The Effects of Fermenting Psophocarpus tetragonolobus Tubers with Candida tropicalis KKU20 as a Soybean Meal Replacement Using an In Vitro Gas Technique
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Study Site, Winged Bean Tuber Source, and C. tropicalis KKU20
2.3. Yeast-Fermented Winged Bean Tubers
2.4. Experimental Design and Dietary Treatments
2.5. Animal Donors and Ruminal Inoculum Preparation
2.6. In Vitro Gas Production and Fermentation Characteristics
2.7. Statistical Analysis
3. Results
3.1. Ingredient Composition and Chemical Composition
3.2. Kinetics of Gas Production
3.3. In Vitro Ruminal Fermentation
3.4. In Vitro Degradability
3.5. In Vitro Volatile Fatty Acids
4. Discussion
4.1. Ingredient Composition and Chemical Composition
4.2. Kinetics of Gas Production
4.3. In Vitro Ruminal Fermentation
4.4. In Vitro Degradability
4.5. Ruminal Volatile Fatty Acid Concentration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parisi, G.; Tulli, F.; Fortina, R.; Marino, R.; Bani, P.; Zotte, A.D.; De Angelis, A.; Piccolo, G.; Pinotti, L.; Schiavone, A. Protein hunger of the feed sector: The alternatives offered by the plant world. Ital. J. Anim. Sci. 2020, 19, 1204–1225. [Google Scholar] [CrossRef]
- Casasús, I.; Villalba, D.; Joy, M.; Costa-Roura, S.; Blanco, M. Replacement of soya bean meal and corn by field peas in young bulls fattening diets: Performance, rumen fermentation, nitrogen use and metabolism. Anim. Feed Sci. Technol. 2025, 322, 116273. [Google Scholar] [CrossRef]
- Rauch, R.; Nichols, K.; Carvalho, I.P.C.; Daniel, J.-B.; Martín-Tereso, J.; Dijkstra, J. Effects of partial or full replacement of soybean meal with urea or coated urea on intake, performance, and plasma urea concentrations in lactating dairy cows. J. Anim. Physiol. Anim. Nutr. 2025, 109, 64–75. [Google Scholar] [CrossRef]
- Christodoulou, C.; Kliem, K.E.; Auffret, M.D.; Humphries, D.J.; Newbold, J.R.; Davison, N.; Crompton, L.; Dhanoa, M.S.; Smith, L.G.; Stergiadis, S. In vitro rumen degradation, fermentation, and methane production of four agro-industrial protein-rich co-products, compared with soybean meal. Anim. Feed Sci. Technol. 2025, 319, 116151. [Google Scholar] [CrossRef]
- Robles-Jimenez, L.E.; Angeles, S.; Ramirez-Perez, A.H.; Fuente, B.; Velazquez-Ordoñez, V.; Cardoso-Gutierrez, E.; Renna, M.; Rastello, L.; Capucchio, M.T.; Hassan, T.; et al. In vitro and in vivo investigations on the use of yellow mealworm (Tenebrio molitor) as a novel protein feed ingredient for fattening lambs. Anim. Feed Sci. Technol. 2025, 320, 116224. [Google Scholar] [CrossRef]
- Vatanparast, M.; Shetty, P.; Chopra, R.; Doyle, J.J.; Sathyanarayana, N.; Egan, A.N. Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae). Sci. Rep. 2016, 6, 29070. [Google Scholar] [CrossRef]
- Rakvong, T.; Monkham, T.; Sanitchon, J.; Chankaew, S. Tuber development and tuber yield potential of winged bean (Psophocarpus tetragonolobus (L.) DC.), an alternative crop for animal feed. Agronomy 2024, 14, 1433. [Google Scholar] [CrossRef]
- Abraham, S.; Kechero, Y. Biotechnology in animal nutrition and feed utilization. J. Livest. Sci. 2024, 15, 120–124. [Google Scholar] [CrossRef]
- Promkot, C.; Nitipot, P.; Piamphon, N.; Abdullah, N.; Promkot, A. Cassava root fermented with yeast improved feed digestibility in Brahman beef cattle. Anim. Prod. Sci. 2017, 57, 1613–1617. [Google Scholar] [CrossRef]
- Suntara, C.; Cherdthong, A.; Wanapat, M.; Uriyapongson, S.; Leelavatcharamas, V.; Sawaengkaew, J.; Chanjula, P.; Foiklang, S. Isolation and characterization of yeasts from rumen fluids for potential use as additives in ruminant feeding. Vet. Sci. 2021, 8, 52. [Google Scholar] [CrossRef]
- Kidane, A.; Vhile, S.G.; Ferneborg, S.; Skeie, S.; Olsen, M.A.; Mydland, L.T.; Prestl, E. Cyberlindnera jadinii yeast as a protein source in early-to mid-lactation dairy cow diets: Effects on feed intake, ruminal fermentation, and milk production. J. Dairy Sci. 2022, 105, 2343–2353. [Google Scholar] [CrossRef] [PubMed]
- Polat Kaya, H.; Kaya, B.; Tuncel, N.B.; Ozkan, G.; Capanoglu, E.; Ganeshan, S.; Tulbek, M.C. Fermentation of sainfoin seed flour with Saccharomyces boulardii: Effects on total dietary fiber, anti-nutrients, antimicrobial activity, and bioaccessibility of bioactive compounds. Microorganisms 2025, 13, 1421. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Liu, Z.; Zhou, C.; Tan, Z. Anti-nutritional factors of plant protein feeds for ruminants and methods for their elimination. Animals 2025, 15, 1107. [Google Scholar] [CrossRef]
- Suntara, C.; Wanapat, M.; Chankaew, S.; Khonkhaeng, B.; Supapong, C.; Chanjula, P.; Gunun, P.; Gunun, N.; Foiklang, S.; Phesatcha, K.; et al. Improvement of the nutritional quality of Psophocarpus tetragonolobus tubers by fermentation with ruminal Crabtree-negative yeasts on the in vitro digestibility and fermentation in rumen fluid. Fermentation 2022, 8, 209. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M. Manipulation of in vitro ruminal fermentation and digestibility by dried rumen digesta. Livest. Sci. 2013, 153, 94–100. [Google Scholar] [CrossRef]
- Schofield, P. Gas production methods. In Farm Animal Metabolism and Nutrition; D’Mello, J.P.F., Ed.; CABI Publishing: Ithaca, NY, USA, 2000; pp. 209–232. [Google Scholar]
- Yamamoto-Osaki, T.; Kamiya, S.; Sawamura, S.; Kai, M.; Ozawa, A. Growth inhibition of Clostridium difficile by intestinal flora of infant feces in continuous flow culture. J. Med. Microbiol. 1994, 40, 179–187. [Google Scholar] [CrossRef]
- Fawcett, J.; Scott, J. A rapid and precise method for the determination of urea. J. Clin. Pathol. 1960, 13, 156–159. [Google Scholar] [CrossRef]
- Tilley, J.; Terry, D.R. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS 9.4 Output Delivery System: User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Sriwichai, S.; Monkham, T.; Sanitchon, J.; Jogloy, S.; Chankaew, S. Dual-purpose of the winged bean (Psophocarpus tetragonolobus (L.) DC.), the neglected tropical legume, based on pod and tuber yields. Plants 2021, 10, 1746. [Google Scholar] [CrossRef] [PubMed]
- Suntara, C.; Sombuddee, N.; Lukbun, S.; Kanakai, N.; Srichompoo, P.; Chankaew, S.; Cherdthong, A. In vitro evaluation of winged bean (Psophocarpus tetragonolobus) tubers as an alternative feed for ruminants. Animals 2023, 13, 677. [Google Scholar] [CrossRef]
- Kang, S.; Wanapat, M.; Nunoi, A. Effect of urea and molasses supplementation on quality of cassava top silage. J. Anim. Feed Sci. 2018, 27, 74–80. [Google Scholar] [CrossRef]
- Diepersloot, E.C.; Pupo, M.R.; Ferraretto, L.F. Effect of monensin and live-cell yeast supplementation on lactation performance, feeding behavior, and total-tract nutrient digestibility in dairy cows. J. Dairy Sci. 2024, 107, 4449–4460. [Google Scholar] [CrossRef]
- Gunun, N.; Ouppamong, T.; Khejornsart, P.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; Kaewpila, C.; Kang, S.; Gunun, P. Effects of rubber seed kernel fermented with yeast on feed utilization, rumen fermentation and microbial protein synthesis in dairy heifers. Fermentation 2022, 8, 288. [Google Scholar] [CrossRef]
- Scicutella, F.; Foggi, G.; Daghio, M.; Mannelli, F.; Viti, C.; Mele, M.; Buccioni, A. A review of in vitro approaches as tools for studying rumen fermentation and ecology: Effectiveness compared to in vivo outcomes. Ital. J. Anim. Sci. 2025, 24, 589–608. [Google Scholar] [CrossRef]
- Simeonidis, K.; Attard, E.; Pinotti, L.; Pastorelli, G. In vitro gas production techniques: Preservation methods and challenges in ruminant research—A review. Ann. Anim. Sci. 2025; in press. [Google Scholar] [CrossRef]
- Mao, J.; Wang, L. Rumen acidosis in ruminants: A review of the effects of high-concentrate diets and the potential modulatory role of rumen foam. Front. Vet. Sci. 2025, 12, 1595615. [Google Scholar] [CrossRef] [PubMed]
- Suriyapha, C.; Cherdthong, A.; Suntara, C.; Polyorach, S. Utilization of yeast waste fermented citric waste as a protein source to replace soybean meal and various roughage to concentrate ratios on in vitro rumen fermentation, gas kinetics, and feed digestion. Fermentation 2021, 7, 120. [Google Scholar] [CrossRef]
- Botia-Carreño, E.O.; Elghandour, M.M.M.Y.; Jack, A.; Inyang, U.A.; Kreuzer-Redmer, S.; Salem, A.Z.M. Influence of dietary protein levels on nano-encapsulated Yucca schidigera extract and its effects on in vitro ruminal greenhouse gas production and fermentation dynamics. Sci. Rep. 2025, 15, 9385. [Google Scholar] [CrossRef] [PubMed]
- Satter, L.D.; Roffler, R.E. Nitrogen requirement and utilization in dairy cattle. J. Dairy Sci. 1975, 58, 1219–1237. [Google Scholar] [CrossRef]
- Ramos, S.C.; Jeong, C.D.; Mamuad, L.L.; Kim, S.H.; Kang, S.H.; Kim, E.T.; Cho, Y.I.; Lee, S.S. Diet transition from high forage to high-concentrate alters rumen bacterial community composition, epithelial transcriptomes and ruminal fermentation parameters in dairy cows. Animals 2021, 11, 838. [Google Scholar] [CrossRef]
- Agle, M.; Hristov, A.N.; Zaman, S.; Schneider, C.; Ndegwa, P.M.; Vaddella, V.K. Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows. J. Dairy Sci. 2010, 93, 4211–4222. [Google Scholar] [CrossRef] [PubMed]
- Bünemann, K.; Johannes, M.; Schmitz, R.; Hartwiger, J.; von Soosten, D.; Hüther, L.; Meyer, U.; Westendarp, H.; Hummel, J.; Zeyner, A.; et al. Effects of different concentrate feed proportions on ruminal pH parameters, duodenal nutrient flows and efficiency of microbial crude protein synthesis in dairy cows during early lactation. Animals 2020, 10, 267. [Google Scholar] [CrossRef]
- Ma, S.W.; Arce-Cordero, J.A.; Lobo, R.R.; Sarmikasoglou, E.; Vinyard, J.R.; Johnson, M.L.; Bahman, A.; Dagaew, G.; Sumadong, P.; Siregar, M.U.; et al. In vitro evaluation of slow-release urea compounds. J. Dairy Sci. 2025, 108, 7023–7035. [Google Scholar] [CrossRef]
- Oeztuerk, H. Effect of live and autoclaved yeast cultures on ruminal fermentation in vitro. J. Anim. Feed Sci. 2009, 18, 142–150. [Google Scholar] [CrossRef]
- Musco, N.; Tudisco, R.; Grossi, M.; Mastellone, V.; Morittu, V.M.; Pero, M.E.; Wanapat, M.; Trinchese, G.; Cavaliere, G.; Mollica, M.P.; et al. Effect of a high forage: Concentrate ratio on milk yield, blood parameters and oxidative status in lactating cows. Anim. Prod. Sci. 2020, 60, 1531–1538. [Google Scholar] [CrossRef]
- Olijhoek, D.W.; Hellwing, A.L.F.; Noel, S.J.; Lund, P.; Larsen, M.; Weisbjerg, M.R.; Børsting, C.F. Feeding up to 91% concentrate to Holstein and Jersey dairy cows: Effects on enteric methane emission, rumen fermentation and bacterial community, digestibility, production, and feeding behavior. J. Dairy Sci. 2022, 105, 9523–9541. [Google Scholar] [CrossRef]
- Vivares, G.; Dijkstra, J.; Bannink, A. Modeling diurnal rumen metabolism dynamics in dairy cattle: An update to a mechanistic model representing eating behavior, rumen content, rumination, and acid-base balance. J. Dairy Sci. 2025, 108, 6934–6957. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, G.; Talukder, S.; Dunshea, F.; Chauhan, S.; Jhajj, R.; Cheng, L. In vitro fermentation characteristics of seven commonly used dairy roughages with relatively high and low nutritive values. J. Dairy Sci. 2025, 80, e70000. [Google Scholar] [CrossRef]
- Suárez, B.J.; Van Reenen, C.G.; Stockhofe, N.; Dijkstra, J.; Gerrits, W.J.J. Effect of roughage source and roughage-to-concentrate ratio on animal performance and rumen development in veal calves. J. Dairy Sci. 2007, 90, 2390–2403. [Google Scholar] [CrossRef] [PubMed]
- Calsamiglia, S.; Cardozo, P.W.; Ferret, A.; Bach, A. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. J. Anim. Sci. 2008, 86, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.M.; Mantovani, H.C.; Viquez-Umana, F.; Granja-Salcedo, Y.T.; E Silva, L.F.C.; Koontz, A.; Holder, V.; Pettigrew, J.E.; Rodrigues, A.A.; Rodrigues, A.N.; et al. Feeding amylolytic and fibrolytic exogenous enzymes in feedlot diets: Effects on ruminal parameters, nitrogen balance and microbial diversity of Nellore cattle. J. Anim. Sci. Biotechnol. 2025, 16, 96. [Google Scholar] [CrossRef] [PubMed]
- Blaxter, K.L. The energy metabolism of ruminants. In Digestive Physiology and Metabolism in Ruminants: Proceedings of the 5th; Springer: Springfield, UK, 1962. [Google Scholar]
Item | YFWBT 0% | YFWBT 33% | YFWBT 66% | YFWBT 100% | WBT | YFWBT | Rice Straw |
---|---|---|---|---|---|---|---|
Ingredients, % DM | |||||||
Cassava chips | 45.00 | 45.00 | 45.00 | 45.00 | |||
Soybean meal | 10.00 | 6.70 | 3.40 | 0.00 | |||
YFWBT | 0.00 | 3.30 | 6.60 | 10.00 | |||
Plam kernel meal | 15.80 | 15.50 | 15.30 | 15.10 | |||
Rice bran | 15.00 | 15.00 | 15.00 | 15.00 | |||
Corn meal | 12.00 | 12.00 | 12.00 | 12.00 | |||
Urea | 1.20 | 1.50 | 1.70 | 1.90 | |||
Vitamin and mineral premix | 0.50 | 0.50 | 0.50 | 0.50 | |||
Salt | 0.50 | 0.50 | 0.50 | 0.50 | |||
Chemical composition | |||||||
Dry matter, % | 93.12 | 93.16 | 93.07 | 93.07 | 35.18 | 51.73 | 96.76 |
Organic matter, % DM | 95.60 | 95.68 | 95.87 | 95.96 | 96.53 | 96.15 | 88.74 |
Crude protein, % DM | 14.46 | 14.69 | 14.37 | 14.10 | 15.35 | 17.71 | 3.55 |
Ether extract, % DM | 4.89 | 4.83 | 4.79 | 4.58 | 0.32 | 0.54 | 0.93 |
Neutral detergent fiber, % DM | 22.36 | 22.98 | 23.64 | 24.38 | 24.21 | 19.38 | 70.02 |
Acid detergent fiber, % DM | 10.15 | 6.64 | 9.07 | 9.08 | 10.58 | 6.60 | 47.44 |
R:C Ratio | YFWBT (%) | Gas Kinetics | Cumulative Gas (mL/0.5 g DM Substrate) | ||||
---|---|---|---|---|---|---|---|
b | c | L | 24 h | 48 h | 96 h | ||
60:40 | 0 | 101.7 | 0.040 | 0.60 a | 89.2 | 118.3 | 153.1 |
33 | 101.4 | 0.031 | 0.15 d | 86.0 | 115.4 | 152.2 | |
66 | 103.9 | 0.042 | 0.25 cd | 100.1 | 127.0 | 162.9 | |
100 | 105.2 | 0.042 | 0.15 d | 94.8 | 122.2 | 160.0 | |
50:50 | 0 | 102.9 | 0.040 | 0.25 cd | 94.5 | 122.0 | 157.6 |
33 | 105.8 | 0.052 | 0.40 abcd | 110.3 | 137.2 | 162.4 | |
66 | 96.4 | 0.064 | 0.55 ab | 100.9 | 125.6 | 151.9 | |
100 | 105.3 | 0.054 | 0.30 bcd | 100.3 | 130.0 | 163.1 | |
40:60 | 0 | 98.2 | 0.061 | 0.50 abc | 103.6 | 128.4 | 156.9 |
33 | 103.6 | 0.053 | 0.50 abc | 103.7 | 129.3 | 162.7 | |
66 | 103.7 | 0.054 | 0.50 abc | 110.2 | 134.9 | 163.8 | |
100 | 107.5 | 0.063 | 0.65 a | 108.9 | 135.6 | 167.3 | |
SEM | 2.09 | 0.003 | 0.08 | 10.23 | 12.44 | 13.58 | |
Main effects | |||||||
60:40 | 103.1 | 0.041 b | 0.29 b | 92.5 b | 120.7 b | 157.8 | |
R:C Ratio | 50:50 | 102.6 | 0.050 a | 0.38 b | 101.5 a | 128.5 a | 158.1 |
40:60 | 103.2 | 0.052 a | 0.54 a | 106.6 a | 132.1 a | 163.0 | |
0 | 100.9 b | 0.040 | 0.45 | 95.8 b | 122.9 b | 155.9 | |
YFWBT | 33 | 103.6 ab | 0.041 | 0.35 | 100.0 a | 127.3 a | 159.8 |
66 | 101.4 b | 0.052 | 0.43 | 103.7 a | 129.2 a | 159.5 | |
100 | 105.9 a | 0.042 | 0.37 | 101.3 a | 129.3 a | 163.5 | |
Significance of main effect and interaction | |||||||
R:C Ratio | 0.901 | 0.009 | 0.008 | 0.003 | 0.010 | 0.175 | |
YFWBT | 0.045 | 0.248 | 0.368 | 0.040 | 0.041 | 0.100 | |
Interaction | 0.100 | 0.418 | 0.004 | 0.748 | 0.679 | 0.216 |
R:C Ratio | YFWBT (%) | pH | NH3-N (mg/dL) | ||
---|---|---|---|---|---|
24 h | 48 h | 24 h | 48 h | ||
60:40 | 0 | 6.75 a | 6.75 a | 12.73 ab | 16.56 abc |
33 | 6.75 a | 6.70 ab | 7.66 d | 16.51 abc | |
66 | 6.70 ab | 6.70 ab | 10.85 c | 16.60 ab | |
100 | 6.70 ab | 6.65 b | 11.44 c | 16.50 abc | |
50:50 | 0 | 6.60 c | 6.60 b | 11.97 bc | 16.64 a |
33 | 6.70 ab | 6.60 b | 11.49 c | 16.51 abc | |
66 | 6.70 ab | 6.70 ab | 11.17 c | 16.44 c | |
100 | 6.70 ab | 6.65 b | 11.71 bc | 16.46 bc | |
40:60 | 0 | 6.70 ab | 6.60 b | 11.50 c | 16.54 abc |
33 | 6.65 bc | 6.75 a | 11.94 bc | 16.59 ab | |
66 | 6.70 ab | 6.70 ab | 13.41 a | 16.63 a | |
100 | 6.70 bc | 6.65 b | 13.76 a | 16.63 a | |
SEM | 0.02 | 0.03 | 0.33 | 0.41 | |
Main effects | |||||
60:40 | 6.74 a | 6.70 a | 10.66 c | 16.54 ab | |
R:C Ratio | 50:50 | 6.67 b | 6.63 b | 11.58 b | 16.51 b |
40:60 | 6.66 b | 6.67 ab | 12.65 a | 16.59 a | |
YFWBT | 0 | 6.71 | 6.66 | 12.06 a | 16.58 |
33 | 6.66 | 6.68 | 10.36 b | 16.53 | |
66 | 6.70 | 6.67 | 11.81 a | 16.55 | |
100 | 6.70 | 6.65 | 12.30 a | 16.53 | |
Significance of main effect and interaction | |||||
R:C Ratio | 0.045 | 0.004 | 0.003 | 0.006 | |
YFWBT | 0.801 | 0.050 | 0.005 | 0.407 | |
Interaction | 0.003 | 0.003 | 0.008 | 0.043 |
R:C Ratio | YFWBT (%) | IVDMD (%) | IVOMD (%) | ||
---|---|---|---|---|---|
24 h | 48 h | 24 h | 48 h | ||
60:40 | 0 | 51.26 a | 53.45 e | 51.89 a | 56.38 e |
33 | 45.48 cd | 57.27 c | 46.87 cd | 59.65 c | |
66 | 44.60 cde | 57.17 c | 46.06 d | 59.30 cd | |
100 | 40.78 f | 54.34 de | 43.09 ef | 56.99 de | |
50:50 | 0 | 43.59 def | 53.36 e | 41.87 f | 56.40 e |
33 | 50.18 ab | 56.22 cd | 51.50 a | 59.15 cd | |
66 | 44.85 cde | 52.50 e | 46.55 cd | 55.93 e | |
100 | 41.89 ef | 56.76 cd | 44.18 e | 59.27 cd | |
40:60 | 0 | 51.20 a | 56.09 cd | 53.34 a | 58.83 cd |
33 | 52.67 a | 64.49 a | 53.21 a | 65.81 a | |
66 | 47.45 bc | 60.67 b | 49.49 b | 63.13 b | |
100 | 45.71 cd | 60.26 b | 48.17 bc | 62.53 b | |
SEM | 0.94 | 0.74 | 0.57 | 0.71 | |
Main effects | |||||
60:40 | 45.53 b | 55.55 b | 46.98 b | 58.08 b | |
R:C Ratio | 50:50 | 45.13 b | 54.71 b | 46.02 c | 57.69 b |
40:60 | 49.26 a | 60.38 a | 51.05 a | 62.58 a | |
YFWBT | 0 | 48.69 a | 54.30 c | 49.03 b | 57.20 c |
33 | 49.45 a | 59.32 a | 50.53 a | 61.54 a | |
66 | 45.64 b | 56.78 b | 47.36 c | 59.45 b | |
100 | 42.80 c | 57.12 b | 45.15 d | 59.60 b | |
Significance of main effect and interaction | |||||
R:C Ratio | 0.001 | 0.004 | 0.008 | 0.009 | |
YFWBT | 0.002 | 0.007 | 0.006 | 0.0051 | |
Interaction | 0.001 | 0.003 | 0.002 | 0.010 |
R:C Ratio | YFWBT (%) | Total VFA, mM | Acetic Acid (%, A) | Propionic Acid (%, P) | Butyric Acid (%) | A:P ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | ||
60:40 | 0 | 70.74 | 78.34 c | 62.13 | 64.86 | 22.67 | 26.00 a | 15.18 | 17.96 abcd | 2.74 | 2.49 |
33 | 72.66 | 81.26 c | 61.72 | 59.95 | 22.34 | 22.98 bc | 15.93 | 16.59 de | 2.76 | 2.61 | |
66 | 75.56 | 85.16 cb | 62.95 | 58.43 | 21.45 | 22.10 bc | 15.59 | 15.57 e | 2.93 | 2.65 | |
100 | 72.44 | 80.04 c | 62.33 | 55.82 | 22.04 | 21.67 c | 15.62 | 15.61 e | 2.82 | 2.57 | |
50:50 | 0 | 80.99 | 90.41 b | 60.64 | 54.07 | 22.80 | 22.64 bc | 16.55 | 16.95 cde | 2.65 | 2.39 |
33 | 86.18 | 94.60 ab | 62.01 | 50.52 | 22.29 | 21.74 c | 15.69 | 16.88 cde | 2.78 | 2.33 | |
66 | 88.46 | 98.88 a | 60.31 | 50.78 | 22.76 | 22.24 bc | 16.91 | 16.99 cde | 2.64 | 2.27 | |
100 | 81.65 | 91.07 b | 61.34 | 58.61 | 22.54 | 22.80 bc | 16.11 | 16.26 e | 2.72 | 2.57 | |
40:60 | 0 | 85.06 | 97.62 a | 58.38 | 57.96 | 23.94 | 24.19 abc | 17.66 | 17.80 bcd | 2.44 | 2.40 |
33 | 89.75 | 104.31 a | 59.26 | 54.13 | 23.88 | 24.59 ab | 16.84 | 18.54 ab | 2.48 | 2.20 | |
66 | 85.23 | 98.79 a | 59.17 | 58.72 | 23.86 | 26.22 a | 16.96 | 19.30 a | 2.48 | 2.24 | |
100 | 80.74 | 93.30 ab | 57.24 | 46.97 | 24.86 | 22.45 bc | 17.88 | 18.13 abc | 2.30 | 2.09 | |
SEM | 6.52 | 7.64 | 0.82 | 2.93 | 0.44 | 0.79 | 0.52 | 0.43 | 0.08 | 0.10 | |
Main effects | |||||||||||
60:40 | 72.85 b | 81.20 b | 62.28 a | 59.77 a | 22.13 b | 23.19 ab | 15.58 b | 16.43 b | 2.81 a | 2.58 a | |
R:C Ratio | 50:50 | 84.32 a | 93.74 ab | 61.07 a | 53.50 b | 22.60 b | 22.35 b | 16.31 b | 16.77 b | 2.70 a | 2.39 b |
40:60 | 85.20 a | 98.51 a | 58.51 b | 54.45 b | 24.13 a | 24.36 a | 17.34 a | 18.44 a | 2.42 b | 2.23 c | |
YFWBT | 0 | 78.93 b | 88.79 | 60.38 | 58.97 | 23.14 | 24.28 | 16.47 | 17.57 | 2.61 | 2.43 |
33 | 82.86 a | 93.39 | 61.00 | 54.87 | 22.89 | 23.11 | 16.16 | 17.34 | 2.67 | 2.38 | |
66 | 83.08 a | 94.28 | 60.81 | 55.98 | 22.69 | 23.52 | 16.49 | 17.28 | 2.68 | 2.39 | |
100 | 78.28 b | 88.14 | 60.30 | 53.80 | 23.15 | 22.30 | 16.53 | 16.67 | 2.61 | 2.41 | |
Significance of main effect and interaction | |||||||||||
R:C Ratio | 0.001 | 0.003 | 0.003 | 0.021 | 0.001 | 0.010 | 0.004 | <0.01 | <0.01 | <0.01 | |
YFWBT | 0.002 | 0.091 | 0.691 | 0.211 | 0.523 | 0.050 | 0.817 | 0.12 | 0.55 | 0.92 | |
Interaction | 0.813 | 0.004 | 0.463 | 0.083 | 0.445 | 0.004 | 0.477 | <0.05 | 0.39 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surakhai, T.; Suntara, C.; Srichompoo, P.; Wanapat, M.; Chankaew, S.; Cherdthong, A. The Effects of Fermenting Psophocarpus tetragonolobus Tubers with Candida tropicalis KKU20 as a Soybean Meal Replacement Using an In Vitro Gas Technique. Animals 2025, 15, 2328. https://doi.org/10.3390/ani15162328
Surakhai T, Suntara C, Srichompoo P, Wanapat M, Chankaew S, Cherdthong A. The Effects of Fermenting Psophocarpus tetragonolobus Tubers with Candida tropicalis KKU20 as a Soybean Meal Replacement Using an In Vitro Gas Technique. Animals. 2025; 15(16):2328. https://doi.org/10.3390/ani15162328
Chicago/Turabian StyleSurakhai, Thiraphat, Chanon Suntara, Pachara Srichompoo, Metha Wanapat, Sompong Chankaew, and Anusorn Cherdthong. 2025. "The Effects of Fermenting Psophocarpus tetragonolobus Tubers with Candida tropicalis KKU20 as a Soybean Meal Replacement Using an In Vitro Gas Technique" Animals 15, no. 16: 2328. https://doi.org/10.3390/ani15162328
APA StyleSurakhai, T., Suntara, C., Srichompoo, P., Wanapat, M., Chankaew, S., & Cherdthong, A. (2025). The Effects of Fermenting Psophocarpus tetragonolobus Tubers with Candida tropicalis KKU20 as a Soybean Meal Replacement Using an In Vitro Gas Technique. Animals, 15(16), 2328. https://doi.org/10.3390/ani15162328