Genetic and Environmental Factors Contributing to the Pathogenesis of Vertebral Osteomyelitis Caused by Enterococcus cecorum in Broiler Chicken
Simple Summary
Abstract
1. Introduction
2. Methods
3. The Etiology of Vertebral Osteomyelitis in Broiler
4. Characteristics of Enterococcal Bone Diseases in Poultry
4.1. Initiation of Infection and Clinical Signs
4.2. Identification of Enterococcus cecorum
5. Internal Factors of Enterococcus cecorum Infection
5.1. Genetic Characteristics of Pathogenic and Commensal EC
5.2. Physiological Features of Enterococcus cecorum
6. External Factors of Enterococcus cecorum Pathogenicity
6.1. Environmental Factors
6.2. Host Factors
6.3. Potential Treatment
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARG | Antimicrobial Resistance Gene |
BCO | Bacterial Chondronecrosis with Osteomyelitis |
C | Celcius |
CNA | Colixin-Nalidixic Acid |
EC | Enterococcus cecorum |
FAdv | Fowl Adenovirus |
FTV | Free Thoracic Vertebra |
IBDV | Infectious Bursal Disease Virus |
MGE | Mobile Genetic Element |
NDV | Newcastle Disease Virus |
NaCl | Natrium Chloride |
RH | Relative Humidity |
VO | Vertebral Osteomyelitis |
References
- Anthney, A.; Do, A.D.T.; Alrubaye, A.A.K. Bacterial chondronecrosis with osteomyelitis lameness in broiler chickens and its implications for welfare, meat safety, and quality: A review. Front. Physiol. 2024, 15, 1452318. [Google Scholar] [CrossRef] [PubMed]
- Granquist, E.G.; Vasdal, G.; de Jong, I.C.; Moe, R.O. Lameness and its relationship with health and production measures in broiler chickens. Animal 2019, 13, 2365–2372. [Google Scholar] [CrossRef] [PubMed]
- Souillard, R.; Laurentie, J.; Kempf, I.; Le Caër, V.; Le Bouquin, S.; Serror, P.; Allain, V. Increasing incidence of Enterococcus-associated diseases in poultry in France over the past 15 years. Vet. Microbiol. 2022, 269, 109426. [Google Scholar] [CrossRef]
- Dunnam, G.; Thornton, J.K.; Pulido-Landinez, M. Characterization of an Emerging Enterococcus cecorum Outbreak Causing Severe Systemic Disease with Concurrent Leg Problems in a Broiler Integrator in the Southern United States. Avian Dis. 2023, 67, 137–144. [Google Scholar] [CrossRef]
- Jung, A.; Rautenschlein, S. Comprehensive report of an Enterococcus cecorum infection in a broiler flock in Northern Germany. BMC Vet. Res. 2014, 10, 311. [Google Scholar] [CrossRef]
- Dolka, B.; Chrobak-Chmiel, D.; Makrai, L.; Szeleszczuk, P. Phenotypic and genotypic characterization of Enterococcus cecorum strains associated with infections in poultry. BMC Vet. Res. 2016, 12, 129. [Google Scholar] [CrossRef]
- Harada, T.; Kawahara, R.; Kanki, M.; Taguchi, M.; Kumeda, Y. Isolation and characterization of vanA genotype vancomycin-resistant Enterococcus cecorum from retail poultry in Japan. Int. J. Food Microbiol. 2012, 153, 372–377. [Google Scholar] [CrossRef]
- Robbins, K.M.; Suyemoto, M.M.; Lyman, R.L.; Martin, M.P.; Barnes, H.J.; Borst, L.B. An Outbreak and Source Investigation of Enterococcal Spondylitis in Broilers Caused by Enterococcus cecorum. Avian Dis. 2012, 56, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.S.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Rojas, J.L.G.; Gortázar, C.; Herskin, M. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Antimicrobial-resistant Enterococcus cecorum in poultry. EFSA J. 2022, 20, e07126. [Google Scholar] [CrossRef]
- Wideman, R.F., Jr. Bacterial chondronecrosis with osteomyelitis and lameness in broilers: A review. Poult. Sci. 2016, 95, 325–344. [Google Scholar] [CrossRef] [PubMed]
- Borst, L.B.; Suyemoto, M.M.; Keelara, S.; Dunningan, S.E.; Guy, J.S.; Barnes, H.J. A Chicken Embryo Lethality Assay for Pathogenic Enterococcus cecorum. AVIAN Dis. 2014, 58, 244–248. [Google Scholar] [CrossRef]
- Dolka, B.; Czopowicz, M.; Dolka, I.; Szeleszczuk, P. Chicken embryo lethality assay for determining the lethal dose, tissue distribution and pathogenicity of clinical Enterococcus cecorum isolates from poultry. Sci. Rep. 2022, 12, 10675. [Google Scholar] [CrossRef] [PubMed]
- Braga, J.F.; Silva, C.C.; Teixeira, M.P.; Martins, N.R.; Ecco, R. Vertebral osteomyelitis associated with single and mixed bacterial infection in broilers. Avian Pathol. 2016, 45, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Combar, D.O.; Rubite, S.; Scott, P.C.; Campbell, B.E.; Van, T.T.H. Research Note: Comparison of Enterococcus cecorum genomes from broiler chickens with enterococcal spondylitis in Australian farms and strains from other countries. Poult. Sci. 2024, 103, 104356. [Google Scholar] [CrossRef] [PubMed]
- Aitchison, H.; Poolman, P.; Coetzer, M.; Griffiths, C.; Jacobs, J.; Meyer, M.; Bisschop, S. Enterococcal-related vertebral osteoarthritis in South African broiler breeders: A case report. J. South Afr. Vet. Assoc. 2014, 85, 1–5. [Google Scholar] [CrossRef]
- Grund, A.; Rautenschlein, S.; Jung, A. Detection of Enterococcus cecorum in the drinking system of broiler chickens and examination of its potential to form biofilms. Eur. Poult. Sci. 2022, 86, 1–15. [Google Scholar] [CrossRef]
- Borst, L.B.; Suyemoto, M.M.; Sarsour, A.H.; Harris, M.C.; Martin, M.P.; Strickland, J.D.; Oviedo, E.O.; Barnes, H.J. Pathogenesis of Enterococcal Spondylitis Caused by Enterococcus cecorum in Broiler Chickens. Vet. Pathol. 2017, 54, 61–73. [Google Scholar] [CrossRef]
- Stalker, M.J.; Brash, M.L.; Weisz, A.; Ouckama, R.M.; Slavic, D. Arthritis and Osteomyelitis Associated with Enterococcus cecorum Infection in Broiler and Broiler Breeder Chickens in Ontario, Canada. J. Vet. Diagn. Investig. 2010, 22, 643–645. [Google Scholar] [CrossRef]
- Lake, A.D.; Fields, R.; Guerrero, F.; Almuzaini, Y.; Sundaresh, K.; Staffetti, J. Case of Enterococcus cecorum Human Bacteremia, United States. HCA Healthc. J. Med. 2020, 1, 495. [Google Scholar] [CrossRef]
- Kodana, M.; Imai, K.; Takayama, T.; Suzuki, M.; Kawamura, T.; Omachi, R.; Asano, H.; Maeda, T. Acute cholangitis caused by coinfection with zoonotic pathogens of Gallibacterium anatis and Enterococcus cecorum: A case report. Int. J. Infect. Dis. 2025, 150, 107292. [Google Scholar] [CrossRef]
- Lundy, A.; Claudinon, A.; Tirolien, J.A.; Plantefève, G.; Contou, D. Purpura fulminans due to Enterococcus cecorum in an asplenic patient. IDCases 2022, 29, e01522. [Google Scholar] [CrossRef]
- Szymanski, M.; Skiba, M.M.; Piasecka, M.; Olender, A. A rare case of invasive Enterococcus cecorum infection and related diagnostic difficulties. Clin. CASE Rep. 2024, 12, e9386. [Google Scholar] [CrossRef]
- Zuidhof, M.J.; Schneider, B.L.; Carney, V.L.; Korver, D.R.; Robinson, F.E. Growth; efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poult. Sci. 2014, 93, 12. [Google Scholar] [CrossRef]
- Al-Rubaye, A.A.K.; Ekesi, N.S.; Zaki, S.; Emami, N.K.; Wideman, R.F.; Rhoads, D.D. Chondronecrosis with osteomyelitis in broilers: Further defining a bacterial challenge model using the wire flooring model. Poult. Sci. 2017, 96, 332–340. [Google Scholar] [CrossRef]
- Braga, J.F.V.; Martins, N.R.S.; Ecco, R. Vertebral Osteomyelitis in Broilers: A Review. Braz. J. Poult. Sci. 2018, 20, 605–615. [Google Scholar] [CrossRef]
- Wideman, R.F.; Prisby, R.D. Bone Circulatory Disturbances in the Development of Spontaneous Bacterial Chondronecrosis with Osteomyelitis: A Translational Model for the Pathogenesis of Femoral Head Necrosis. Front. Endocrinol. 2013, 3, 183. (In English) [Google Scholar] [CrossRef] [PubMed]
- Applegate, T.J.; Lilburn, M.S. Growth of the femur and tibia of a commercial broiler line. Poult. Sci. 2002, 81, 1289–1294. [Google Scholar] [CrossRef] [PubMed]
- Damaziak, K.; Charuta, A.; Niemiec, J.; Tatara, M.R.; Krupski, W.; Gozdowski, D.; Kruzińska, B. Femur and tibia development in meat-type chickens with different growth potential for 56 days of rearing period. Poult. Sci. 2019, 98, 7063–7075. [Google Scholar] [CrossRef]
- Dinev, I. Pathomorphological Investigations on the Incidence of Axial Skeleton Pathology Associated with Posterior Paralysis in Commercial Broiler Chickens. J. Poult. Sci. 2013, 50, 283–289. [Google Scholar] [CrossRef]
- Wise, D.R. Spondylolisthesis (‘Kinky Back’) in Broiler Chickens. Res. Vet. Sci. 1970, 11, 447–455. [Google Scholar] [CrossRef]
- Menck-Costa, M.F.; Huijboom, J.A.; de Souza, M.; Justino, L.; da Costa, A.R.; Bracarense, A.P.F.; Pereira, U.P.; Baptista, A.A.S. Vertebral osteomyelitis caused by Enterococcus faecalis in broiler chickens from Southern Brazil. Pesqui. Veterinária Bras. 2024, 44, e07317. [Google Scholar] [CrossRef]
- Mitchell, R. Broiler lameness in the United States: An industry perspective. In Proceedings of the 25th Annual Australian. Poulttry Science Symposium, Sydney, New South Wales, 16–19 February 2014; Volume 175. [Google Scholar]
- Higuita, J.; Arango, M.; Forga, A.; Rowland, M.; Liu, J.; Wolfenden, R.; Graham, D. Development of a horizontal transmission model to assess the effects of exposure to pathogenic E. cecorum during the hatching phase in broiler chickens. Poult. Sci. 2025, 104, 104488. [Google Scholar] [PubMed]
- National Center for Biotechnology Information (NCBI). National Library of Medicine, National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 20 June 2025).
- Cádiz, L.; Guzmán, M.; Navarrete, F.; Torres, P.; Hidalgo, H. Vertebral osteomyelitis associated with Enterococcus faecalis in Broiler Breeders in Chile. Austral J. Vet. Sci. 2023, 55, 203–207. [Google Scholar] [CrossRef]
- Devriese, L.A.; Cauwerts, K.; Hermans, K.; Wood, A.M. Enterococcus cecorum septicemia as a cause of bone and joint lesions resulting in lameness in broiler chickens. Vlaams Diergeneeskd. Tijdschr. 2002, 71, 219–221. [Google Scholar] [CrossRef]
- Kense, M.; Landman, W.J. Enterococcus cecorum infections in broiler breeders and their offspring: Molecular epidemiology. Avian Pathol. 2011, 40, 603–612. [Google Scholar] [CrossRef]
- Deslauriers, N.; Boulianne, M. Genetic Comparison of Enterococcus Species Isolated from Osteomyelitis Lesions and the Barn Environment of Successive Broiler Chicken Flocks. Avian Diseases 2025, 68 (Suppl. S1), 421–426. [Google Scholar] [CrossRef]
- Schreier, J.; Rautenschlein, S.; Jung, A. Different virulence levels of Enterococcus cecorum strains in experimentally infected meat-type chickens. PLoS ONE 2021, 16, e0259904. [Google Scholar] [CrossRef]
- Martin, L.T.; Martin, M.P.; Barnes, H.J. Experimental Reproduction of Enterococcal Spondylitis in Male Broiler Breeder Chickens. Avian Dis. 2011, 55, 273–278. [Google Scholar] [CrossRef]
- Jung, A.; Metzner, M.; Ryll, M. Comparison of pathogenic and non-pathogenic Enterococcus cecorum strains from different animal species. BMC Microbiol. 2017, 17, 33. [Google Scholar] [CrossRef]
- Huang, Y.; Eeckhaut, V.; Goossens, E.; Rasschaert, G.; Van Erum, J.; Roovers, G.; Ducatelle, R.; Antonissen, G.; Van Immerseel, F. Bacterial chondronecrosis with osteomyelitis related Enterococcus cecorum isolates are genetically distinct from the commensal population and are more virulent in an embryo mortalitymodel. Vet. Res. 2023, 54, 13. [Google Scholar] [CrossRef]
- Arango, M.; Forga, A.; Liu, J.; Zhang, G.; Gray, L.; Moore, R.; Coles, M.; Atencio, A.; Trujillo, C.; Latorre, J.D.; et al. Characterizing the impact of Enterococcus cecorum infection during late embryogenesis on disease progression, cecal microbiome composition, and early performance in broiler chickens. Poult. Sci. 2023, 102, 103059. [Google Scholar] [CrossRef] [PubMed]
- Manders, T.; Benedictus, L.; Spaninks, M.; Matthijs, M. Enterococcus cecorum lesion strains are less sensitive to the hostile environment of albumen and more resistant to lysozyme compared to cloaca strains. Avian Pathol. 2024, 53, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Watson, K.; Arais, L.; Green, S.; O’KAne, P.; Kirchner, M.; Demmers, T.; Commins, C.; Smith, R.; Cordoni, G.; Kyriazakis, I.; et al. Towards the identification of transmission pathways and early detection of Enterococcus cecorum infection in broiler chickens. Poult. Sci. 2024, 103, 104224. [Google Scholar] [CrossRef]
- Grund, A.; Rautenschlein, S.; Jung, A. Tenacity of Enterococcus cecorum at different environmental conditions. J. Appl. Microbiol. 2021, 130, 1494–1507. [Google Scholar] [CrossRef]
- Tessin, J.; Rohde, J.; Jung, A.R.; Kemper, N.; Schulz, J.; Note, R. first detection of Enterococcus cecorum from environmental samples by streaking on X-Gluc containing selective media. Poult. Sci. 2024, 103, 103253. [Google Scholar] [CrossRef]
- Mreches, R.; McHardy, A.C.; Bischl, B.; Moosbauer, J.; Gündüz, H.A.; Klawitter, S.; Deng, Z.-L.; Franzosa, E.; Huttenhower, C.; Robertson, G.; et al. GenomeNet/deepG: DeepG, pre-release version. Zenodo 2021. [Google Scholar] [CrossRef]
- Suyemoto, M.M.; Walker, G.K.; Taldo, U.; Diveley, K.R.; Borst, L.B. Development and Application of Optimized Isolation Methods and Diagnostic PCR Protocols for the Detection of Pathogenic Enterococcus cecorum Isolated from Broiler Chickens. Avian Diseases 2025, 68 (Suppl. S1), 427–434. [Google Scholar] [CrossRef]
- Chang, J.D.; Wallace, A.G.; Foster, E.E.; Kim, S.J. Peptidoglycan compositional analysis of Enterococcus faecalis biofilm by stable isotope labeling by amino acids in bacterial culture. Biochemistry 2018, 57, 1274–1283. [Google Scholar] [CrossRef]
- Rhoads, D.D.; Pummill, J.; Alrubaye, A.A.K. Molecular Genomic Analyses of Enterococcus cecorum from Sepsis Outbreaks in Broilers. Microorganisms 2024, 12, 250. [Google Scholar] [CrossRef]
- Boerlin, P.; Nicholson, V.; Brash, M.; Slavic, D.; Boyen, F.; Sanei, B.; Butaye, P. Diversity of Enterococcus cecorum from chickens. Vet. Microbiol. 2012, 157, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Wijetunge, D.S.; Dunn, P.; Wallner-Pendleton, E.; Lintner, V.; Lu, H.G.; Kariyawasam, S. Fingerprinting of poultry isolates of Enterococcus cecorum using three molecular typing methods. J. Vet. Diagn. Investig. 2012, 24, 1166–1171. [Google Scholar] [CrossRef] [PubMed]
- Laurentie, J.; Loux, V.; Hennequet-Antier, C.; Chambellon, E.; Deschamps, J.; Trotereau, A.; Furlan, S.; Darrigo, C.; Kempf, F.; Lao, J.; et al. Comparative Genome Analysis of Enterococcus cecorum Reveals Intercontinental Spread of a Lineage of Clinical Poultry Isolates. mSphere 2023, 8, e00495-22. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Boyen, F.; Antonissen, G.; Vereecke, N.; Van Immerseel, F. The Genetic Landscape of Antimicrobial Resistance Genes in Enterococcus cecorum Broiler Isolates. Antibiotics 2024, 13, 409. [Google Scholar] [CrossRef]
- Hess, M. Commensal or pathogen—A challenge to fulfil Koch’s Postulates. Br. Poult. Sci. 2017, 58. [Google Scholar] [CrossRef]
- Beutler, B. Pathogens, Commensals, and Immunity: From the Perspective of the Urinary Bladder. Pathogens 2016, 5, 5. [Google Scholar] [CrossRef]
- García-Solache, M.; Rice, L.B. The Enterococcus: A Model of Adaptability to Its Environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [Google Scholar] [CrossRef]
- Jackson, C.; Kariyawasam, S.; Borst, L.; Frye, J.; Barrett, J.; Hiott, L.; Woodley, T. Antimicrobial resistance, virulence determinants and genetic profiles of clinical and nonclinical Enterococcus cecorum from poultry. Lett. Appl. Microbiol. 2015, 60, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Laurentie, J.; Mourand, G.; Grippon, P.; Furlan, S.; Chauvin, C.; Jouy, E.; Serror, P.; Kempf, I.; Barrs, V.R. Determination of Epidemiological Cutoff Values for Antimicrobial Resistance of Enterococcus cecorum. J. Clin. Microbiol. 2023, 61, e01445-22. [Google Scholar] [CrossRef]
- Schreier, J.; Karasova, D.; Crhanova, M.; Rychlik, I.; Rautenschlein, S.; Jung, A. Influence of lincomycin-spectinomycin treatment on the outcome of Enterococcus cecorum infection and on the cecal microbiota in broilers. Gut Pathog. 2022, 14, 3. (In English) [Google Scholar] [CrossRef]
- Avberšek, J.; Mićunović, J.; Šemrov, N.; Ocepek, M. Surveillance of the source of poultry infections with Enterococcus hirae and Enterococcus cecorum in Slovenia and E. hirae antibiotic resistance patterns. New Microbiol. 2021, 44, 210–216. (In English) [Google Scholar]
- Jung, A.; Chen, L.R.; Suyemoto, M.M.; Barnes, H.J.; Borst, L.B. A Review of Enterococcus cecorum Infection in Poultry. Avian Dis. 2018, 62, 261–271. (In English) [Google Scholar] [CrossRef]
- Dolka, B.; Czopowicz, M.; Chrobak-Chmiel, D.; Ledwon, A.; Szeleszczuk, P. Prevalence, antibiotic susceptibility and virulence factors of Enterococcus species in racing pigeons (Columba livia f. domestica). BMC Vet. Res. 2020, 16, 7. [Google Scholar] [CrossRef]
- Borst, L.B.; Suyemoto, M.M.; Scholl, E.H.; Fuller, F.J.; Barnes, H.J. Comparative Genomic Analysis Identifies Divergent Genomic Features of Pathogenic Enterococcus cecorum Including a Type IC CRISPR-Cas System, a Capsule Locus, an epa-Like Locus, and Putative Host Tissue Binding Proteins. PLoS ONE 2015, 10, e0121294. [Google Scholar] [CrossRef]
- Manders, T.T.M.; van Eck, J.H.H.; Buter, G.J.; Landman, W.J.M. Assessment of the best inoculation route for virulotyping Enterococcus cecorum strains in a chicken embryo lethality assay. Avian Pathol. 2022, 51, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Libertin, C.R.; Dumitru, R.; Stein, D.S. The hemolysin/bacteriocin produced by enterococci is a marker of pathogenicity. Diagn. Microbiol. Infect. Dis. 1992, 15, 115–120. [Google Scholar] [CrossRef]
- Schreier, J.; Rychlik, I.; Karasova, D.; Crhanova, M.; Breves, G.; Rautenschlein, S.; Jung, A. Influence of heat stress on intestinal integrity and the caecal microbiota during Enterococcus cecorum infection in broilers. Vet. Res. 2022, 53, 110. [Google Scholar] [CrossRef]
- Rocchi, A.J.; Santamaria, J.M.; Beck, C.N.; Sales, M.A.; Hargis, B.M.; Tellez-Isaias, G.; Erf, G.F. The Immuno-Suppressive Effects of Cyclic, Environmental Heat Stress in Broiler Chickens: Local and Systemic Inflammatory Responses to an Intradermal Injection of Lipopolysaccharide. Vet. Sci. 2023, 11, 16. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Zhao, N.; Xing, L.; Gong, R.; Li, T.; Zhang, S.; Li, J.; Bao, J. Effects of Acute Cold Stress after Intermittent Cold Stimulation on Immune-Related Molecules, Intestinal Barrier Genes, and Heat Shock Proteins in Broiler Ileum. Animals 2022, 12, 3260. [Google Scholar] [CrossRef] [PubMed]
- López-López, P.; Sarmiento-Franco, L.A.; Santos-Ricalde, R. Effect of stocking density on performance, infection by Eimeria spp., intestinal lesions and foot pad injuries in broilers with outdoor access under tropical conditions. Br. Poult. Sci. 2022, 63, 108–114. [Google Scholar] [CrossRef]
- Guinebretière, M.; Warin, L.; Moysan, J.; Méda, B.; Mocz, F.; Le Bihan-Duval, E.; Thomas, R.; Keita, A.; Mignon-Grasteau, S. Effects of strain and stocking density on leg health, activity, and use of enrichments in conventional broiler chicken production. Poult. Sci. 2024, 103, 103993. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.B.; Choi, S.; Park, J.; Xuan, B. Effects of Increased Housing Space Without Altering Stocking Density on Body Weight, Stress, and Gut Microbiome in Broiler Chickens. Animals 2025, 15, 441. [Google Scholar] [CrossRef]
- Tessin, J.; Jung, A.; Silberborth, A.; Rohn, K.; Schulz, J.; Visscher, C.; Kemper, N. Detection of Enterococcus cecorum to identify persistently contaminated locations using faecal and environmental samples in broiler houses of clinically healthy flocks. Avian Pathol. 2024, 53, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Hankel, J.; Bodmann, B.; Todte, M.; Galvez, E.; Strowig, T.; Radko, D.; Antakli, A.; Visscher, C. Comparison of Chicken Cecal Microbiota after Metaphylactic Treatment or Following Administration of Feed Additives in a Broiler Farm with Enterococcal Spondylitis History. Pathog. 2021, 10, 1068. [Google Scholar] [CrossRef]
- Stege, P.B.; Schokker, D.; Harders, F.; Kar, S.K.; Stockhofe, N.; Perricone, V.; Rebel, J.M.J.; de Jong, I.C.; Bossers, A. Diet-induced changes in the jejunal microbiota of developing broilers reduce the abundance of Enterococcus hirae and Enterococcus faecium. BMC Genom. 2024, 25, 627. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, K.; Ekesi, N.; Hasan, A.; Asnayanti, A.; Liu, J.; Murugesan, R.; Ramirez, S.; Rochell, S.; Kidd, M.T.; Alrubaye, A. Deoxynivalenol and fumonisin predispose broilers to bacterial chondronecrosis with osteomyelitis lameness. Poult. Sci. 2024, 103, 103598. [Google Scholar] [CrossRef]
- Antonissen, G.; Van Immerseel, F.; Pasmans, F.; Ducatelle, R.; Janssens, G.P.J.; De Baere, S.; Mountzouris, K.C.; Su, S.; Wong, E.A.; De Meulenaer, B.; et al. Mycotoxins Deoxynivalenol and Fumonisins Alter the Extrinsic Component of Intestinal Barrier in Broiler Chickens. J. Agric. Food Chem. 2015, 63, 10846–10855. [Google Scholar] [CrossRef]
- Borda-Molina, D.; Vital, M.; Sommerfeld, V.; Rodehutscord, M.; Camarinha-Silva, A. Frontiers|Insights into Broilers’ Gut Microbiota Fed with Phosphorus, Calcium, and Phytase Supplemented Diets. Front. Microbiol. 2016, 7, 2033. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, J.; Wang, X.; Robinson, K.; Whitmore, M.A.; Stewart, S.N.; Zhao, J.; Zhang, G. Identification of an Intestinal Microbiota Signature Associated with the Severity of Necrotic Enteritis. Front. Front. Front. Microbiol. 2021, 12, 703693. [Google Scholar] [CrossRef]
- Calefi, A.S.; de Siqueira, A.; Namazu, L.B.; Costola-De-Souza, C.; Honda, B.B.T.; Ferreira, A.J.P.; Quinteiro-Filho, W.M.; Fonseca, J.G.d.S.; Palermo-Neto, J. Effects of heat stress on the formation of splenic germinal centres and immunoglobulins in broilers infected by Clostridium perfringens type A. Vet. Immunol. Immunopathol. 2016, 171, 38–46. [Google Scholar] [CrossRef]
- Wu, G.-D.; Pan, A.; Zhang, X.; Cai, Y.-Y.; Wang, Q.; Huang, F.-Q.; Alolga, R.N.; Li, J.; Qi, L.-W.; Liu, Q. Cordyceps Improves Obesity and its Related Inflammation via Modulation of Enterococcus cecorum Abundance and Bile Acid Metabolism. Am. J. Chin. Med. 2022, 50, 817–838. [Google Scholar] [CrossRef] [PubMed]
- Özkan, K. Relationship between blood glucose levels and Enterococcus cecorum found in kinky back disease in chickens. JAPS J. Anim. Plant Sci. 2022, 32, 918. [Google Scholar] [CrossRef]
- Figueiredo, D.; Gertler, A.; Cabello, G.; Decuypere, E.; Buyse, J.; Dridi, S. Leptin downregulates heat shock protein-70 (HSP-70) gene expression in chicken liver and hypothalamus. Cell Tissue Res. 2007, 329, 91–101. [Google Scholar] [CrossRef]
- Rajkumar, U.; Vinoth, A.; Reddy, E.P.K.; Shanmugam, M.; Rao, S.V.R. Effect of Supplemental Trace Minerals on Hsp-70 mRNA Expression in Commercial Broiler Chicken. Anim. Biotechnol. 2018, 29, 20–25. [Google Scholar] [CrossRef]
- Dridi, S.; Decuypere, E.; Buyse, J. Cerulenin upregulates heat shock protein-70 gene expression in chicken muscle. Poult. Sci. 2013, 92, 2745–2753. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Deo, C.; Sharma, D.; Matin, A.; Tiwari, A.K. Production performance; haematological parameters; serum biochemistry, and expression of HSP-70 in broiler chickens fed dietary ascorbic acid during heat stress. Int. J. Biometeorol. 2024, 68, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Manders, T.; Kense, M.; Dijkman, R.; Wiegel, J.; Matthijs, M.; de Wit, S. Co-infections of Enterococcus cecorum and various avian pathogens resulted in varying rates of SPF broilers with an E. cecorum infection. Avian Pathol. 2025, 54, 438–449. [Google Scholar] [CrossRef]
- Gurung, A.; Kamble, N.; Kaufer, B.B.; Pathan, A.; Behboudi, S. Association of Marek’s Disease induced immunosuppression with activation of a novel regulatory T cells in chickens. PLOS Pathog. 2017, 13, e1006745. [Google Scholar] [CrossRef]
- Faiz, N.M.; Cortes, A.L.; Guy, J.S.; Reddy, S.M.; Gimeno, I.M. Differential attenuation of Marek’s disease virus-induced tumours and late-Marek’s disease virus-induced immunosuppression. J. Gen. Virol. 2018, 99, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Alkie, T.N.; Rautenschlein, S. Infectious bursal disease virus in poultry: Current status and future prospects. Vet. Med. Res. Rep. 2016, 7, 9–18. [Google Scholar] [CrossRef]
- Reddy, V.R.; Bianco, C.; Poulos, C.; Egana-Labrin, S.C.; Nazki, S.; Schock, A.; Broadbent, A.J. Molecular characterization of reassortant infectious bursal disease virus (IBDV) strains of genogroup A3B1 detected in some areas of Britain between 2020 and 2021. Virology 2024, 600, 110269. [Google Scholar] [CrossRef]
- Meng, F.; Dong, G.; Zhang, Y.; Tian, S.; Cui, Z.; Chang, S.; Zhao, P. Co-infection of fowl adenovirus with different immunosuppressive viruses in a chicken flock. Poult. Sci. 2018, 97, 1699–1705. [Google Scholar] [CrossRef] [PubMed]
- Borst, L.; McLamb, K.; Suyemoto, M.; Chen, L.; Levy, M.; Sarsour, A.; Cordova, H.; Barnes, H.; Oviedo-Rondón, E. Coinfection with Eimeria spp. decreases bacteremia and spinal lesions caused by pathogenic Enterococcus cecorum. Anim. Feed Sci. Technol. 2019, 250, 59–68. [Google Scholar] [CrossRef]
- Steinerova, M.; Horecky, C.; Knoll, A.; Nedomova, S.; Slama, P.; Pavlik, A. Study of genes polymorphisms in RANK/RANKL/OPG and WNT signaling pathways and their associations with bone parameters in broiler chicken. Heliyon 2023, 9, e22371. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Sun, C.; Qu, L.; Shen, M.; Dou, T.; Ma, M.; Wang, K.; Yang, N. Genetic architecture of bone quality variation in layer chickens revealed by a genome-wide association study. Sci. Rep. 2017, 7, 45317. [Google Scholar] [CrossRef]
- Abeyesinghe, S.; Chancellor, N.; Moore, D.H.; Chang, Y.-M.; Pearce, J.; Demmers, T.; Nicol, C. Associations between behaviour and health outcomes in conventional and slow-growing breeds of broiler chicken. Animal 2021, 15, 100261. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.R.; Suyemoto, M.M.; Sarsour, A.H.; Cordova, H.A.; Oviedo-Rondón, E.O.; Barnes, H.J.; Borst, L.B. Prevalence and severity of osteochondrosis of the free thoracic vertebra in three modern broiler strains and the Athens Canadian Random Bred control broiler. Avian Pathol. 2018, 47, 152–160. [Google Scholar] [CrossRef]
- Shim, M.Y.; Karnuah, A.B.; Mitchell, A.D.; Anthony, N.B.; Pesti, G.M.; Aggrey, S.E. The effects of growth rate on leg morphology and tibia breaking strength, mineral density, mineral content, and bone ash in broilers. Poult. Sci. 2012, 91, 1790–1795. [Google Scholar] [CrossRef]
- Siegel, P.B.B.; Barger, K.; Siewerdt, F. Limb Health in Broiler Breeding: History Using Genetics to Improve Welfare. J. Appl. Poult. Res. 2019, 28, 785–790. [Google Scholar] [CrossRef]
- Kapell, D.N.R.G.; Duggan, B.; Avendaño, S.; Burnside, T.A.; Nieuwenhoven, A.-M.N.-V. Genetics of gait score in broilers: Genetic parameters of gait score in purebred broiler lines. Poult. Sci. 2025, 104, 105070. [Google Scholar] [CrossRef]
- Giovagnoni, G.; Tugnoli, B.; Piva, A.; Grilli, E. Organic Acids and Nature Identical Compounds Can Increase the Activity of Conventional Antibiotics Against Clostridium perfringens and Enterococcus cecorum In Vitro. J. Appl. Poult. Res. 2019, 28, 1398–1407. [Google Scholar] [CrossRef]
- Fernández, S.M.; Cretenet, M.; Bernardeau, M. In vitro inhibition of avian pathogenic Enterococcus cecorum isolates by probiotic Bacillus strains. Poult. Sci. 2019, 98, 2338–2346. [Google Scholar] [CrossRef]
- Borst, L.B.; Suyemoto, M.M.; Chen, L.R.; Barnes, H.J. Vaccination of breeder hens with a polyvalent killed vaccine for pathogenic Enterococcus cecorum does not protect offspring from enterococcal spondylitis. Avian Pathol. 2019, 48, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Mignon-Grasteau, S.; Chantry-Darmon, C.; Boscher, M.-Y.; Sellier, N.; Chabault-Dhuit, M.; Le Bihan-Duval, E.; Narcy, A. Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL Mapp. study. Bone Rep. 2016, 5, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Gupta, S.K.; Barrett, J.B.; Hiott, L.M.; Woodley, T.A.; Kariyawasam, S.; Frye, J.G.; Jackson, C.R. Comparison of Antimicrobial Resistance and Pan-Genome of Clinical and Non-Clinical Enterococcus cecorum from Poultry Using Whole-Genome Sequencing. Foods 2020, 9, 686. [Google Scholar] [CrossRef]
- Schuck-Paim, C.; Schuck-Paim, C.; Alonso, W.J.; Alonso, W. Major Gaps in Poultry Welfare Research. 2023. Available online: https://welfarefootprint.org/2023/07/07/major-gaps-in-poultry-welfare-research/ (accessed on 5 August 2025). [CrossRef]
- Pires, A.F.A.; Peterson, A.; Baron, J.N.; Adams, R.; Martínez-López, B.; Moore, D.; Dórea, F.C. Small-scale and backyard livestock owners needs assessment in the western United States. PLoS ONE 2019, 14, e0212372. [Google Scholar] [CrossRef]
Features | Commensal | Pathogenic | References |
---|---|---|---|
Lysozyme susceptibility | Lysozyme-susceptible, thus lower survival in egg albumen | Lysozyme-resistant, 320 times stronger living in egg albumen | [44,66] |
Biofilm formation | Weak–strong | Weak–no biofilm, weak–strong unrepeatable result | [16] |
Mannitol Fermentation | Generally possesses the ability to metabolize mannitol | Defect in mannitol metabolism High mortality Reducing weight gain in host | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musyahadah, U.S.A.; Asnayanti, A.; Do, A.D.T.; Alrubaye, A. Genetic and Environmental Factors Contributing to the Pathogenesis of Vertebral Osteomyelitis Caused by Enterococcus cecorum in Broiler Chicken. Animals 2025, 15, 2327. https://doi.org/10.3390/ani15162327
Musyahadah USA, Asnayanti A, Do ADT, Alrubaye A. Genetic and Environmental Factors Contributing to the Pathogenesis of Vertebral Osteomyelitis Caused by Enterococcus cecorum in Broiler Chicken. Animals. 2025; 15(16):2327. https://doi.org/10.3390/ani15162327
Chicago/Turabian StyleMusyahadah, Ummu Syauqah Al, Andi Asnayanti, Anh Dang Trieu Do, and Adnan Alrubaye. 2025. "Genetic and Environmental Factors Contributing to the Pathogenesis of Vertebral Osteomyelitis Caused by Enterococcus cecorum in Broiler Chicken" Animals 15, no. 16: 2327. https://doi.org/10.3390/ani15162327
APA StyleMusyahadah, U. S. A., Asnayanti, A., Do, A. D. T., & Alrubaye, A. (2025). Genetic and Environmental Factors Contributing to the Pathogenesis of Vertebral Osteomyelitis Caused by Enterococcus cecorum in Broiler Chicken. Animals, 15(16), 2327. https://doi.org/10.3390/ani15162327