Zinc Glycinate Alleviates Necrotic Enteritis Infection in Broiler Chickens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Husbandry
2.2. Experimental Necrotic Enteritis Induction
2.3. Sample Collection
2.4. Histology
2.5. Real-Time PCR Gene Expression
2.6. Cecal Microbial Analysis Using RT-PCR
2.7. Culturing of Primary Intestinal Epithelial Cells with Zinc
2.8. Culturing of Chicken Macrophage Cell Line (HD-11) with Zinc
2.9. Statistical Analysis
3. Results
3.1. Effects on Growth Performance
3.2. Effects on Gross Lesions and Mortality
3.3. Effects on Jejunum Histological Parameters
3.4. Effects on Tissue Relative mRNA Expressions
3.5. Effect on C. perfringens Gene Expression
3.6. Zinc Co-Culture with Primary Intestinal Cells
3.7. Zinc Co-Culture with HD-11 Cells
3.8. Effect of Zinc on Clostridium perfringens Growth
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Sheikhly, F.; Al-Saieg, A. Role of coccidia in the occurrence of necrotic enteritis of chickens. Avian Dis. 1980, 24, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.; Chasser, K.; Duff, A.; Briggs, W.; Latorre, J.; Barta, J.; Bielke, L. Comparison of multiple methods for induction of necrotic enteritis in broilers. I. J. Appl. Poultry Res. 2018, 27, 577–589. [Google Scholar] [CrossRef]
- Lee, S.; Lillehoj, H.; Jang, S.; Jeong, M.; Xu, S.; Kim, J.; Park, H.; Kim, H.; Lillehoj, E.; Bravo, D. Effects of in ovo injection with selenium on immune and antioxidant responses during experimental necrotic enteritis in broiler chickens. Poult. Sci. 2014, 93, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- O’Dell, B.; Newberne, P.; Savage, J. Significance of dietary zinc for the growing chicken. J. Nutr. 1958, 65, 503–523. [Google Scholar] [CrossRef]
- Chandra, R.; Au, B. Single nutrient deficiency and cell-mediated immune responses I. Zinc. Am. J. Clin. Nutr. 1980, 33, 736–738. [Google Scholar] [CrossRef]
- Bortoluzzi, C.; Lumpkins, B.; Mathis, G.; França, M.; King, W.; Graugnard, D.; Dawson, K.; Applegate, T. Zinc source modulates intestinal inflammation and intestinal integrity of broiler chickens challenged with coccidia and Clostridium perfringens. Poult. Sci. 2019, 98, 2211–2219. [Google Scholar] [CrossRef]
- Bortoluzzi, C.; Vieira, B.; Lumpkins, B.; Mathis, G.; King, W.; Graugnard, D.; Dawson, K.; Applegate, T. Can dietary zinc diminish the impact of necrotic enteritis on growth performance of broiler chickens by modulating the intestinal immune-system and microbiota? Poult. Sci. 2019, 98, 3181–3193. [Google Scholar] [CrossRef]
- Eryavuz, A.; Dehority, B.A. Effects of supplemental zinc concentration on cellulose digestion and cellulolytic and total bacterial numbers in vitro. Anim. Feed Sci. Technol. 2009, 151, 175–183. [Google Scholar] [CrossRef]
- Cafardi, V.; Biagini, M.; Martinelli, M.; Leuzzi, R.; Rubino, J.T.; Cantini, F.; Norais, N.; Scarselli, M.; Serruto, D.; Unnikrishnan, M. Identification of a novel zinc metalloprotease through a global analysis of Clostridium difficile extracellular proteins. PLoS ONE 2013, 8, e81306. [Google Scholar] [CrossRef]
- Zackular, J.P.; Moore, J.L.; Jordan, A.T.; Juttukonda, L.J.; Noto, M.J.; Nicholson, M.R.; Crews, J.D.; Semler, M.W.; Zhang, Y.; Ware, L.B. Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nat. Med. 2016, 22, 1330. [Google Scholar] [CrossRef]
- Erdfelder, E.; Faul, F.; Buchner, A. GPOWER: A general power analysis program. Behav. Res. Meth. Instr. Comput. 1996, 28, 1–11. [Google Scholar] [CrossRef]
- Cobb-Vantress. Broiler Performance and Nutrition Supplement Cobb 500. Available online: https://www.cobbgenetics.com/assets/Cobb-Files/2022-Cobb500-Broiler-Performance-Nutrition-Supplement.pdf (accessed on 7 August 2025).
- Hofacre, C.; Beacorn, T.; Collett, S.; Mathis, G. Using competitive exclusion, mannan-oligosaccharide and other intestinal products to control necrotic enteritis. J. Appl. Poultry Res. 2003, 12, 60–64. [Google Scholar] [CrossRef]
- Miller, R.W.; Skinner, E.J.; Sulakvelidze, A.; Mathis, G.F.; Hofacre, C.L. Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Dis. 2010, 54, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Hofacre, C.L.; Reynolds, D.J.; Mathis, G.F.; Lumpkins, B.S.; Ollis, N.; Smith, J.A.; Demey, V. Effect of a Competitive Exclusion Culture in a Necrotic Enteritis Challenge Model in Broilers. J. Appl. Poultry Res. 2019, 28, 350–355. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. J. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Shanmugasundaram, R.; Sifri, M.; Selvaraj, R.K. Effect of yeast cell product supplementation on broiler cecal microflora species and immune responses during an experimental coccidial infection. Poult. Sci. 2013, 92, 1195–1201. [Google Scholar] [CrossRef]
- Hong, Y.H.; Lillehoj, H.S.; Lee, S.H.; Dalloul, R.A.; Lillehoj, E.P. Analysis of chicken cytokine and chemokine gene expression following Eimeria acervulina and Eimeria tenella infections. Vet. Immunol. Immunopathol. 2006, 114, 209–223. [Google Scholar] [CrossRef]
- Luoma, A.E. Effect of Synbiotic and Organic Acid Plus Phytochemical Product Supplementation on Layer Production Performance and Immune Parameters. Master’s Thesis, The Ohio State University, Wooster, OH, USA, 2016. [Google Scholar]
- Troche, C.; Eicher, S.D.; Applegate, T.J. The influence of dietary zinc source and coccidial vaccine exposure on intracellular zinc homeostasis and immune status in broiler chickens. Br. J. Nutr. 2015, 114, 202–212. [Google Scholar] [CrossRef]
- Resnyk, C.W.; Carré, W.; Wang, X.; Porter, T.E.; Simon, J.; Le Bihan-Duval, E.; Duclos, M.J.; Aggrey, S.E.; Cogburn, L.A. Transcriptional analysis of abdominal fat in genetically fat and lean chickens reveals adipokines, lipogenic genes and a link between hemostasis and leanness. BMC Genom. 2013, 14, 557. [Google Scholar] [CrossRef]
- Wise, M.G.; Siragusa, G.R. Quantitative detection of Clostridium perfringens in the broiler fowl gastrointestinal tract by real-time PCR. Appl. Environ. Microbiol. 2005, 71, 3911–3916. [Google Scholar] [CrossRef]
- Bailey, M.A.; Macklin, K.S.; Krehling, J.T. Use of a Multiplex PCR for the Detection of Toxin-Encoding Genes netB and tpeL in Strains of Clostridium perfringens. ISRN Vet. Sci. 2013, 2013, 865702. [Google Scholar] [CrossRef] [PubMed]
- Li, B.-R.; Wu, J.; Li, H.-S.; Jiang, Z.-H.; Zhou, X.-M.; Xu, C.-H.; Ding, N.; Zha, J.-M.; He, W.-Q. In vitro and in vivo approaches to determine intestinal epithelial cell permeability. JoVE 2018, 140, 57032. [Google Scholar] [CrossRef]
- Psichas, A.; Tolhurst, G.; Brighton, C.A.; Gribble, F.M.; Reimann, F. Mixed primary cultures of murine small intestine intended for the study of gut hormone secretion and live cell imaging of enteroendocrine cells. JoVE 2017, 122, 55687. [Google Scholar] [CrossRef]
- Tainer, J.A.; Getzoff, E.D.; Richardson, J.S.; Richardson, D.C. Structure and mechanism of copper, zinc superoxide dismutase. J. Nat. 1983, 306, 284. [Google Scholar] [CrossRef] [PubMed]
- Song, A.; Chen, Y.-F.; Thamatrakoln, K.; Storm, T.A.; Krensky, A.M. RFLAT-1: A new zinc finger transcription factor that activates RANTES gene expression in T lymphocytes. J. Immunol. 1999, 10, 93–103. [Google Scholar] [CrossRef]
- He, X.; He, X.; Dave, V.P.; Zhang, Y.; Hua, X.; Nicolas, E.; Xu, W.; Roe, B.A.; Kappes, D.J. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 2005, 433, 826–833. [Google Scholar] [CrossRef]
- Harris, J.E.; Bishop, K.D.; Phillips, N.E.; Mordes, J.P.; Greiner, D.L.; Rossini, A.A.; Czech, M.P. Early growth response gene-2, a zinc-finger transcription factor, is required for full induction of clonal anergy in CD4 + T cells. J. Immunol. 2004, 173, 7331–7338. [Google Scholar] [CrossRef]
- Southern, L.; Baker, D. Eimeria acervulina infection and the zinc-copper interrelationship in the chick. Poult. Sci. 1983, 62, 401–404. [Google Scholar] [CrossRef]
- Baba, E.; Fuller, A.L.; Gilbert, J.M.; Thayer, S.G.; McDougald, L.R. Effects of Eimeria brunetti infection and dietary zinc on experimental induction of necrotic enteritis in broiler chickens. Avian Dis. 1992, 36, 59–62. [Google Scholar] [CrossRef]
- Barbour, E.K.; Bejjani, N.E.; Daghir, N.J.; Faroon, O.M.; Bouljihad, M.; Spasojevic, R. Induction of Early Immunopotentiation to Fimbriae of Salmonella Enteritidis (SE) by Administering Thymulin and Zinc to SE-Vaccinated Chicken Breeders. J. Vet. Med. Sci. 2000, 62, 1139–1143. [Google Scholar] [CrossRef]
- Zhang, B.; Shao, Y.; Liu, D.; Yin, P.; Guo, Y.; Yuan, J. Zinc prevents Salmonella enterica serovar Typhimurium-induced loss of intestinal mucosal barrier function in broiler chickens. Avian Pathol. 2012, 41, 361–367. [Google Scholar] [CrossRef]
- Xie, Y.; He, Y.; Irwin, P.L.; Jin, T.; Shi, X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011, 77, 2325–2331. [Google Scholar] [CrossRef] [PubMed]
- Al-Sheikhly, F.; Truscott, R. The interaction of Clostridium perfringens and its toxins in the production of necrotic enteritis of chickens. Avian Dis. 1977, 21, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Long, J.R.; Truscott, R.B. Necrotic enteritis in broiler chickens. III. Reproduction of the disease. Can. J. Comp. Med. 1976, 40, 53–59. [Google Scholar]
- Lee, K.; Lillehoj, H.; Park, M.; Jang, S.; Ritter, G.; Hong, Y.; Jeong, W.; Jeoung, H.; An, D.; Lillehoj, E. Clostridium perfringens α-toxin and NetB toxin antibodies and their possible role in protection against necrotic enteritis and gangrenous dermatitis in broiler chickens. Avian Dis. 2012, 56, 230–233. [Google Scholar] [CrossRef]
- Marek, A.; Grądzki, Z.; Kwiecień, M.; Żylińska, B.; Kaczmarek, B. Effect of feed supplementation with zinc glycine chelate and zinc sulfate on cytokine and immunoglobulin gene expression profiles in chicken intestinal tissue. Poult. Sci. 2017, 96, 4224–4235. [Google Scholar] [CrossRef]
- Swinkels, J.W.; Kornegay, E.T.; Verstegen, M.W. Biology of zinc and biological value of dietary organic zinc complexes and chelates. Nutr. Res. Rev. 1994, 7, 129–149. [Google Scholar] [CrossRef]
- Cao, J.; Henry, P.; Guo, R.; Holwerda, R.; Toth, J.; Littell, R.; Miles, R.; Ammerman, C. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. J. Anim. Sci. 2000, 78, 2039–2054. [Google Scholar] [CrossRef]
- Star, L.; Van der Klis, J.; Rapp, C.; Ward, T. Bioavailability of organic and inorganic zinc sources in male broilers. Poult. Sci. 2012, 91, 3115–3120. [Google Scholar] [CrossRef]
- Ao, T.; Pierce, J.; Power, R.; Dawson, K.; Pescatore, A.; Cantor, A.; Ford, M. Evaluation of Bioplex Zn® as an organic zinc source for chicks. Int. J. Poult. Sci. 2006, 5, 808–811. [Google Scholar] [CrossRef]
- Aviagen. Ross 308 Nutrition Specifications. Available online: https://aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-BroilerNutritionSpecifications2022-EN.pdf (accessed on 30 July 2025).
- Yu, H.; Wang, Q.; Tang, J.; Dong, L.; Dai, G.; Zhang, T.; Zhang, G.; Xie, K.; Wang, H.; Zhao, Z. Comprehensive analysis of gut microbiome and host transcriptome in chickens after Eimeria tenella infection. Front. Cell. Infect. Microbiol. 2023, 13, 1191939. [Google Scholar] [CrossRef] [PubMed]
- Gou, Z.; Jiang, S.; Zheng, C.; Tian, Z.; Lin, X. Equol inhibits LPS-induced oxidative stress and enhances the immune response in chicken HD11 macrophages. Cell Physiol. Biochem. 2015, 36, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lu, L.; Hao, S.; Wang, Y.; Zhang, L.; Liu, S.; Liu, B.; Li, K.; Luo, X. Dietary manganese modulates expression of the manganese-containing superoxide dismutase gene in chickens. J. Nutr. 2011, 141, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Tako, E.; Ferket, P.R.; Uni, Z. Changes in chicken intestinal zinc exporter mRNA expression and small intestinal functionality following intra-amniotic zinc-methionine administration. J. Nutr. Biochem. 2005, 16, 339–346. [Google Scholar] [CrossRef]
- Matsuura, W.; Yamazaki, T.; Yamaguchi-Iwai, Y.; Masuda, S.; Nagao, M.; Andrews, G.K.; Kambe, T. SLC39A9 (ZIP9) regulates zinc homeostasis in the secretory pathway: Characterization of the ZIP subfamily I protein in vertebrate cells. Biosci. Biotechnol. Biochem. 2009, 73, 1142–1148. [Google Scholar] [CrossRef]
- Thomas, P.; Converse, A.; Berg, H.A. ZIP9, a novel membrane androgen receptor and zinc transporter protein. Gen. Comp. Endocrinol. 2018, 257, 130–136. [Google Scholar] [CrossRef]
- Wade, B.; Keyburn, A.L.; Haring, V.; Ford, M.; Rood, J.I.; Moore, R.J. Two putative zinc metalloproteases contribute to the virulence of Clostridium perfringens strains that cause avian necrotic enteritis. J. Vet. Diagn. Investig. 2020, 32, 259–267. [Google Scholar] [CrossRef]
Basal | ||
---|---|---|
Item | Ingredient or Nutrient (As-Fed Basis) | (1 to 28 Days) |
Dietary inclusion (%) | Yellow corn grain | 62.82 |
Soybean meal (48%) | 33.27 | |
Soybean oil | 1.17 | |
Defluorinated phosphate | 1.13 | |
Calcium carbonate | 0.75 | |
† Vitamin premix | 0.25 | |
DL-Methionine | 0.24 | |
L-Lysine | 0.16 | |
Salt | 0.12 | |
‡ Trace Mineral (Zinc-free) | 0.08 | |
Quantum Blue Phytase (5000 FTU§/g) | 0.01 | |
Expected nutrient composition (%) and ME (kcal/kg) based on calculations | Dry matter | 87.73 |
Crude protein | 21 | |
Crude fat | 3.69 | |
Crude fiber | 2.19 | |
Calcium | 0.9 | |
Total phosphorus | 0.58 | |
Available phosphorus | 0.45 | |
Metabolizable energy | 3008 | |
Methionine | 0.58 | |
Lysine | 1.28 | |
Tryptophan | 0.28 | |
Threonine | 0.85 | |
Sodium | 0.16 | |
Potassium | 0.82 | |
Chloride | 0.15 | |
Digestible methionine | 0.56 | |
Digestible cysteine | 0.32 | |
Digestible lysine | 1.18 | |
Digestible tryptophan | 0.27 | |
Digestible threonine | 0.77 | |
Digestible isoleucine | 0.96 | |
Digestible histidine | 0.53 | |
Digestible valine | 1.05 | |
Digestible leucine | 1.75 | |
Digestible arginine | 1.33 | |
Digestible phenylalanine | 1.07 | |
Digestible TSAA † | 0.88 |
Gene | Primer Sequence (5′–3′) | Accession Number/Reference | Annealing | Extension | |
---|---|---|---|---|---|
Housekeeping | β−actin | F: ACCGGACTGTTACCAACACC | [17] | 57.5 °C, 30 s | 10 s |
R: GACTGCTGCTGACACCTTCA | |||||
Pro-inflammatory Cytokine | IL-1β | F: TGGGCATCAAGGGCTACA | Y07922/[18] | 57.5 °C, 45 s | 20 s |
R: TCGGGTTGGTTGGTGATG | |||||
IFN-γ | F: GTGAAGAAGGTGAAAGATATCATGGA | [17] | |||
R: GCTTTGCGCTGGATTCTCA | |||||
LITAF | F: ATCCTCACCCCTACCCTGTC | [19] | |||
R: GGCGGTCATAGAACAGCACT | |||||
Anti-inflammatory Cytokine | TGF-β | F: CGGGACGGATGAGAAGAAC | M31160/[18] | ||
R: CGGCCCACGTAGTAAATGAT | |||||
IL-10 | F: CATGCTGCTGGGCCTGAA | [17] | |||
R: CGTCTCCTTGATCTGCTTGATG | |||||
Tight Junction Protein | claudin 2 | F: CCTGCTCACCCTCATTGGAG | [7] | 50.5 °C, 45 s | 20 s |
R: GCTGAACTCACTCTTGGGCT | |||||
ZO-1 | F: CCGTAACCCCGAGTTGGAT | [7] | |||
R: ATTGAGGCGGTCGTTGATG | |||||
Zinc Importer | ZIP-9 | F: CGTTCCATCTGCCTGCTGTC | [20] | 49.4 °C, 45 s | 20 s |
R: GCACCCAGAACAGTCACCAAC | |||||
Antioxidant | Zn/Cu-SOD-1 | F: GGCTTGTCTGATGGAGATCAT | XM_205064.1/[21] | 60 °C, 30 s | 3 s |
R: GCTTGCCTTCAGGATTAAAGTG |
Primer Sequence (5′–3′) | Accession Number/Reference | Annealing | Extension | |
---|---|---|---|---|
16S rRNA Clostridium perfringens | F: CGCATAACGTTGAAAGATGG | [22] | 55 °C, 45 s | 20 s |
R: CCTTGGTAGGCCGTTACCC | ||||
netB | F: CGCTTCACATAAAGGTTGGAAGGC | [23] | ||
R: TCCAGCACCAGCAGTTTTTCCT | ||||
cpa | F: TGCATGAGCTTCAATTAGGT | [2] | ||
R: TTAGTTTTGCAACCTGCTGT |
Day 21 | |||||||
---|---|---|---|---|---|---|---|
BWG | FI | FCR | Lesion Score A | Mortality B | |||
Experiment | Zinc Glycinate Concentration | Infection | g/bird | g/bird | (0–3) | % | |
1 | 40 mg/kg | Control | 402.58 ± 28.95 | 639.71 ± 39.71 | 1.60 b ± 0.05 | 0.00 a (0–0) | 0.0 a (0.30–7.71) |
40 mg/kg | NE | 342.43 ± 16.03 | 656.76 ± 25.61 | 1.92 a ± 0.05 | 1.00 c (−1–−1.25) | 8.3 b (4.20–20.47) | |
80 mg/kg | NE | 357.68 ± 13.94 | 683.59 ± 31.41 | 1.91 a ± 0.04 | 1.00 c (−1–−1.25) | 0.0 a (0.30–7.71) | |
120 mg/kg | NE | 326.31 ± 17.93 | 602.68 ± 35.93 | 1.87 ab ±0.13 | 0.50 b (−0.33–−0.66) | 4.2 ab (1.76–14.58) | |
p-value | 0.08 | 0.41 | * <0.05 | ** <0.01 | ** <0.01 | ||
2 | 100 mg/kg | Control | 546.34 a ± 25.55 | 929.54 ± 88.75 | 1.69 ± 0.09 | 0.00 a (0–0) | 0.0 a (0.30–7.71) |
100 mg/kg | NE | 416.03 b ± 21.25 | 759.18 ± 46.79 | 1.82 ± 0.05 | 1.11 c (−1–−1.25) | 27.1 d (18.87–43.30) | |
120 mg/kg | NE | 481.76 ab ± 17.14 | 831.41 ± 24.03 | 1.74 ± 0.10 | 0.67 b (−0.42–−0.92) | 14.6 bc (8.63–28.54) | |
140 mg/kg | NE | 427.53 b ± 34.46 | 751.92 ± 19.24 | 1.80 ± 0.10 | 0.67 b (−0.67–−0.67) | 12.5 bc (7.08–25.92) | |
160 mg/kg | NE | 461.15 ab ± 27.60 | 779.44 ± 26.81 | 1.71 ± 0.06 | 0.72 b (−0.42–−0.92) | 10.4 bd (5.60–23.24) | |
p-value | * <0.05 | 0.09 | 0.74 | ** <0.01 | ** <0.01 |
Day 28 | |||||
---|---|---|---|---|---|
BWG | FI | FCR | |||
Experiment | Zinc Glycinate Concentration | Infection | g/bird | g/bird | |
1 | 40 mg/kg | Control | 608.71 ± 41.38 | 1062.31 ± 52.16 | 1.76 a ± 0.05 |
40 mg/kg | NE | 468.55 ± 19.13 | 1031.79 ± 36.70 | 2.22 b ± 0.11 | |
80 mg/kg | NE | 509.46 ± 38.24 | 1104.24 ± 45.35 | 2.20 b ± 0.11 | |
120 mg/kg | NE | 502.44 ± 49.41 | 1002.47 ± 36.14 | 2.06 b ± 0.15 | |
p value | 0.09 | 0.4 | * <0.05 | ||
2 | 100 mg/kg | Control | 872.74 b ± 36.92 | 1204.39 ± 51.20 | 1.40 a ± 0.10 |
100 mg/kg | NE | 570.61 a ± 75.52 | 1229.10 ± 67.87 | 2.35 b ± 0.37 | |
120 mg/kg | NE | 873.67 b ± 14.03 | 1389.87 ± 82.23 | 1.59 ab ± 0.10 | |
140 mg/kg | NE | 808.53 ab ± 57.87 | 1217.64 ± 35.09 | 1.53 a ± 0.08 | |
160 mg/kg | NE | 755.30 ab ± 93.07 | 1213.44 ± 76.31 | 1.67 ab ± 0.14 | |
p value | * <0.05 | 0.25 | * <0.05 |
Villi (µm) | Crypt (µm) | Villi to Crypt Ratio | ||
---|---|---|---|---|
Zinc Glycinate Concentration | Infection | |||
40 mg/kg | Control | 362.91 ± 25.22 | 89.33 a ± 7.74 | 4.19 b ± 0.42 |
40 mg/kg | NE | 309.58 ± 25.21 | 117.56 ab ± 4.95 | 2.65 a ± 0.23 |
80 mg/kg | NE | 346.58 ± 11.64 | 127.55 bc ± 10.45 | 2.81 a ± 0.23 |
120 mg/kg | NE | 332.83 ± 32.67 | 117.70 ab ± 7.94 | 2.85 a ± 0.42 |
p-value | 0.51 | ** <0.01 | ** <0.01 |
OD Values at Different Culture Time (Hours) | ||||||||
---|---|---|---|---|---|---|---|---|
Source | Concentration of Zinc μM | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Control | 0 | 0.05 bcd | 0.06 b | 0.13 ab | 0.29 ab | 0.52 ab | 0.78 ab | 0.75 b |
Sulfate | 10 | 0.06 b | 0.06 b | 0.13 ab | 0.27 ab | 0.52 ab | 0.69 ab | 0.78 b |
Sulfate | 100 | 0.06 bc | 0.06 b | 0.11 bc | 0.22 b | 0.44 b | 0.64 b | 0.74 b |
Sulfate | 1000 | 0.05 d | 0.05 c | 0.07 d | 0.12 c | 0.26 c | 0.42 c | 0.57 c |
Glycinate | 10 | 0.05 cd | 0.06 b | 0.12 bc | 0.29 a | 0.56 a | 0.76 ab | 0.81 ab |
Glycinate | 100 | 0.05 d | 0.06 b | 0.09 cd | 0.23 b | 0.48 ab | 0.74 ab | 0.89 a |
Glycinate | 1000 | 0.06 a | 0.07 a | 0.07 d | 0.08 c | 0.11 d | 0.26 d | 0.57 c |
Pooled SD | 0.01 | 0.01 | 0.02 | 0.08 | 0.17 | 0.20 | 0.12 | |
Probability | ||||||||
ANOVA | ||||||||
Source (S) | NS | p < 0.001 | p < 0.01 | NS | NS | NS | p < 0.01 | |
Concentration (C) | p < 0.05 | NS | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |
S × C | p < 0.001 | p < 0.001 | NS | p < 0.05 | p < 0.001 | p < 0.001 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, T.T.; Sparling, B.A.; Selvaraj, R.K. Zinc Glycinate Alleviates Necrotic Enteritis Infection in Broiler Chickens. Animals 2025, 15, 2373. https://doi.org/10.3390/ani15162373
Ng TT, Sparling BA, Selvaraj RK. Zinc Glycinate Alleviates Necrotic Enteritis Infection in Broiler Chickens. Animals. 2025; 15(16):2373. https://doi.org/10.3390/ani15162373
Chicago/Turabian StyleNg, Theros T., Brandi A. Sparling, and Ramesh K. Selvaraj. 2025. "Zinc Glycinate Alleviates Necrotic Enteritis Infection in Broiler Chickens" Animals 15, no. 16: 2373. https://doi.org/10.3390/ani15162373
APA StyleNg, T. T., Sparling, B. A., & Selvaraj, R. K. (2025). Zinc Glycinate Alleviates Necrotic Enteritis Infection in Broiler Chickens. Animals, 15(16), 2373. https://doi.org/10.3390/ani15162373