Flos lonicerae and Baikal skullcap Extracts Improved Laying Performance of Aged Hens Partly by Modulating Antioxidant Capacity, Immune Function, Cecal Microbiota and Ovarian Metabolites
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Birds and Diets
2.2. Laying Performance Measurement
2.3. Sample Collection and Preparation
2.4. Antioxidant Indices
2.5. Immune Parameters
2.6. Hormonal Assays
2.7. 16S rRNA Gene Sequencing of Cecal Microbiota
2.8. Untargeted Metabolomics Analysis of Ovary
2.9. Statistical Analysis
3. Results
3.1. Laying Performance
3.2. Antioxidant Parameters
3.3. Cytokine Levels
3.4. Immune Indices
3.5. Ovary Index and Follicles Numbers
3.6. Serum Estrogen Levels
3.7. Cecal Microbiota
3.8. Ovary Metabolome
3.9. Spearman Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PE | Flos lonicerae and Baikal skullcap extracts |
CGA | Chlorogenic acid |
CON | Control group |
ADFI | Average daily feed intake |
SWF | Small white follicles |
LWF | Large white follicles |
SYF | Small yellow follicles |
LYF | Large white follicles |
GSH-Px | Glutathione peroxidase |
T-SOD | Superoxide dismutase |
CAT | Catalase |
T-AOC | Total antioxidant capacity |
MDA | malondialdehyde |
IgY | Immunoglobulins Y |
IgA | Immunoglobulins A |
IgM | Immunoglobulins M |
ELISA | Enzyme-linked immunosorbent assay |
IL-6 | Interleukin-6 |
TNF-α | Tumor necrosis factor-alpha |
IFN-γ | Interferon-γ |
IL-1β | Interleukin-1β |
E2 | Estradiol |
FSH | Follicle-stimulating hormone |
LH | Luteinizing hormone |
ASV | Amplicon Sequence Varian |
PCoA | Principal Coordinates Analysis |
LDA | Linear discriminant analysis |
LEfSe | Linear discriminant analysis effect size |
VIP | variable importance in projection |
FC | Fold change |
L-ENK | Leu-enkephalin |
2ME | 2-methoxyestradiol |
NAD | Nicotinic acid adenine dinucleotide |
NAM | Nicotinate and nicotinamide |
ROS | Reactive oxygen species |
SCFA | Short-chain fatty acid |
HPOA | Hypothalamic-pituitary-ovarian axis |
Appendix A
Items | Content |
---|---|
Ingredients | |
Corn | 60.30 |
Soybean meal | 24.70 |
Soybean oil | 1.00 |
Limestone | 9.50 |
Dicalcium phosphate | 2.00 |
Sodium chloride | 0.30 |
DL-Methionine | 0.20 |
Premix 1 | 2.00 |
Total | 100.00 |
Nutrient levels 2 | |
Metabolic energy (ME)/(MJ/kg) | 10.88 |
Crude protein | 15.70 |
Total phosphorus | 0.66 |
Available phosphorus | 0.48 |
Calcium | 4.00 |
Methionine 3 | 0.42 |
Methionine + cysteine 3 | 0.72 |
Lysine 3 | 0.83 |
References
- Guo, Y.; Zhao, Z.H.; Pan, Z.Y.; An, L.L.; Balasubramanian, B.; Liu, W.C. New insights into the role of dietary marine-derived polysaccharides on productive performance, egg quality, antioxidant capacity, and jejunal morphology in late-phase laying hens. Poult. Sci. 2020, 99, 2100–2107. [Google Scholar] [CrossRef]
- Bai, M.; Liu, H.; Zhang, Y.; Wang, S.; Shao, Y.; Xiong, X.; Hu, X.; Yu, R.; Lan, W.; Cui, Y.; et al. Peppermint extract improves egg production and quality, increases antioxidant capacity, and alters cecal microbiota in late-phase laying hens. Front. Microbiol. 2023, 14, 1252785. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hou, Y.; Chen, J.; Wu, H.; Huang, L.; Hu, J.; Zhang, Z.; Lu, Y.; Liu, X. Dietary naringin supplementation on laying performance and antioxidant capacity of Three-Yellow breeder hens during the late laying period. Poult. Sci. 2022, 101, 102023. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Wang, H.; Tang, C.; Zhao, Q.; Zhang, J. Dietary supplementation with astaxanthin alleviates ovarian aging in aged laying hens by enhancing antioxidant capacity and increasing reproductive hormones. Poult. Sci. 2023, 102, 102258. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Yu, Y.; Wang, X.; Xu, J.; Wang, X.; Feng, Z.; Zhou, Y.; Xiao, H.; Sun, L. Structural Characterization and Anti-Oxidation Activity Evaluation of Pectin from Lonicera japonica Thunb. Front. Nutr. 2022, 9, 998462. [Google Scholar] [CrossRef]
- Zhou, L.; Lu, R. Compound-honeysuckle-induced Drug Eruption with Special Manifestations: A Case Report. World J. Clin. Cases 2022, 10, 8018–8024. [Google Scholar] [CrossRef]
- Chanchal, D.K.; Singh, K.; Bhushan, B.; Chaudhary, J.S.; Kumar, S.; Varma, A.K.; Agnihotri, N.; Garg, A. An updated review of Chinese skullcap (Scutellaria baicalensis): Emphasis on phytochemical constituents and pharmacological attributes. Pharmacol. Res.-Mod. Chin. Med. 2023, 9, 100326. [Google Scholar] [CrossRef]
- Wang, W.W.; Jia, H.J.; Zhang, H.J.; Wang, J.; Lv, H.Y.; Wu, S.G.; Qi, G.H. Supplemental plant extracts from Flos lonicerae in combination with Baikal skullcap attenuate intestinal disruption and modulate gut microbiota in laying hens challenged by salmonella pullorum. Front. Microbiol. 2019, 10, 1681. [Google Scholar] [CrossRef]
- Jia, R.; Du, J.; Cao, L.; Feng, W.; Xu, P.; Yin, G. Effects of dietary baicalin supplementation on growth performance, antioxidative status and protection against oxidative stress-induced liver injury in GIFT tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 240, 108919. [Google Scholar] [CrossRef]
- Xie, T.; Bai, S.P.; Zhang, K.Y.; Ding, X.M.; Wang, J.P.; Zeng, Q.F.; Peng, H.W.; Lu, H.Y.; Bai, J.; Xuan, Y.; et al. Effects of Lonicera confusa and Astragali radix extracts supplementation on egg production performance, egg quality, sensory evaluation, and antioxidative parameters of laying hens during the late laying period. Poult. Sci. 2019, 98, 4838–4847. [Google Scholar] [CrossRef]
- Liu, Z.P.; Chao, J.R.; Xu, P.T.; Lv, H.Y.; Ding, B.Y.; Zhang, Z.F.; Li, L.L.; Guo, S.S. Lonicera flos and Cnicus japonicus extracts improved egg quality partly by modulating antioxidant status, inflammatory-related cytokines and shell matrix protein expression of oviduct in laying hens. Poult. Sci. 2023, 102, 102561. [Google Scholar] [CrossRef]
- NY/T-33-2004; Feeding Standard of Chicken. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2004.
- Hao, E.Y.; Wang, D.H.; Chen, Y.F.; Zhou, R.Y.; Chen, H.; Huang, R.L. The relationship between the mTOR signaling pathway and ovarian aging in peak-phase and late-phase laying hens. Poult. Sci. 2021, 100, 334–347. [Google Scholar] [CrossRef]
- Sun, X.; Chen, X.; Zhao, J.; Ma, C.; Yan, C.; Liswaniso, S.; Xu, R.; Qin, N. Transcriptome comparative analysis of ovarian follicles reveals the key genes and signaling pathways implicated in hen egg production. BMC Genom. 2021, 22, 899. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, R.; Fu, Z.; Ma, Z.; Bai, Z. The Photoperiod Significantly Influences the Growth Rate, Digestive Efficiency, Immune Response, and Antioxidant Activities in the Juvenile Scalloped Spiny Lobster (Panulirus homarus). J. Mar. Sci. Eng. 2024, 12, 389. [Google Scholar] [CrossRef]
- Wattrang, E.; Erksson, H.; Albihn, A.; Dalgaard, T.S. Quantification of IgY to Erysipelothrix rhusiopathiae in serum from Swedish laying hens. BMC Vet. Res. 2021, 17, 111. [Google Scholar] [CrossRef] [PubMed]
- Krzysica, P.; Verhoog, L.; de Vries, S.; Smits, C.; Savelkoul, H.F.J.; Tijhaar, E. Optimization of Capture ELISAs for Chicken Cytokines Using Commercially Available Antibodies. Animals 2022, 12, 3040. [Google Scholar] [CrossRef] [PubMed]
- Peclaris, G.M.; Pappa, A.; Deligiannis, K.; Koutsotolis, K. Enzyme immunoassays for the determination of ovine LH and FSH. Reprod. Domest. Anim. 2003, 38, 367–372. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Q.; Ci, X.; Chen, S.; Xie, Z.; Li, H.; Zhang, H.; Chen, F.; Xie, Q. Evaluation of the efficacy of chlorogenic acid in reducing small intestine injury, oxidative stress, and inflammation in chickens challenged with Clostridium perfringens type A. Poult. Sci. 2020, 99, 6606–6618. [Google Scholar] [CrossRef]
- Bao, M.; Ma, Y.; Liang, M.; Sun, X.; Ju, X.; Yong, Y.; Liu, X. Research progress on pharmacological effects and new dosage forms of baicalin. Vet. Med. Sci. 2022, 8, 2773–2784. [Google Scholar] [CrossRef]
- Miao, M.S.; Xiang, L.L. Pharmacological action and potential targets of chlorogenic acid. Adv. Pharmacol. 2020, 87, 71–78. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wang, S.; Kuang, Y.; Hu, Z.M.; Qiao, X.; Ye, M.A. comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm. Biol. 2018, 56, 465–484. [Google Scholar] [CrossRef]
- Chen, X.; Lin, H.Z.; Jiang, S.G.; Wu, K.C.; Liu, Y.J.; Tian, L.X.; Zhang, Y.Q.; Niu, J. Dietary supplementation of honeysuckle improves the growth, survival and immunity of Penaeus monodon. Fish Shellfish Immunol. 2013, 35, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.D.; Wen, Q.; Zhang, L.Y.; Lu, L.; Zhang, L.Y.; Luo, X.G. Effect of dietary supplementation with flavonoid from Scutellaria baicalensis Georgi on growth performance, meat quality and antioxidative ability of broilers. J. Integr. Agric. 2018, 17, 1165–1170. [Google Scholar] [CrossRef]
- Schroeder, H.W., Jr.; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef] [PubMed]
- Nankam, P.N.A.; Nguelefack, T.B.; Goedecke, J.H.; Blüher, M. Contribution of adipose tissue oxidative stress to obesity-associated diabetes risk and ethnic differences: Focus on women of African ancestry. Antioxidants 2021, 10, 622. [Google Scholar] [CrossRef]
- Miao, S.S.; Li, Y.; Mu, T.M.; Wang, X.M.; Zhao, W.Y.; Li, R.; Dong, X.; Zou, X. Dietary coated sodium butyrate ameliorates hepatic lipid accumulation and inflammation via enhancing antioxidative function in post-peaking laying hens. Metabolites 2023, 13, 650. [Google Scholar] [CrossRef]
- Sahoo, D.K.; Heilmann, R.M.; Paital, B.; Patel, A.; Yadav, V.K.; Wong, D.; Jergens, A.E. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front. Endocrinol. 2023, 14, 1217165. [Google Scholar] [CrossRef]
- Dinda, B.; Dinda, S.; DasSharma, S.; Banik, R.; Chakraborty, A.; Dinda, M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur. J. Med. Chem. 2017, 131, 68–80. [Google Scholar] [CrossRef]
- Yan, Y.W.; Li, Q.; Shen, L.; Guo, K.X.; Zhou, X. Chlorogenic acid improves glucose tolerance, lipid metabolism, inflammation and microbiota composition in diabetic db/db mice. Front. Endocrinol. 2022, 13, 1042044. [Google Scholar] [CrossRef]
- Jiang, Y.; Liao, Q.; Zou, Y.; Liu, Y.; Lan, J. Transcriptome Analysis Reveals the Genetic Basis Underlying the Biosynthesis of Volatile Oil, Gingerols, and Diarylheptanoids in Ginger (Zingiber officinale Rosc.). Bot. Stud. 2017, 58, 41. [Google Scholar] [CrossRef]
- Ishfaq, M.; Zhang, W.; Liu, Y.; Wang, J.; Wu, Z.; Shah, S.W.; Li, R.; Miao, Y.; Chen, C.; Li, J. Baicalin attenuated Mycoplasma gallisepticum-induced immune impairment in chicken bursa of fabricius through modulation of autophagy and inhibited inflammation and apoptosis. J. Sci. Food Agric. 2021, 101, 880–890. [Google Scholar] [CrossRef]
- Xu, W.; Ayu, Y.; Wang, J.; Zeng, Q.; Bai, S.; Ding, X.; Lv, L.; Peng, H.; Xuan, Y.; Zhang, K. Effects of dietary theabrownins on production performance, egg quality, and ovarian function of laying hens with different ages. Poult. Sci. 2023, 102, 102545. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Geng, S.; Liu, M.; Zhao, L.; Zhang, J.; Huang, S.; Ma, Q. Effects of different methionine levels in low protein diets on production performance, reproductive system, metabolism, and gut microbiota in laying hens. Front. Nutr. 2021, 8, 739676. [Google Scholar] [CrossRef]
- Brady, K.; Liu, H.C.; Hicks, J.A.; Long, J.A.; Porter, T.E. Transcriptome analysis during follicle development in turkey hens with low and high egg production. Front. Genet. 2021, 12, 619196. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, Y.; Liu, Y.; Xing, Y.; Miao, C.; Zhao, Y.; Chang, X.; Zhang, Q. The role of oxidative stress and natural antioxidants in ovarian aging. Front. Pharmacol. 2021, 11, 617843. [Google Scholar] [CrossRef] [PubMed]
- Xin, Q.; Uyanga, V.A.; Jiao, H.C.; Zhao, J.P.; Wang, X.J.; Li, H.; Zhou, Y.; Lin, H. Insulin-like growth factor-1 is involved in the deteriorated performance of aged laying hens. J. Anim. Sci. 2022, 100, skac286. [Google Scholar] [CrossRef]
- Colella, M.; Cuomo, D.; Peluso, T.; Falanga, I.; Mallardo, M.; De Felice, M.; Ambrosino, C. Ovarian aging: Role of pituitary-ovarian axis hormones and ncRNAs in regulating ovarian mitochondrial activity. Front. Endocrinol. 2021, 12, 791071. [Google Scholar] [CrossRef]
- Yang, B.; Li, X.F.; Mesalam, N.M.; Elsadek, M.F.; Abdel-Moneim, A.M.E. The impact of dietary supplementation of polysaccharide derived from Polygonatum sibiricum on growth, antioxidant capacity, meat quality, digestive physiology, and gut microbiota in broiler chickens. Poult. Sci. 2024, 103, 103675. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, B.; Lan, F.; Zhong, C.; Jin, J.; Li, X.; Zhou, Q.; Li, J.; Yang, N.; Wen, C.; et al. Host genetics and gut microbiota jointly regulate blood biochemical indicators in chickens. Appl. Microbiol. Biotechnol. 2023, 107, 7601–7620. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lordan, C.; Ross, R.P.; Cotter, P.D. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 2020, 12, 1802866. [Google Scholar] [CrossRef]
- Gerunova, L.K.; Gerunov, T.V.; P’yanova, L.G.; Lavrenov, A.V.; Sedanova, A.V.; Delyagina, M.S.; Fedorov, Y.N.; Kornienko, N.V.; Kryuchek, Y.O.; Tarasenko, A.A. Butyric acid and prospects for creation of new medicines based on its derivatives: A literature review. J. Vet. Sci. 2024, 25, e23. [Google Scholar] [CrossRef]
- Chen, W.; Ma, Q.; Li, Y.; Wei, L.; Zhang, Z.; Khan, A.; Khan, M.Z.; Wang, C. Butyrate supplementation improves intestinal health and growth performance in livestock: A Review. Biomolecules 2025, 15, 85. [Google Scholar] [CrossRef]
- Price, C.E.; Valls, R.A.; Ramsey, A.R.; Loeven, N.A.; Jones, J.T.; Barrack, K.E.; Schwartzman, J.D.; Royce, D.B.; Cramer, R.A.; Madan, J.C.; et al. Intestinal Bacteroides modulates inflammation, systemic cytokines, and microbial ecology via propionate in a mouse model of cystic fibrosis. mBio 2024, 15, e03144-23. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Tian, Y.; Li, J.; Luo, Y.; Liu, D.; Zheng, H.; Wang, J.; Dong, Z.; Hu, S.; Huang, L. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen. Appl. Environ. Microbiol. 2015, 81, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shi, B.; Zuo, Z.; Qi, Y.; Zhao, S.; Zhang, X.; Lan, L.; Shi, Y.; Liu, X.; Li, S.; et al. Effects of two different straw pellets on yak growth performance and ruminal microbiota during cold season. Animals 2023, 13, 335. [Google Scholar] [CrossRef] [PubMed]
- Zafar, H.; Saier, M.H., Jr. Comparative genomics of transport proteins in seven Bacteroides species. PLoS ONE 2018, 13, e0208151. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, D.; Liu, Y.; Yang, X.; Zhang, M.; Wei, F.; Li, D.; Hu, Y.; Guo, Y. Host-genotype-dependent cecal microbes are linked to breast muscle metabolites in Chinese chickens. iScience 2022, 25, 104469. [Google Scholar] [CrossRef]
- Meng, P.; Zhang, X.; Li, D.; Yang, H.; Lin, X.; Zhao, H.; Li, P.; Wang, Y.; Wang, X.; Ge, J. Leonurine regulates hippocampal nerve regeneration in rats with chronic and unpredictable mild stress by activating SHH/GLI signaling pathway and restoring gut microbiota and microbial metabolic homeostasis. Neural Plast. 2023, 2023, 1455634. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Khachatryan, L.G.; Younis, N.K.; Mustafa, M.A.; Ahmad, N.; Athab, Z.H.; Polyanskaya, A.V.; Kasanave, E.V.; Mirzaei, R.; Karampoor, S. Microbiota-derived short chain fatty acids in pediatric health and diseases: From gut development to neuroprotection. Front. Microbiol. 2024, 15, 1456793. [Google Scholar] [CrossRef]
- He, Q.; Niu, M.; Bi, J.; Du, N.; Liu, S.; Yang, K.; Li, H.; Yao, J.; Du, Y.; Duan, Y. Protective effects of a new generation of probiotic Bacteroides fragilis against colitis in vivo and in vitro. Sci. Rep. 2023, 13, 15842. [Google Scholar] [CrossRef]
- Jean, S.; Wallace, M.J.; Dantas, G.; Burnham, C.D. Time for some group therapy: Update on identification, antimicrobial resistance, taxonomy, and clinical significance of the Bacteroides fragilis group. J. Clin. Microbiol. 2022, 60, e0236120. [Google Scholar] [CrossRef]
- Sheng, S.; Yan, S.; Chen, J.; Zhang, Y.; Wang, Y.; Qin, Q.; Li, W.; Li, T.; Huang, M.; Ding, S.; et al. Gut microbiome is associated with metabolic syndrome accompanied by elevated gamma-glutamyl transpeptidase in men. Front. Cell. Infect. Microbiol. 2022, 12, 946757. [Google Scholar] [CrossRef]
- Hong, C.T.; Chan, L.; Chen, K.Y.; Lee, H.H.; Huang, L.K.; Yang, Y.S.H.; Liu, Y.R.; Hu, C.J. Rifaximin modifies gut microbiota and attenuates inflammation in Parkinson’s disease: Preclinical and clinical studies. Cells 2022, 11, 3468. [Google Scholar] [CrossRef]
- Lucke, K.; Miehlke, S.; Jacobs, E.; Schuppler, M. Prevalence of Bacteroides and Prevotella spp. in ulcerative colitis. J. Med. Microbiol. 2006, 55, 617–624. [Google Scholar] [CrossRef]
- Resurreccion, E.P.; Fong, K.W. The Integration of Metabolomics with Other Omics: Insights into Understanding Prostate Cancer. Metabolites 2022, 12, 488. [Google Scholar] [CrossRef] [PubMed]
- Alquraini, A. Potency of Hexaconazole to Disrupt Endocrine Function with Sex Hormone-Binding Globulin. Int. J. Mol. Sci. 2023, 24, 3882. [Google Scholar] [CrossRef] [PubMed]
- Abdi, S.A.H.; Alzahrani, A.; Alghamdi, S.; Alquraini, A.; Alghamdi, A. Hexaconazole exposure ravages biosynthesis pathway of steroid hormones: Revealed by molecular dynamics and interaction. Toxicol. Res. 2021, 11, 60–76. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Pang, J.; Sun, D.; Zhang, Q. Stereoselective toxicokinetic and distribution study on the hexaconazole enantiomers in mice. Toxics 2023, 11, 145. [Google Scholar] [CrossRef]
- Ganeyan, A.; Ganesh, C.B. The opioid peptide leucine-enkephalin disrupts seasonal and gonadotropin-induced ovarian recrudescence in the gecko Hemidactylus frenatus. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2023, 283, 111454. [Google Scholar] [CrossRef]
- Reddy, P.S. Involvement of opioid peptides in the regulation of reproduction in the prawn Penaeus indicus. Naturwissenschaften 2000, 87, 535–538. [Google Scholar] [CrossRef]
- Vijayalaxmi; Ganesh, C.B. Influence of leucine-enkephalin on pituitary-ovary axis of the cichlid fish Oreochromis mossambicus. Fish Physiol. Biochem. 2017, 43, 1253–1264. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; He, J.; Bai, Y.; He, Q.; Zhang, T.; Zhang, J.; Yang, G.; Xu, Z.; Hu, J.; Yao, G. Baicalin improves the functions of granulosa cells and the ovary in aged mice through the mTOR signaling pathway. J. Ovarian Res. 2022, 15, 34. [Google Scholar] [CrossRef]
- Liao, W.I.; Wu, S.Y.; Tsai, S.H.; Pao, H.P.; Huang, K.L.; Chu, S.J. 2-Methoxyestradiol protects against lung ischemia/reperfusion injury by upregulating annexin A1 protein expression. Front. Immunol. 2021, 12, 596376. [Google Scholar] [CrossRef] [PubMed]
- Seeger, H.; Mueck, A.O.; Lippert, T.H. Effect of estradiol metabolites on the susceptibility of low density lipoprotein to oxidation. Life Sci. 1997, 61, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.; Sawano, T.; Yazama, F.; Ito, H. Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochim. Biophys. Acta 2011, 1810, 170–177. [Google Scholar] [CrossRef]
- Bezerra, D.P.; Soares, A.K.; de Sousa, D.P. Overview of the role of vanillin on redox status and cancer development. Oxid. Med. Cell. Longev. 2016, 2016, 9734816. [Google Scholar] [CrossRef]
- Tian, N.; Thrasher, K.D.; Gundy, P.D.; Hughson, M.D.; Manning, R.D., Jr. Antioxidant treatment prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitive hypertension. Hypertension 2005, 45, 934–939. [Google Scholar] [CrossRef]
- Ahmed, O.M.; Ali, T.M.; Abdel Gaid, M.A.; Elberry, A.A. Effects of enalapril and paricalcitol treatment on diabetic nephropathy and renal expressions of TNF-α, p53, caspase-3 and Bcl-2 in STZ-induced diabetic rats. PLoS ONE 2019, 14, e0214349. [Google Scholar] [CrossRef]
- Ying, W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid. Redox Signal 2008, 10, 179–206. [Google Scholar] [CrossRef]
- Cantó, C.; Menzies, K.J.; Auwerx, J. NAD(+) metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metab. 2015, 22, 31–53. [Google Scholar] [CrossRef]
- Li, F.; Zhang, J.; Zhong, H.; Chen, J. Germicide fenaminosulf promotes gall formation of Zizania latifolia without directly affecting the growth of endophytic fungus Ustilago esculenta. BMC Plant Biol. 2022, 22, 418. [Google Scholar] [CrossRef]
- Mahtal, N.; Wu, Y.; Cintrat, J.C.; Barbier, J.; Lemichez, E.; Gillet, D. Revisiting old ionophore lasalocid as a novel inhibitor of multiple toxins. Toxins 2020, 12, 26. [Google Scholar] [CrossRef]
- Hanke, N.; Gómez-Mantilla, J.D.; Ishiguro, N.; Stopfer, P.; Nock, V. Physiologically based pharmacokinetic modeling of rosuvastatin to predict transporter-mediated drug-drug interactions. Pharm. Res. 2021, 38, 1645–1661. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.W.; Wong, C.N.; Pin, W.K.; Wong, M.H.; Kwok, C.Y.; Chan, R.Y.; Yu, P.H.; Chan, S.W. Chlorogenic acid exhibits cholesterol lowering and fatty liver attenuating properties by up-regulating the gene expression of PPAR-α in hypercholesterolemic rats induced with a high-cholesterol diet. Phytother. Res. 2013, 27, 545–551. [Google Scholar] [CrossRef]
- Bates, E.A.; Kipp, Z.A.; Martinez, G.J.; Badmus, O.O.; Soundarapandian, M.M.; Foster, D.; Xu, M.; Creeden, J.F.; Greer, J.R.; Morris, A.J.; et al. Suppressing hepatic UGT1A1 increases plasma bilirubin, lowers plasma urobilin, reorganizes kinase signaling pathways and lipid species and improves fatty liver disease. Biomolecules 2023, 13, 252. [Google Scholar] [CrossRef] [PubMed]
- Gajurel, G.; Hasan, R.; Medina-Bolivar, F. Antioxidant Assessment of Prenylated Stilbenoid-Rich Extracts from Elicited Hairy Root Cultures of Three Cultivars of Peanut (Arachis hypogaea). Molecules 2021, 26, 6778. [Google Scholar] [CrossRef] [PubMed]
- Winuthayanon, W.; Piyachaturawat, P.; Suksamrarn, A.; Ponglikitmongkol, M.; Arao, Y.; Hewitt, S.C.; Korach, K.S. Diarylheptanoid Phytoestrogens Isolated from the Medicinal Plant Curcuma comosa: Biologic Actions in Vitro and in Vivo Indicate Estrogen Receptor-Dependent Mechanisms. Environ. Health Perspect. 2009, 117, 1155–1161. [Google Scholar] [CrossRef]
- Aalto, A.L.; Saadabadi, A.; Lindholm, F.; Kietz, C.; Himmelroos, E.; Marimuthu, P.; Salo-Ahen, O.M.H.; Eklund, P.; Meinander, A. Stilbenoid Compounds Inhibit NF-κB-Mediated Inflammatory Responses in the Drosophila Intestine. Front. Immunol. 2023, 14, 1253805. [Google Scholar] [CrossRef]
- Gündüz, A.; Yalçın, E.; Çavuşoğlu, K. Combined toxic effects of aflatoxin B2 and the protective role of resveratrol in Swiss albino mice. Sci. Rep. 2021, 11, 18081. [Google Scholar] [CrossRef]
- Mashhadi, N.S.; Ghiasvand, R.; Askari, G.; Hariri, M.; Darvishi, L.; Mofid, M.R. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: Review of current evidence. Int. J. Prev. Med. 2013, 4 (Suppl. S1), S36–S42. [Google Scholar]
- Korkina, L.; Kostyuk, V.; De Luca, C.; Pastore, S. Plant phenylpropanoids as emerging anti-inflammatory agents. Mini Rev. Med. Chem. 2011, 11, 823–835. [Google Scholar] [CrossRef]
- Shang, X.F.; Yang, C.J.; Morris-Natschke, S.L.; Li, J.C.; Yin, X.D.; Liu, Y.Q.; Guo, X.; Peng, J.W.; Goto, M.; Zhang, J.Y.; et al. Biologically active isoquinoline alkaloids covering 2014–2018. Med. Res. Rev. 2020, 40, 2212–2289. [Google Scholar] [CrossRef]
- Ni, H.; Martínez, Y.; Guan, G.; Rodríguez, R.; Más, D.; Peng, H.; Valdivié Navarro, M.; Liu, G. Analysis of the Impact of Isoquinoline Alkaloids, Derived from Macleaya cordata Extract, on the Development and Innate Immune Response in Swine and Poultry. Biomed. Res. Int. 2016, 2016, 1352146. [Google Scholar] [CrossRef]
- Vieira, S.L.; Oyarzabal, O.A.; Freitas, D.M.; Berres, J.; Peña, J.E.M.; Torres, C.A. Performance of Broilers Fed Diets Supplemented with Sanguinarine-Like Alkaloids and Organic Acids. J. Appl. Poult. Res. 2008, 17, 128–133. [Google Scholar] [CrossRef]
- Jung, M.; Lee, K.M.; Im, Y.; Seok, S.H.; Chung, H.; Kim, D.Y.; Han, D.; Lee, C.H.; Hwang, E.H.; Park, S.Y.; et al. Nicotinamide (niacin) supplement increases lipid metabolism and ROS-induced energy disruption in triple-negative breast cancer: Potential for drug repositioning as an anti-tumor agent. Mol. Oncol. 2022, 16, 1795–1815. [Google Scholar] [CrossRef]
- Kwak, J.Y.; Ham, H.J.; Kim, C.M.; Hwang, E.S. Nicotinamide exerts antioxidative effects on senescent cells. Mol. Cells 2015, 38, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Byun, K.A.; Oh, S.; Kim, H.M.; Chung, M.S.; Son, K.H.; Byun, K. The Combination of Niacinamide, Vitamin C, and PDRN Mitigates Melanogenesis by Modulating Nicotinamide Nucleotide Transhydrogenase. Molecules 2022, 27, 4923. [Google Scholar] [CrossRef] [PubMed]
- Adebowale, T.; Oso, A.; Liu, H.; Tossou, M.; Chen, J.; Li, H.; Kang, B.; Yao, K. Effect of Dietary Niacin Supplementation on Growth Performance, Nutrient Digestibility, Hematology, and Lipoprotein Concentrations of Young Turkeys, Meleagris gallopavo. J. Poult. Sci. 2019, 56, 112–119. [Google Scholar] [CrossRef] [PubMed]
Items | CON | PE | p-Value |
---|---|---|---|
71–75 W | |||
Initial laying rate (%) | 71.26 ± 1.23 | 71.13 ± 0.93 | 0.835 |
Laying rate (%) | 67.44 ± 2.26 b | 71.73 ± 2.85 a | 0.016 |
Average egg weight (g) | 53.20 ± 0.84 | 54.13 ± 1.39 | 0.189 |
feed/egg ratio | 2.83 ± 0.10 a | 2.62 ± 0.10 b | 0.005 |
ADFI (g) | 102.29 ± 1.00 | 102.16 ± 1.48 | 0.863 |
76–80 W | |||
Laying rate (%) | 68.72 ± 2.24 b | 75.09 ± 1.96 a | <0.001 |
Average egg weight (g) | 54.00 ± 0.95 | 55.12 ± 1.62 | 0.176 |
feed/egg ratio | 2.65 ± 0.06 a | 2.40 ± 0.10 b | <0.001 |
ADFI (g) | 98.14 ± 1.66 | 99.33 ± 1.24 | 0.190 |
71–80 W | |||
Laying rate (%) | 68.20 ± 2.20 b | 73.74 ± 2.00 a | 0.001 |
Average egg weight (g) | 53.85 ± 0.85 | 54.84 ± 1.59 | 0.208 |
feed/egg ratio | 2.77 ± 0.09 a | 2.52 ± 0.12 b | 0.003 |
ADFI (g) | 101.51 ± 1.38 | 101.73 ± 0.90 | 0.749 |
Items | CON | PE | p-Value |
---|---|---|---|
Bacteroides | 20.09 ± 2.10 a | 14.37 ± 1.45 b | 0.004 |
Phascolarctobacterium | 8.31 ± 4.54 | 8.90 ± 3.88 | 0.850 |
unclassified_f__Lachnospiraceae | 4.52 ± 0.49 | 5.35 ± 0.58 | 0.072 |
Ruminococcus_torques_group | 2.90 ± 1.26 | 3.86 ± 1.25 | 0.319 |
Prevotellaceae_UCG-001 | 4.36 ± 3.19 | 2.02 ± 0.91 | 0.207 |
Faecalibacterium | 2.79 ± 1.58 | 2.40 ± 0.87 | 0.680 |
norank_f__norank_o__Clostridia_UCG-014 | 1.78 ± 0.71 | 2.61 ± 0.91 | 0.197 |
Desulfovibrio | 2.12 ± 0.96 | 1.93 ± 1.23 | 0.817 |
Subdoligranulum | 1.74 ± 0.70 | 1.68 ± 0.91 | 0.916 |
Megamonas | 2.10 ± 1.59 | 1.31 ± 1.43 | 0.487 |
norank_f__Eubacterium_coprostanoligenes_group | 1.24 ± 1.38 | 2.03 ± 1.40 | 0.454 |
Butyricicoccus | 0.98 ± 0.26 b | 1.99 ± 0.56 a | 0.017 |
norank_f__Muribaculaceae | 1.60 ± 0.48 | 1.09 ± 0.31 | 0.125 |
Lactobacillus | 1.02 ± 0.48 | 1.08 ± 0.37 | 0.852 |
Christensenellaceae_R-7_group | 0.77 ± 0.74 | 1.29 ± 0.62 | 0.320 |
Romboutsia | 0.81 ± 0.81 | 0.73 ± 0.54 | 0.875 |
Alistipes | 0.78 ± 0.41 | 0.62 ± 0.13 | 0.480 |
Colidextribacter | 0.29 ± 0.24 | 0.66 ± 0.31 | 0.111 |
norank_f__Prevotellaceae | 0.83 ± 0.78 | 0.09 ± 0.10 | 0.109 |
Items | VIP | p-Value | FC | Trend |
---|---|---|---|---|
Leu-Enkephalin | 1.51 | <0.01 | 117.36 | ↑ |
Palmitoyl Serotonin | 1.76 | <0.01 | 48.33 | ↑ |
Repaglinide | 1.74 | <0.01 | 45.68 | ↑ |
2′-Hydroxy-4,4′,6′-trimethoxychalcone | 1.71 | <0.01 | 44.85 | ↑ |
Fenaminosulf | 1.45 | <0.01 | 35.89 | ↑ |
Lasalocid | 1.72 | <0.01 | 31.94 | ↑ |
2-Methoxyestradiol | 1.73 | <0.01 | 29.53 | ↑ |
Amsacrine | 1.66 | <0.01 | 26.08 | ↑ |
Vanillin | 1.72 | <0.01 | 24.75 | ↑ |
Nicotinic Acid Adenine Dinucleotide | 1.58 | <0.01 | 23.59 | ↑ |
Carboplatin | 1.63 | <0.01 | 22.55 | ↑ |
Enalapril | 1.64 | <0.01 | 21.84 | ↑ |
Bosentan | 1.57 | <0.01 | 21.12 | ↑ |
Rosuvastatin | 1.56 | <0.01 | 21.10 | ↑ |
Urobilin | 1.71 | <0.01 | 0.01 | ↓ |
Paxilline | 1.78 | <0.01 | 0.01 | ↓ |
Hexaconazole | 1.57 | <0.01 | 0.01 | ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Li, J.; Peng, R.; Zhang, X.; Yue, W.; Wang, Y.; Lan, Y.; Wang, Y. Flos lonicerae and Baikal skullcap Extracts Improved Laying Performance of Aged Hens Partly by Modulating Antioxidant Capacity, Immune Function, Cecal Microbiota and Ovarian Metabolites. Animals 2025, 15, 2882. https://doi.org/10.3390/ani15192882
Yu X, Li J, Peng R, Zhang X, Yue W, Wang Y, Lan Y, Wang Y. Flos lonicerae and Baikal skullcap Extracts Improved Laying Performance of Aged Hens Partly by Modulating Antioxidant Capacity, Immune Function, Cecal Microbiota and Ovarian Metabolites. Animals. 2025; 15(19):2882. https://doi.org/10.3390/ani15192882
Chicago/Turabian StyleYu, Xu, Jun Li, Ruomu Peng, Xiaodong Zhang, Wanfu Yue, Yufang Wang, Yahua Lan, and Yongxia Wang. 2025. "Flos lonicerae and Baikal skullcap Extracts Improved Laying Performance of Aged Hens Partly by Modulating Antioxidant Capacity, Immune Function, Cecal Microbiota and Ovarian Metabolites" Animals 15, no. 19: 2882. https://doi.org/10.3390/ani15192882
APA StyleYu, X., Li, J., Peng, R., Zhang, X., Yue, W., Wang, Y., Lan, Y., & Wang, Y. (2025). Flos lonicerae and Baikal skullcap Extracts Improved Laying Performance of Aged Hens Partly by Modulating Antioxidant Capacity, Immune Function, Cecal Microbiota and Ovarian Metabolites. Animals, 15(19), 2882. https://doi.org/10.3390/ani15192882