452 | 0.227 | 8.439 | 0.242 | 8.417 | 0.264 | 8.402 | |
| 79 | 0.229 | 8.455 | 0.225 | 8.442 | 0.241 | 8.420 | 0.263 | 8.405 | |
| 80 | 0.228 | 8.458 | 0.224 | 8.445 | 0.240 | 8.423 | 0.262 | 8.408 | |
| THI3 | 70 | 0.286 | 8.447 | 0.285 | 8.431 | 0.297 | 8.401 | 0.318 | 8.397 |
| 71 | 0.287 | 8.444 | 0.286 | 8.428 | 0.299 | 8.398 | 0.319 | 8.394 | |
| 72 | 0.287 | 8.443 | 0.287 | 8.427 | 0.299 | 8.397 | 0.321 | 8.393 | |
| 73 | 0.290 | 8.438 | 0.288 | 8.422 | 0.300 | 8.392 | 0.321 | 8.388 | |
| 74 | 0.288 | 8.440 | 0.287 | 8.424 | 0.299 | 8.394 | 0.320 | 8.390 | |
| 75 | 0.288 | 8.441 | 0.286 | 8.425 | 0.299 | 8.395 | 0.320 | 8.391 | |
| 76 | 0.287 | 8.442 | 0.286 | 8.426 | 0.298 | 8.396 | 0.320 | 8.392 | |
| 77 | 0.287 | 8.443 | 0.285 | 8.427 | 0.297 | 8.397 | 0.319 | 8.393 | |
| 78 | 0.285 | 8.445 | 0.284 | 8.429 | 0.296 | 8.399 | 0.318 | 8.395 | |
| 79 | 0.283 | 8.448 | 0.282 | 8.432 | 0.294 | 8.402 | 0.316 | 8.398 | |
| 80 | 0.281 | 8.451 | 0.281 | 8.435 | 0.292 | 8.405 | 0.315 | 8.401 | |
| THI4 | 70 | 0.318 | 8.437 | 0.314 | 8.426 | 0.341 | 8.387 | 0.354 | 8.380 |
| 71 | 0.319 | 8.436 | 0.315 | 8.425 | 0.342 | 8.386 | 0.356 | 8.379 | |
| 72 | 0.322 | 8.434 | 0.316 | 8.423 | 0.343 | 8.384 | 0.357 | 8.377 | |
| 73 | 0.323 | 8.432 | 0.318 | 8.420 | 0.344 | 8.381 | 0.358 | 8.375 | |
| 74 | 0.321 | 8.433 | 0.317 | 8.422 | 0.343 | 8.383 | 0.357 | 8.376 | |
| 75 | 0.321 | 8.435 | 0.316 | 8.424 | 0.342 | 8.385 | 0.356 | 8.378 | |
| 76 | 0.319 | 8.437 | 0.315 | 8.426 | 0.342 | 8.387 | 0.355 | 8.380 | |
| 77 | 0.319 | 8.438 | 0.315 | 8.427 | 0.341 | 8.388 | 0.354 | 8.381 | |
| 78 | 0.317 | 8.440 | 0.313 | 8.429 | 0.340 | 8.390 | 0.352 | 8.383 | |
| 79 | 0.315 | 8.442 | 0.312 | 8.431 | 0.339 | 8.392 | 0.351 | 8.385 | |
| 80 | 0.313 | 8.445 | 0.310 | 8.434 | 0.337 | 8.395 | 0.349 | 8.388 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Promket, D.; Pengmeesri, K.; Chankitisakul, V.; Boonkum, W. Comparative Analysis of Genetic Parameters for Test-Day Egg Production in Four Thai Native Synthetic Chicken Lines Under Heat Stress. Animals 2025, 15, 2912. https://doi.org/10.3390/ani15192912
Promket D, Pengmeesri K, Chankitisakul V, Boonkum W. Comparative Analysis of Genetic Parameters for Test-Day Egg Production in Four Thai Native Synthetic Chicken Lines Under Heat Stress. Animals. 2025; 15(19):2912. https://doi.org/10.3390/ani15192912
Chicago/Turabian StylePromket, Doungnapa, Khanitta Pengmeesri, Vibuntita Chankitisakul, and Wuttigrai Boonkum. 2025. "Comparative Analysis of Genetic Parameters for Test-Day Egg Production in Four Thai Native Synthetic Chicken Lines Under Heat Stress" Animals 15, no. 19: 2912. https://doi.org/10.3390/ani15192912
APA StylePromket, D., Pengmeesri, K., Chankitisakul, V., & Boonkum, W. (2025). Comparative Analysis of Genetic Parameters for Test-Day Egg Production in Four Thai Native Synthetic Chicken Lines Under Heat Stress. Animals, 15(19), 2912. https://doi.org/10.3390/ani15192912

