Effect of Rumen-Protected Lysine Supplementation on Growth Performance, Blood Metabolites, Rumen Fermentation and Bacterial Community on Feedlot Yaks Offered Corn-Based Diets
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal, Diets, and Experimental Design
2.2. Sample Collection
2.3. Laboratory Analyses
2.4. Statistical Analyses
3. Results
3.1. Growth Performance and Feed Conversion Efficiency
3.2. Serum Biochemical
3.3. Plasma Amino Acid Profiles
3.4. Rumen Fermentation Parameters
3.5. Bacterial Community Composition
4. Discussion
4.1. Effect of Supplementary Rumen-Protected Lysine on Growth Performance and Feed Conversion in Fattening Yaks
4.2. Effect of Supplementary Rumen-Protected Lysine on Serum Biochemical Parameters in Fattening Feedlot Yaks
4.3. Effect of Supplementary Rumen-Protected Lysine on Plasma-Free Amino Acid Profiles in Fattening Yaks
4.4. Effect of Supplementary Rumen-Protected Lysine on Rumen Fermentation Parameters in Fattening Yaks
4.5. Effect of Supplementary Rumen-Protected Lysine on Rumen Bacterial Diversity and Bacterial Community Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.Y.; Jiao, J.X.; Zhao, Z.W.; Ma, Z.Y.; Kakade, A.; Jing, X.P.; Mi, J.D.; Long, R.J. Feeding systems change yak meat quality and flavor in cold season. Food Res. Int. 2025, 203, 115846. [Google Scholar] [CrossRef]
- Ding, L.M.; Chen, J.Q.; Long, R.J.; Gibb, M.J.; Wang, L.; Sang, C.; Mi, J.D.; Zhou, J.W.; Liu, P.P.; Shang, Z.H.; et al. Blood hormonal and metabolite levels in grazing yak steers undergoing compensatory growth. Anim. Feed Sci. Technol. 2015, 209, 30–39. [Google Scholar] [CrossRef]
- Bai, X.Y.; Yin, F.; Ru, A.; Tian, W.; Chen, Q.W.; Chai, R.; Liu, Y.X.; Cui, W.M.; Li, J.H.; Yin, M.C.; et al. Effect of slaughter age and postmortem aging time on tenderness and water-holding capacity of yak (Bos grunniens) longissimus thoracis muscle. Meat Sci. 2023, 202, 109201. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Liu, H.N.; Li, T.J.; Yin, Y.L. Current situation and developmental suggestions on shortage of feeding protein resources in Chinese pig industry. Bull. Chin. Acad. Sci. 2019, 34, 89–93. (In Chinese) [Google Scholar]
- MARA. China Animal Husbandry and Veterinary Yearbook; Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2022.
- Broderick, G.A. Effects of varying dietary protein and energy levels on the production of lactating dairy cows. J. Dairy Sci. 2003, 86, 1370–1381. [Google Scholar] [CrossRef]
- Danes, M.A.C.; Chagas, L.J.; Pedroso, A.M.; Santos, F.A.P. Effect of protein supplementation on milk production and metabolism of dairy cows grazing tropical grass. J. Dairy Sci. 2013, 96, 407–419. [Google Scholar] [CrossRef]
- Olmos Colmenero, J.J.; Broderick, G.A. Effect of dietary crude protein concentration on milk production and nitrogen utilization in lactating dairy cows. J. Dairy Sci. 2006, 89, 1704–1712. [Google Scholar] [CrossRef]
- Abbasi, I.H.R.; Abbasi, F.; Abd El-Hack, M.E.; Abdel-Latif, M.A.; Soomro, R.N.; Hayat, K.; Mohamed, M.A.E.; Bodinga, B.M.; Yao, J.H.; Cao, Y.C. Critical analysis of excessive utilization of crude protein in ruminants ration: Impact on environmental ecosystem and opportunities of supplementation of limiting amino acids—A review. Environ. Sci. Pollut. Res. 2018, 25, 181–190. [Google Scholar] [CrossRef]
- Cole, D.J.A.; Van Lunen, T.A. Ideal Amino Acid Patterns. In Amino Acids in Farm Animal Nutrition; D’ Mello, J.F.P., Ed.; CAB International: Wallingford, UK, 1994. [Google Scholar]
- Williams, J.E.; Newell, S.A.; Hess, B.W.; Scholljegerdes, E. Influence of rumen-protected methionine and lysine on growing cattle fed forage and corn based diets. J. Prod. Agric. 1999, 12, 696–701. [Google Scholar] [CrossRef]
- Klemesrud, M.J.; Klopfenstein, T.J.; Stock, R.A.; Lewis, A.J.; Herold, D.W. Effect of dietary concentration of metabolizable lysine on finishing cattle performance. J. Anim. Sci. 2000, 4, 1060–1066. [Google Scholar] [CrossRef]
- Weiss, W.P. Effects of feeding diets composed of corn silage and a corn milling product with and without supplemental lysine and methionine to dairy cows. J. Dairy Sci. 2019, 3, 2075–2084. [Google Scholar] [CrossRef]
- Zhou, J.W.; Zhong, C.L.; Liu, H.; Degen, A.A.; Titgemeyer, E.C.; Ding, L.M.; Shang, Z.H.; Guo, X.S.; Qiu, Q.; Li, Z.P.; et al. Comparison of nitrogen utilization and urea kinetics between yaks (Bos grunniens) and indigenous cattle (Bos taurus). J. Anim. Sci. 2017, 95, 4600–4612. [Google Scholar] [CrossRef]
- Liao, S.F.; Wang, T.J.; Regmi, N. Lysine nutrition in swine and the related monogastric animals: Muscle protein biosynthesis and beyond. SpringerPlus 2015, 4, 147. [Google Scholar] [CrossRef]
- Garner, M.R.; Flint, J.F.; Russell, J.B. Allisonella histaminiformans gen.nov., sp. nov. A novel bacterium that produces histamine, utilizes histidine as its sole energy source, and could play a role in bovine and equine laminitis. Syst. Appl. Microbiol. 2002, 25, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.H.; DePeters, E.J.; Shinzato, I.; Sato, H. Rumen lysine escape, rumen fermentation, and productivity of early lactation dairy cows fed free lysine. Anim. Feed Sci. Technol. 2006, 128, 31–41. [Google Scholar] [CrossRef]
- Mazinani, M.; Erdogan, M.; Brian, J.R. Harnessing the value of rumen protected amino acids to enhance animal performance—A review. Ann. Anim. Sci. 2022, 22, 43–62. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, R.; Mahesh, M.S.; Thakur, S.S. Rumen-protected amino acids for ruminants. In Feed Additives and Supplements for Ruminants; Springer: Singapore, 2024. [Google Scholar]
- Fleming, A.J.; Lapierre, H.; White, R.R.; Tran, H.; Kononoff, P.J.; Martineau, R.; Weiss, W.P.; Hanigan, M.D. Predictions of ruminal outflow of essential amino acids in dairy cattle. J. Dairy Sci. 2019, 102, 10947–10963. [Google Scholar] [CrossRef]
- Xue, F.; Zhou, Z.M.; Ren, L.P.; Meng, Q.X. Influence of rumen-protected lysine supplementation on growth performance and plasma amino acid concentrations in growing cattle offered the maize stalk silage/maize grain-based diet. Anim. Feed Sci. Technol. 2011, 169, 61–67. [Google Scholar] [CrossRef]
- Liu, H.; Yang, G.; Degen, A.; Ji, K.X.; Jiao, D.; Liang, Y.P.; Xiao, L.; Long, R.J.; Zhou, J.W. Effect of feed level and supplementary rumen protected lysine and methionine on growth performance, rumen fermentation, blood metabolites and nitrogen balance in growing Tan lambs fed low protein diets. Anim. Feed Sci. Technol. 2021, 279, 115024. [Google Scholar] [CrossRef]
- Lobos, N.E.; Wattiaux, M.A.; Broderick, G.A. Effect of rumen-protected lysine supplementation of diets based on corn protein fed to lactating dairy cows. J. Dairy Sci. 2021, 104, 6620–6632. [Google Scholar] [CrossRef]
- Malacco, V.M.R.; Beckett, L.; Hilger, S.; Doane, P.; Reis, R.B.; Donkin, S.S. Effects of increased doses of lysine in a rumen-protected form on plasma amino acid concentration and lactational performance of dairy cows fed a lysine-deficient diet. J. Dairy Sci. 2022, 105, 3064–3077. [Google Scholar] [CrossRef]
- Han, I.K.; Ha, J.K.; Lee, S.S.; Ko, Y.G.; Lee, H.S. Effect of supplementing rumen-protected lysine on growth performance and plasma amino acid concentrations in sheep. Asian-Australas. J. Anim. Sci. 1996, 9, 309–313. [Google Scholar] [CrossRef]
- Sullivan, G.M.; Feinn, R. Using effect size—Or why the P value is not enough. J. Grad. Med. 2012, 4, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Hristov, A.N.; Cassidy, T.W.; Heyler, K.S.; Lapierre, H.; Varga, G.A.; de Veth, M.J.; Patton, R.A.; Parys, C. Rumen-protected lysine, methionine, and histidine increase milk protein yield in dairy cows fed a metabolizable protein-deficient diet. J. Dairy Sci. 2012, 95, 6042–6056. [Google Scholar] [CrossRef] [PubMed]
- Zinn, R.A.; Shen, Y. An evaluation of ruminally degradable intake protein and metabolizable amino acid requirements of feedlot calves. J. Anim. Sci. 1988, 76, 1280–1289. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Beef Cattle, 8th ed.; National Research Council, National Academics Press: Washington, DC, USA, 2016. [Google Scholar]
- NY/T 815-2004; Feeding Standard of Beef Cattle. China Agriculture Press: Beijing, China, 2004.
- Xiong, B.H.; Luo, Q.R.; Zheng, S.S.; Zhao, Y.G. Tables of Feed Composition and Nutritive Values in China, 33rd ed. China Feed 2022, 24, 63–68. (In Chinese) [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Agricultural Chemists: Arlington, VA, USA, 2016. [Google Scholar]
- Robertson, J.B.; Van Soest, P.J. The Detergent System of Analysis and its Application to Human Foods. In The Analysis of Dietary Fibre in Food; Marcel Dekker: New York, NY, USA, 1981. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Li, P.Y.; Sun, S.; Zhang, W.J.; Ouyang, W.; Li, X.B.; Yang, K.L. The effects of l-citrulline supplementation on the athletic performance, physiological and biochemical parameters, antioxidant capacity, and blood amino acid and polyamine levels in speed-racing yili horses. Animals 2024, 14, 2438. [Google Scholar] [CrossRef]
- Hristov, A.N.; Ivan, M.; Rode, L.M.; McAllister, T.A. Fermentation characteristics and ruminal ciliate protozoal populations in cattle fed medium-or high-concentrate barley-based diets. J. Anim. Sci. 2001, 79, 515–524. [Google Scholar] [CrossRef]
- Wei, X.S.; Wu, H.; Wang, Z.X.; Zhu, J.P.; Wang, W.J.; Wang, J.H.; Wang, Y.M.; Wang, C. Rumen-protected lysine supplementation improved amino acid balance, nitrogen utilization and altered hindgut microbiota of dairy cows. Anim. Nutr. 2023, 15, 320–331. [Google Scholar] [CrossRef]
- Xue, B.; Zhao, X.Q.; Zhang, Y.S. Seasonal changes in weight and body composition of yak grazing on alpine-meadow grassland in the Qinghai-Tibetan plateau of China. J. Anim. Sci. 2005, 83, 1908–1913. [Google Scholar] [CrossRef]
- Liu, H.S.; Ma, Z.Y.; Pei, C.F.; Wu, D.Z.C.R.; Gan, S.Y.; Zhou, J.W. Comparison of daily gain, rumen fermentation, and blood parameters of fattening yaks under grazing and house feeding patterns. Pratacultural Sci. 2024, 41, 448–458. (In Chinese) [Google Scholar]
- Ma, W.H.; Malik, M.I.; Iwaasa, A.D.; Wang, H.; Wang, H.L.; Yang, J.F.; Bai, B.Q.; Jing, J.W.; Hu, G.W.; Hao, L.Z.; et al. The Effects of supplemental feeding on methane emissions from yak grazing in the warm season. Animals 2025, 15, 518. [Google Scholar] [CrossRef] [PubMed]
- Heiderscheit, K.J.; Hansen, S.L. Effect of rumen-protected lysine on growth performance, carcass characteristics, and plasma amino acid profile in feedlot steers. Transl. Anim. Sci. 2020, 4, txaa128. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Yang, Z.M.; Yang, J.F.; Wang, D.Y.; Niu, J.Z.; Bai, B.Q.; Sun, W.; Ma, S.K.; Cheng, Y.F.; Hao, L.Z. A comparative study of growth performance, blood biochemistry, rumen fermentation, and ruminal and fecal bacterial structure between yaks and cattle raised under high concentrate feeding conditions. Microorganisms 2023, 11, 2399. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Dai, P.; Dai, Q.D.; Ma, J.; Wang, Z.S.; Hu, R.; Zou, H.W.; Peng, Q.H.; Wang, L.Z.; Xue, B. Effects of the higher concentrate ratio on the production performance, ruminal fermentation, and morphological structure in male cattle-yaks. Vet. Med. Sci. 2022, 8, 771–780. [Google Scholar] [CrossRef]
- Liu, J.; Tian, K.; Sun, Y.; Wu, Y.; Chen, J.; Zhang, R.; He, T.; Dong, G. Effects of the acid–base treatment of corn on rumen fermentation and microbiota, inflammatory response and growth performance in beef cattle fed high-concentrate diet. Animal 2020, 14, 1876–1884. [Google Scholar] [CrossRef]
- Wilson, P.N.; Osbourn, D.F. Compensatory growth after undernutrition in mammals and birds. Biol. Rev. 1960, 35, 324–361. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.B.; Ahmad, A.A.; Bao, P.J.; Guo, X.; Long, R.J.; Ding, X.Z.; Yan, P. Dietary energy levels affect growth performance through growth hormone and insulin-like growth factor 1 in yak (Bos grunniens). Animals 2019, 9, 39. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.H.; Hao, L.Z.; Sun, P.; Degen, A. Effect of substituting steam-flaked corn for course ground corn on in vitro digestibility, average daily gain, serum metabolites and ruminal volatile fatty acids, and bacteria diversity in growing yaks. Anim. Feed Sci. Technol. 2023, 296, 115553. [Google Scholar] [CrossRef]
- Wang, H.C.; Long, R.J.; Liang, J.B.; Guo, X.S.; Ding, L.M.; Shang, Z.H. Comparison of nitrogen metabolism in yak (Bos grunniens) and indigenous cattle (Bos taurus) on the Qinghai-Tibetan Plateau. Asian-Australas. J. Anim. Sci. 2011, 24, 766–773. [Google Scholar] [CrossRef]
- Jing, X.P.; Ding, L.M.; Zhou, J.W.; Huang, X.D.; Degen, A.A.; Long, R.J. The adaptive strategies of yaks to live in the Asian highlands. Anim. Nutr. 2022, 9, 249–258. [Google Scholar] [CrossRef]
- Ji, H.Y.; Chen, L.L.; Ma, Y.; Degen, A.A.; Yuan, Z.R.; Chen, H.L.; Zhou, J.W. A comparison of growth performance, blood parameters, rumen fermentation, and bacterial community of Tibetan sheep when fattened by pasture grazing versus stall feeding. Microorganisms 2024, 12, 1967. [Google Scholar] [CrossRef] [PubMed]
- Puppel, K.; Kuczyńska, B. Metabolic profiles of cow’s blood; a review. J. Sci. Food Agric. 2016, 96, 4321–4328. [Google Scholar] [CrossRef] [PubMed]
- Stewart, G.S.; Smith, C.P. Urea nitrogen salvage mechanisms and their relevance to ruminants, non-ruminants and man. Nutr. Res. Rev. 2005, 18, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.Y.; Ji, S.K.; Xu, H.J.; Wang, M.Y.; Li, B.B.; Shen, Y.Z.; Li, Y.; Gao, Y.X.; Li, J.G.; Gao, Y.F.; et al. Rumen-protected lysine and methionine supplementation reduced protein requirement of Holstein bulls by altering nitrogen metabolism in liver. Animals 2023, 13, 843. [Google Scholar] [CrossRef]
- Wang, B.; Mi, M.M.; Zhang, Q.Y.; Bao, N.; Pan, L.; Zhao, Y.; Qin, G.X. Relationship between the amino acid release kinetics of feed proteins and nitrogen balance in finishing pigs. Animal 2021, 15, 100359. [Google Scholar] [CrossRef]
- Sun, Z.H.; Tan, Z.L.; Liu, S.M.; Tayo, G.O.; Lin, B.; Teng, B.; Tang, S.X.; Wang, W.J.; Liao, Y.P.; Pan, Y.F.; et al. Effects of dietary methionine and lysine sources on nutrient digestion, nitrogen utilization, and duodenal amino acid flow in growing goats. J. Anim. Sci. 2007, 85, 3340–3347. [Google Scholar] [CrossRef]
- Tan, Z.L.; Murphy, M.R. Ammonia production, ammonia absorption, and urea recycling in ruminants. A review. J. Anim. Feed Sci. 2004, 13, 389–404. [Google Scholar] [CrossRef]
- Cheng, F.X.; Jia, S.B.; Zhang, H.; Tuo, N.; Yan, X.H.; Shao, W.; Yu, X. Study on the relationship between 15 kinds of serum biochemical and body weight change of warm season grazing lambs. China Anim. Husb. Vet. Med. 2009, 36, 56–60. (In Chinese) [Google Scholar]
- Socha, M.T.; Putnam, D.E.; Garthwaite, B.D.; Whitehouse, N.L.; Kierstead, N.A.; Schwab, C.G.; Ducharme, G.A.; Robert, J.C. Improving intestinal amino acid supply of pre-and postpartum dairy cows with rumen-protected methionine and lysine. J. Dairy Sci. 2005, 88, 1113–1126. [Google Scholar] [CrossRef] [PubMed]
- EClinpath. Glucose; Cornell University College of Veterinary Medicine, Cornel University: Ithaca, NY, USA, 2020; Available online: https://eclinpath.com/chemistry/energy-metabolism/glucose/2020 (accessed on 20 August 2025).
- Ou, Y.L.; Lai, Y.R.; Jiang, C.N.; Zhang, J.; Ding, Z. Diagnostic performance of individual characteristics and anthropometric measurements in detecting elevated serum alanine aminotransferase among children and adolescents. BMC Pediatr. 2020, 20, 131. [Google Scholar] [CrossRef] [PubMed]
- Merck, R. The Merck Veterinary Manual, 11th ed.; Merck and Company: Whitehouse Station, NJ, USA, 1991. [Google Scholar]
- Shikata, N.; Maki, Y.; Noguchi, Y.; Mori, M.; Hanai, T.; Takahashi, M.; Okamoto, M. Multi-layered network structure of amino acid (AA) metabolism characterized by each essential AA-deficient condition. Amino Acids 2007, 33, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.; Huntington, G.B.; Calsamiglia, S.; Stern, M.D. Nitrogen metabolism of early lactation cows fed diets with two different levels of protein and different amino acid profiles. J. Dairy Sci. 2000, 83, 2585–2595. [Google Scholar] [CrossRef]
- Arshad, U.; Peñagaricano, F.; White, H.M. Effects of feeding rumen-protected lysine during the postpartum period on performance and amino acid profile in dairy cows: A meta-analysis. J. Dairy Sci. 2024, 107, 4537–4557. [Google Scholar] [CrossRef]
- Lee, C.; Lobos, N.E.; Weiss, W.P. Effects of supplementing rumen-protected lysine and methionine during prepartum and postpartum periods on performance of dairy cows. J. Dairy Sci. 2019, 102, 11026–11039. [Google Scholar] [CrossRef]
- Shen, Y.Z.; Ding, L.Y.; Chen, L.M.; Xu, J.H.; Zhao, R.; Yang, W.Z.; Wang, H.R.; Wang, M.Z. Feeding corn grain steeped in citric acid modulates rumen fermentation and inflammatory responses in dairy goats. Animal 2019, 13, 301–308. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Russell, J.B.; O’Connor, J.D.; Fox, D.G.; Van Soest, P.J.; Sniffen, C.J. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci. 1992, 70, 3551–3561. [Google Scholar] [CrossRef]
- Preston, T.R.; Leng, R.A. Matching Ruminant Production Systems with Available Resources in the Tropics and Sub-Tropics; Penambul Books: Armidale, NSW, Australia, 1987. [Google Scholar]
- Russell, J.B.; Sniffen, C.J.; Van Soest, P.J. Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria. J. Dairy Sci. 1983, 66, 763–775. [Google Scholar] [CrossRef]
- Tu, R. Effects of Rumen-Protected Lysine in Different Protein Diets on Growth Performance, Nutrient Digestion, Serum Biochemistry, Rumen Fermentation and Microflora Composition of Yaks. Master’s Thesis, Lanzhou University, Lanzhou, China, 2024. [Google Scholar]
- Zhou, Z.M.; Fang, L.; Meng, Q.X.; Li, S.L.; Chai, S.T.; Liu, S.J.; Schonewille, J.T. Assessment of ruminal bacterial and archaeal community structure in yak (Bos grunniens). Front. Microbiol. 2017, 8, 179. [Google Scholar] [CrossRef]
- Kong, F.L.; Gao, Y.X.; Tang, M.Q.; Fu, T.; Diao, Q.Y.; Bi, Y.L.; Tu, Y. Effects of dietary rumen–protected Lys levels on rumen fermentation and bacterial community composition in Holstein heifers. Appl. Microbiol. Biotechnol. 2020, 104, 6623–6634. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Loor, J.J.; Elolimy, A.A.; McCann, J.C. Dietary impacts on rumen microbiota in beef and dairy production. Anim. Front. 2016, 6, 22–29. [Google Scholar] [CrossRef]
- Liu, H.; Ran, T.; Zhang, C.F.; Yang, W.Z.; Wu, X.K.; Degen, A.; Long, R.J.; Shi, Z.J.; Zhou, J.W. Comparison of rumen bacterial communities between yaks (Bos grunniens) and Qaidam cattle (Bos taurus) fed a low protein diet with different energy levels. Front. Microbiol. 2022, 13, 982338. [Google Scholar] [CrossRef]
- de Souza, M.G.; Reis, I.A.; de Carvalho, I.P.C.; de Felicio Porcionato, M.A.; Prados, L.F.; Granja-Salcedo, Y.T.; Siqueira, G.R.; de Resende, F.D. Effects of post-ruminal urea supplementation during the seasonal period on performance and rumen microbiome of rearing grazing Nellore cattle. Animals 2022, 12, 3463. [Google Scholar] [CrossRef]
- Zhao, F.F.; Yang, L.L.; Zhang, T.; Zhuang, D.H.; Wu, Q.F.; Yu, J.K.; Tian, C.; Zhang, Z.G. Gut microbiome signatures of extreme environment adaption in Tibetan pig. NPJ Biofilms Microbiomes 2023, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Méheust, R.; Castelle, C.J.; Matheus Carnevali, P.B.; Farag, I.F.; He, C.; Chen, L.X.; Amano, Y.K.; Hug, L.A.; Banfield, J.F. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME J. 2020, 14, 2907–2922. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Dietrich, C.; Radek, R.; Brune, A. Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum E lusimicrobia)—An ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase. Environ. Microbiol. 2016, 18, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Alves, K.L.G.C.; Granja-Salcedo, Y.T.; Messana, J.D.; de Souza, V.C.; Ganga, M.J.G.; Colovate, P.H.D.; Kishi, L.T.; Berchielli, T.T. Rumen bacterial diversity in relation to nitrogen retention in beef cattle. Anaerobe 2021, 67, 102316. [Google Scholar] [CrossRef]
- Bach, A.; Calsamiglia, S.; Stern, M.D. Nitrogen metabolism in the rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef]
- Van Gylswyk, N.O.; Van der Toorn, J.J.T.K. Eubacterium uniforme sp. nov. and Eubacterium xylanophilum sp. nov., fiber-digesting bacteria from the rumina of sheep fed corn stover. Int. J. Syst. Evol. Microbiol. 1985, 35, 323–326. [Google Scholar] [CrossRef]
- Lang, L.; Ditton, A.; Stanescu, A.; Jainani, V.; McArthur, S.; Pourtau, L.; Gaudout, D.; Pontifex, M.G.; Tsigarides, J.; Steward, T.; et al. A standardised saffron extract improves subjective and objective sleep quality in healthy older adults with sleep complaints: Results from the gut-sleep-brain axis randomised, double-blind, placebo-controlled pilot study. medRxiv 2025. [Google Scholar] [CrossRef]
Items | Content | Items | Content |
---|---|---|---|
Ingredients (%, air-dried basis) | AA composition (μg/mg, DM basis) | ||
Corn stalk | 25.0 | Alanine | 0.361 |
Corn grain | 31.6 | Asparagine | 0.402 |
Sprayed corn bran | 15.0 | Aspartic acid | 0.235 |
Corn germ meal | 6.00 | Glutamine | 0.099 |
Distillers dried grains with soluble | 3.00 | Glutamic acid | 0.287 |
Soybean meal | 4.50 | Glycine | 0.055 |
Cottonseed meal | 2.00 | Histidine | 0.084 |
Molasses | 3.00 | Proline | 0.349 |
Wheat bran | 6.00 | Serine | 0.157 |
Soybean oil | 0.50 | ||
CaCO3 | 1.40 | ||
NaCl | 0.50 | ||
NaHCO3 | 0.50 | ||
Premix 1 | 1.00 | ||
Chemical composition (%, DM basis) | |||
DM | 89.9 | ||
CP | 12.1 | ||
EE | 2.73 | ||
NDF | 33.2 | ||
ADF | 14.4 | ||
Ash | 5.85 | ||
ME, MJ/kg 2 | 10.6 |
Items | Treatment | SEM | p-Value | |
---|---|---|---|---|
CON | RPL | |||
IBW, kg | 121 | 123 | 5.3 | 0.861 |
FBW, kg | 191 | 205 | 6.5 | 0.319 |
ADG, kg/d | 1.25 | 1.46 | 0.053 | 0.043 |
DMI, kg/d | 4.85 | 4.91 | 0.063 | 0.671 |
Feed conversion ratio 1 | 3.90 | 3.39 | 0.108 | <0.01 |
Items | Treatment | SEM | p-Value | |
---|---|---|---|---|
CON | RPL | |||
TP, g/L | 60.9 | 60.1 | 1.10 | 0.761 |
ALB, g/L | 35.4 | 35.0 | 0.59 | 0.781 |
GLO, g/L | 25.5 | 25.1 | 0.95 | 0.857 |
BUN, mmol/L | 5.70 | 4.77 | 0.230 | 0.036 |
CRE, μmol/L | 34.3 | 34.3 | 0.76 | 0.984 |
GLU, mmol/L | 4.64 | 4.80 | 0.095 | 0.414 |
ALT, U/L | 27.2 | 20.2 | 1.81 | 0.047 |
AST, U/L | 80.2 | 83.3 | 8.77 | 0.867 |
TG, mmol/L | 0.202 | 0.155 | 0.018 | 0.211 |
CHO, mmol/L | 1.45 | 1.55 | 0.087 | 0.591 |
Items | Treatment | SEM | p-Value | |
---|---|---|---|---|
CON | RPL | |||
EAA, mg/L | ||||
Arginine | 15.0 | 13.2 | 1.03 | 0.400 |
Histidine | 10.0 | 10.1 | 0.56 | 0.922 |
Isoleucine | 11.5 | 11.0 | 0.80 | 0.750 |
Leucine | 15.1 | 18.0 | 1.05 | 0.179 |
Lysine | 10.9 | 14.3 | 0.81 | 0.028 |
Methionine | 2.53 | 3.04 | 0.253 | 0.344 |
Phenylalanine | 8.00 | 9.10 | 0.647 | 0.421 |
Threonine | 5.39 | 8.06 | 0.734 | 0.065 |
Tryptophan | 6.01 | 5.97 | 0.493 | 0.972 |
Valine | 27.0 | 27.0 | 2.13 | 0.994 |
Total EAA | 111 | 120 | 6.8 | 0.565 |
NEAA, mg/L | ||||
Alanine | 30.4 | 27.6 | 1.50 | 0.381 |
Asparagine | 4.88 | 4.91 | 0.466 | 0.972 |
Aspartic acid | 0.765 | 0.552 | 0.140 | 0.472 |
Cysteine | 4.15 | 4.66 | 0.432 | 0.581 |
Glutamine | 36.7 | 33.8 | 1.42 | 0.335 |
Glutamic acid | 6.15 | 6.22 | 0.440 | 0.937 |
Glycine | 22.5 | 19.0 | 2.24 | 0.474 |
Proline | 10.9 | 9.72 | 0.393 | 0.134 |
Serine | 9.72 | 7.59 | 0.736 | 0.156 |
Tyrosine | 8.67 | 9.02 | 0.987 | 0.870 |
Total NEAA | 135 | 123 | 5.8 | 0.337 |
Total AA | 246 | 243 | 11.8 | 0.897 |
Items | Treatment | SEM | p-Value | |
---|---|---|---|---|
CON | RPL | |||
pH | 7.15 | 7.10 | 0.132 | 0.881 |
Ammonia-N, mmol/L | 5.32 | 2.99 | 0.488 | <0.01 |
Total VFA, mmol/L | 64.1 | 61.5 | 3.92 | 0.764 |
Individual VFA, mol/100 mol | ||||
Acetate | 62.0 | 61.2 | 1.43 | 0.794 |
Propionate | 24.1 | 26.5 | 1.65 | 0.514 |
Isobutyrate | 1.14 | 1.09 | 0.060 | 0.722 |
Butyrate | 10.0 | 8.36 | 0.626 | 0.204 |
Isovalerate | 1.39 | 1.37 | 0.106 | 0.934 |
Valerate | 1.35 | 1.56 | 0.145 | 0.500 |
Acetate: Propionate ratio | 2.75 | 2.39 | 0.242 | 0.483 |
Items | Treatment | SEM | p-Value | |
---|---|---|---|---|
CON | RPL | |||
Chao 1 | 737 | 840 | 35.8 | 0.160 |
ACE | 761 | 864 | 34.4 | 0.140 |
Shannon | 3.58 | 4.22 | 0.183 | 0.077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Chen, Y.; Wu, P.; Degen, A.A.; He, K.; Zhang, Q.; Zhao, X.; Li, W.; Zhang, A.; Zhou, J. Effect of Rumen-Protected Lysine Supplementation on Growth Performance, Blood Metabolites, Rumen Fermentation and Bacterial Community on Feedlot Yaks Offered Corn-Based Diets. Animals 2025, 15, 2901. https://doi.org/10.3390/ani15192901
Li Y, Chen Y, Wu P, Degen AA, He K, Zhang Q, Zhao X, Li W, Zhang A, Zhou J. Effect of Rumen-Protected Lysine Supplementation on Growth Performance, Blood Metabolites, Rumen Fermentation and Bacterial Community on Feedlot Yaks Offered Corn-Based Diets. Animals. 2025; 15(19):2901. https://doi.org/10.3390/ani15192901
Chicago/Turabian StyleLi, Yan, Yuzhong Chen, Peng Wu, Abraham Allan Degen, Kelei He, Qianyun Zhang, Xinsheng Zhao, Wanyu Li, Aiwen Zhang, and Jianwei Zhou. 2025. "Effect of Rumen-Protected Lysine Supplementation on Growth Performance, Blood Metabolites, Rumen Fermentation and Bacterial Community on Feedlot Yaks Offered Corn-Based Diets" Animals 15, no. 19: 2901. https://doi.org/10.3390/ani15192901
APA StyleLi, Y., Chen, Y., Wu, P., Degen, A. A., He, K., Zhang, Q., Zhao, X., Li, W., Zhang, A., & Zhou, J. (2025). Effect of Rumen-Protected Lysine Supplementation on Growth Performance, Blood Metabolites, Rumen Fermentation and Bacterial Community on Feedlot Yaks Offered Corn-Based Diets. Animals, 15(19), 2901. https://doi.org/10.3390/ani15192901