Resisting the Final Line: Phenotypic Detection of Resistance to Last-Resort Antimicrobials in Gram-Negative Bacteria Isolated from Wild Birds in Northern Italy
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Microbiological Analysis
2.3. Antimicrobial Susceptibility Testing (AST)
2.4. Phenotypic Detection of Resistance Profiles Compatible with ESBL and AmpC Beta-Lactamase Production
2.5. Quality Control
2.6. Sample Size Assesment
2.7. Statistical Analysis
3. Results
3.1. Bacterial Isolation and Identification
3.2. Phenotypic AMR Profile of Bacteria Isolates
3.3. Phenotypic Detection of Resistance Profiles Compatible with ESBL and AmpC Beta-Lactamase Production
3.4. Factors Associated with Pathogen Isolation and Antimicrobial Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Ten Threats to Global Health in 2019. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 14 April 2025).
- O’Neill, J. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. In The Review on Antimicrobial Resistance; Wellcome Trust: London, UK, 2014; pp. 1–16. [Google Scholar]
- WHO. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization Press: Geneva, Switzerland, 2014; p. 256. [Google Scholar]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial resistance: A growing serious threat for global public health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling drug-resistant infections globally: Final report and recommendations. In The Review on Antimicrobial Resistance; Wellcome Trust: London, UK, 2016; p. 84. [Google Scholar]
- Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al. Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance—The need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef]
- Caneschi, A.; Bardhi, A.; Barbarossa, A.; Zaghini, A. The use of antibiotics and antimicrobial resistance in veterinary medicine, a complex phenomenon: A narrative review. Antibiotics 2023, 12, 487. [Google Scholar] [CrossRef]
- WHO. Critically Important Antibacterial Agents for Human Medicine for Risk Management Strategies of Non-Human Use: Report of a WHO Working Group Consultation, 15–18 February 2005, Canberra, Australia. Available online: https://iris.who.int/handle/10665/43330 (accessed on 14 April 2025).
- WHO. WHO’s List of Medically Important Antimicrobials: A risk Management Tool for Mitigating Antimicrobial Resistance Due to Non-Human Use; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- EMA. Categorisation of antibiotics in the European Union. Available online: https://www.ema.europa.eu/system/files/documents/report/ameg_-_categorisation_of_antibiotics_en.pdf (accessed on 14 April 2025).
- Schmerold, I.; van Geijlswijk, I.; Gehring, R. European regulations on the use of antibiotics in veterinary medicine. Eur. J. Pharm. Sci. 2023, 189, 106473. [Google Scholar] [CrossRef]
- Dolejska, M. Antibiotic-resistant bacteria in wildlife. In Antibiotic Resistance in the Environment: A Worldwide Overview; Manaia, C.M., Donner, E., Vaz-Moreira, I., Hong, P., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 19–70. [Google Scholar]
- Arnold, K.E.; Williams, N.J.; Bennett, M. ‘Disperse abroad in the land’: The role of wildlife in the dissemination of antimicrobial resistance. Biol. Lett. 2016, 12, 20160137. [Google Scholar] [CrossRef] [PubMed]
- Bonnedahl, J.; Järhult, J.D. Antibiotic resistance in wild birds. Ups. J. Med. Sci. 2014, 119, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Vittecoq, M.; Godreuil, S.; Prugnolle, F.; Durand, P.; Brazier, L.; Renaud, N.; Arnal, A.; Aberkane, S.; Jean-Pierre, H.; Gauthier-Clerc, M.; et al. Antimicrobial resistance in wildlife. J. Appl. Ecol. 2016, 53, 519–529. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 2018, 42, fux053. [Google Scholar] [CrossRef] [PubMed]
- Stedt, J.; Bonnedahl, J.; Hernandez, J.; Waldenström, J.; McMahon, B.J.; Tolf, C.; Olsen, B.; Drobni, M. Carriage of CTX-M type extended spectrum β-lactamases (ESBLs) in gulls across Europe. Acta. Vet. Scand. 2015, 57, 74. [Google Scholar] [CrossRef] [PubMed]
- Guenther, S.; Ewers, C.; Wieler, L.H. Extended-Spectrum Beta-Lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front. Microbiol. 2011, 2, 246. [Google Scholar] [CrossRef] [PubMed]
- Ahlstrom, C.A.; Woksepp, H.; Sandegren, L.; Ramey, A.M.; Bonnedahl, J. Exchange of carbapenem-resistant Escherichia coli sequence type 38 intercontinentally and among wild bird, human, and environmental niches. Appl. Environ. Microbiol. 2023, 89, e0031923. [Google Scholar] [CrossRef]
- Wang, B.; Farhan, M.H.R.; Yuan, L.; Sui, Y.; Chu, J.; Yang, X.; Li, Y.; Huang, L.; Cheng, G. Transfer dynamics of antimicrobial resistance among gram-negative bacteria. Sci. Total Environ. 2024, 954, 176347. [Google Scholar] [CrossRef]
- Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. The changing face of the family Enterobacteriaceae (order: “Enterobacterales”): New members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clin. Microbiol. Rev. 2021, 34, e00174–00120. [Google Scholar] [CrossRef]
- Rosa, N.M.; Penati, M.; Fusar-Poli, S.; Addis, M.F.; Tola, S. Species identification by MALDI-TOF MS and gap PCR-RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis. Vet. Res. 2022, 53, 84. [Google Scholar] [CrossRef]
- Grimont, P.A.D.; Weill, F.-X. WHO Collaborating Centre for Reference and Research on Salmonella Antigenic Formulae of the Salmonella serovars, 9th ed.; World Health Organization: Geneva, Switzerland, 2007; Available online: https://www.iso.org/standard/56712.html (accessed on 10 February 2024).
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Matuschek, E.; Brown, D.F.; Kahlmeter, G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 35th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2025; Volume M100. [Google Scholar]
- EUCAST. Disk Diffusion Method for Antimicrobial Susceptibility Testing; Version 13.0. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2025_manuals/Manual_v_13.0_EUCAST_Disk_Test_2025.pdf (accessed on 17 April 2025).
- EUCAST. Expected Resistant Phenotypes; Version 1.2. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rules/2023/Expected_Resistant_Phenotypes_v1.2_20230113.pdf (accessed on 17 April 2025).
- Yusuf, E.; Zeitlinger, M.; Meylan, S. A narrative review of the intermediate category of the antimicrobial susceptibility test: Relation with dosing and possible impact on antimicrobial stewardship. J. Antimicrob. Chemother. 2023, 78, 338–345. [Google Scholar] [CrossRef]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 15.0. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_15.0_Breakpoint_Tables.pdf (accessed on 14 April 2025).
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 14.0. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.pdf (accessed on 14 April 2025).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024; Volume M100. [Google Scholar]
- Al-Asadi, S.A.; Abdul Wahhab, B.H.; Bootwala, J.; Alwatar, W.M.A.; Al-Kahachi, R.E.S. Unraveling antibiotic resistance in Achromobacter mucicolens IA strain: Genomic insights, structural analysis, and prospects for targeted therapeutics. Microbiol. Spectr. 2024, 12, e0392623. [Google Scholar] [CrossRef] [PubMed]
- Almuzara, M.; Limansky, A.; Ballerini, V.; Galanternik, L.; Famiglietti, A.; Vay, C. In vitro susceptibility of Achromobacter spp. isolates: Comparison of disk diffusion, Etest and agar dilution methods. Int. J. Antimicrob. Agents 2010, 35, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Isler, B.; Kidd, T.J.; Stewart, A.G.; Harris, P.; Paterson, D.L. Achromobacter infections and treatment options. Antimicrob. Agents Chemother. 2020, 64, e01025–01020. [Google Scholar] [CrossRef]
- EUCAST. Achromobacter xylosoxidans—Proposed clinical MIC breakpoints. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Consultation/2020/A._xylosoxidans_EUCAST_Breakpoint_consultation_201005.pdf (accessed on 30 April 2025).
- Liofilchem. MIC Test Strip—Interpretative Criteria and Quality Control. Available online: https://www.liofilchem.net/pdf/mic/tabella_interpretazione.pdf (accessed on 14 April 2025).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- EUCAST. Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance; Version 2.0. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf (accessed on 14 April 2025).
- Gupta, G.; Tak, V.; Mathur, P. Detection of AmpC β-lactamases in gram-negative bacteria. J. Lab. Physicians 2014, 6, 001–006. [Google Scholar] [CrossRef]
- Mol, R.; Bindayna, K.M.; Shanthi, G. Evaluation of two phenotypic methods for the detection of plasmid-mediated AmpC β-lactamases among Enterobacteriaceae isolates. J. Lab. Physicians 2021, 13, 151–155. [Google Scholar] [CrossRef]
- Thrusfield, M.; Brown, H. Surveys. In Veterinary Epidemiology, 4th ed.; John Wiley & Sons Ltd.: Edinburgh, UK, 2018; pp. 270–295. [Google Scholar]
- Ruzauskas, M.; Vaskeviciute, L. Detection of the mcr-1 gene in Escherichia coli prevalent in the migratory bird species Larus argentatus. J. Antimicrob. Chemother. 2016, 71, 2333–2334. [Google Scholar] [CrossRef]
- Ahmed, Z.S.; Elshafiee, E.A.; Khalefa, H.S.; Kadry, M.; Hamza, D.A. Evidence of colistin resistance genes (mcr-1 and mcr-2) in wild birds and its public health implication in Egypt. Antimicrob. Resist. Infect. Control. 2019, 8, 197. [Google Scholar] [CrossRef] [PubMed]
- Loucif, L.; Chelaghma, W.; Cherak, Z.; Bendjama, E.; Beroual, F.; Rolain, J.M. Detection of NDM-5 and MCR-1 antibiotic resistance encoding genes in Enterobacterales in long-distance migratory bird species Ciconia ciconia, Algeria. Sci. Total Environ. 2022, 814, 152861. [Google Scholar] [CrossRef]
- Oteo, J.; Mencía, A.; Bautista, V.; Pastor, N.; Lara, N.; González-González, F.; García-Peña, F.J.; Campos, J. Colonization with Enterobacteriaceae-producing ESBLs, AmpCs, and OXA-48 in wild avian species, Spain 2015–2016. Microb. Drug Resist. 2018, 24, 932–938. [Google Scholar] [CrossRef]
- Tarabai, H.; Krejci, S.; Karyakin, I.; Bitar, I.; Literak, I.; Dolejska, M. Clinically relevant antibiotic resistance in Escherichia coli from black kites in southwestern Siberia: A genetic and phenotypic investigation. mSphere 2023, 8, e0009923. [Google Scholar] [CrossRef]
- Tarabai, H.; Valcek, A.; Jamborova, I.; Vazhov, S.V.; Karyakin, I.V.; Raab, R.; Literak, I.; Dolejska, M. Plasmid-mediated mcr-1 Colistin resistance in Escherichia coli from a black kite in Russia. Antimicrob. Agents Chemother. 2019, 63, e01266–01219. [Google Scholar] [CrossRef] [PubMed]
- Foti, M.; Mascetti, A.; Fisichella, V.; Fulco, E.; Orlandella, B.M.; Lo Piccolo, F. Antibiotic resistance assessment in bacteria isolated in migratory Passeriformes transiting through the Metaponto territory (Basilicata, Italy). Avian Res. 2017, 8, 26. [Google Scholar] [CrossRef]
- Navidinia, M. The clinical importance of emerging ESKAPE pathogens in nosocomial infections. Arch. Adv. Biosci. 2016, 7, 43–57. [Google Scholar] [CrossRef]
- Founou, R.C.; Founou, L.L.; Essack, S.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0189621. [Google Scholar] [CrossRef]
- Benskin, C.M.; Wilson, K.; Jones, K.; Hartley, I.R. Bacterial pathogens in wild birds: A review of the frequency and effects of infection. Biol. Rev. Camb. Philos. Soc. 2009, 84, 349–373. [Google Scholar] [CrossRef]
- Hubálek, Z. An annotated checklist of pathogenic microorganisms associated with migratory birds. J. Wildl. Dis. 2004, 40, 639–659. [Google Scholar] [CrossRef]
- Baros Jorquera, C.; Moreno-Switt, A.I.; Sallaberry-Pincheira, N.; Munita, J.M.; Flores Navarro, C.; Tardone, R.; González-Rocha, G.; Singer, R.S.; Bueno, I. Antimicrobial resistance in wildlife and in the built environment in a wildlife rehabilitation center. One Health 2021, 13, 100298. [Google Scholar] [CrossRef]
- Martín-Vélez, V.; Navarro, J.; Figuerola, J.; Aymí, R.; Sabaté, S.; Planell, R.; Vila, J.; Montalvo, T. A spatial analysis of urban gulls contribution to the potential spread of zoonotic and antibiotic-resistant bacteria. Sci. Total Environ. 2024, 912, 168762. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, M.; García, J.A.; Afán, I.; Aymí, R.; Montalvo, T.; Navarro, J. Age-related differences in foraging behaviour at sea and interactions with fishing vessels in an opportunistic urban gull. ICES J. Mar. Sci. 2023, 80, 2405–2413. [Google Scholar] [CrossRef]
- Dolejska, M.; Masarikova, M.; Dobiasova, H.; Jamborova, I.; Karpiskova, R.; Havlicek, M.; Carlile, N.; Priddel, D.; Cizek, A.; Literak, I. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J. Antimicrob. Chemother. 2016, 71, 63–70. [Google Scholar] [CrossRef]
- Darwich, L.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.A.; Migura-Garcia, L. High prevalence and diversity of extended-spectrum β-lactamase and emergence of OXA-48 producing Enterobacterales in wildlife in Catalonia. PLoS ONE 2019, 14, e0210686. [Google Scholar] [CrossRef]
- Chiaverini, A.; Cornacchia, A.; Centorotola, G.; Tieri, E.E.; Sulli, N.; Del Matto, I.; Iannitto, G.; Petrone, D.; Petrini, A.; Pomilio, F. Phenotypic and genetic characterization of Klebsiella pneumoniae isolates from wild animals in Central Italy. Animals 2022, 12, 1347. [Google Scholar] [CrossRef]
- Wu, Q.; Shi, J.; Huang, J.; Gan, D.; Zhang, L.; Li, P. The impact of ESBLs-positive Escherichia coli’s resistance to cefepime and its guidance for clinical treatment. Infect. Drug Resist. 2023, 16, 6395–6404. [Google Scholar] [CrossRef]
- Raza, S.; Mohsin, M.; Madni, W.A.; Sarwar, F.; Saqib, M.; Aslam, B. First report of blaCTX-M-15-Type ESBL-producing Klebsiella pneumoniae in wild migratory birds in Pakistan. EcoHealth 2017, 14, 182–186. [Google Scholar] [CrossRef] [PubMed]
- WHO. Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Laidoudi, Y.; Ngaiganam, E.P.; Marié, J.L.; Pagnier, I.; Rolain, J.M.; Mouhamadou Diene, S.; Davoust, B. Colistin resistance mechanism in Enterobacter hormaechei subsp. steigerwaltii isolated from wild boar (Sus scrofa) in France. Pathogens 2022, 11, 1022. [Google Scholar] [CrossRef]
- Mezzatesta, M.L.; Gona, F.; Stefani, S. Enterobacter cloacae complex: Clinical impact and emerging antibiotic resistance. Future Microbiol. 2012, 7, 887–902. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z. Phenotypic and genomic insights into the pathogenicity and antimicrobial resistance of an Enterobacter roggenkampii strain isolated from diseased silver arowana (Osteoglossum bicirrhosum). J. Fish Dis. 2024, 47, e13898. [Google Scholar] [CrossRef] [PubMed]
- Molina-Lopez, R.A.; Valverdú, N.; Martin, M.; Mateu, E.; Obon, E.; Cerdà-Cuéllar, M.; Darwich, L. Wild raptors as carriers of antimicrobial-resistant Salmonella and Campylobacter strains. Vet. Rec. 2011, 168, 565. [Google Scholar] [CrossRef]
- Botti, V.; Navillod, F.V.; Domenis, L.; Orusa, R.; Pepe, E.; Robetto, S.; Guidetti, C. Salmonella spp. and antibiotic-resistant strains in wild mammals and birds in north-western Italy from 2002 to 2010. Vet. Ital. 2013, 49, 195–202. [Google Scholar] [CrossRef]
- Tizard, I. Salmonellosis in wild birds. Sem. Avian Exot. Pet. Med. 2004, 13, 50–66. [Google Scholar] [CrossRef]
- Millán, J.; Aduriz, G.; Moreno, B.; Juste, R.A.; Barral, M. Salmonella isolates from wild birds and mammals in the Basque Country (Spain). Rev. Sci. Tech. 2004, 23, 905–911. [Google Scholar] [CrossRef]
- Russo, T.P.; Pace, A.; Varriale, L.; Borrelli, L.; Gargiulo, A.; Pompameo, M.; Fioretti, A.; Dipineto, L. Prevalence and antimicrobial resistance of enteropathogenic bacteria in Yellow-legged Gulls (Larus michahellis) in Southern Italy. Animals 2021, 11, 275. [Google Scholar] [CrossRef]
- Borges, C.A.; Beraldo, L.G.; Maluta, R.P.; Cardozo, M.V.; Barboza, K.B.; Guastalli, E.A.L.; Kariyawasam, S.; DebRoy, C.; Ávila, F.A. Multidrug-resistant pathogenic Escherichia coli isolated from wild birds in a veterinary hospital. Avian Pathol. 2017, 46, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Radhouani, H.; Poeta, P.; Goncalves, A.; Pacheco, R.; Sargo, R.; Igrejas, G. Wild birds as biological indicators of environmental pollution: Antimicrobial resistance patterns of Escherichia coli and enterococci isolated from common buzzards (Buteo buteo). J. Med. Microbiol. 2012, 61, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Stedt, J.; Bonnedahl, J.; Hernandez, J.; McMahon, B.J.; Hasan, B.; Olsen, B.; Drobni, M.; Waldenström, J. Antibiotic resistance patterns in Escherichia coli from gulls in nine European countries. Infect. Ecol. Epidemiol. 2014, 4, 21565. [Google Scholar] [CrossRef]
- EMA. European Sales and Use of Antimicrobials for Veterinary Medicine (ESUAvet)—Annual Surveillance Report for 2023. Available online: https://www.ema.europa.eu/en/documents/report/european-sales-use-antimicrobials-veterinary-medicine-annual-surveillance-report-2023_en.pdf (accessed on 26 May 2025).
- Yuan, Y.; Liang, B.; Jiang, B.W.; Zhu, L.W.; Wang, T.C.; Li, Y.G.; Liu, J.; Guo, X.J.; Ji, X.; Sun, Y. Migratory wild birds carrying multidrug-resistant Escherichia coli as potential transmitters of antimicrobial resistance in China. PLoS ONE 2021, 16, e0261444. [Google Scholar] [CrossRef] [PubMed]
- OIE. OIE List of Antimicrobial Agents of Veterinary Importance. Available online: https://www.woah.org/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/AMR/A_OIE_List_antimicrobials_July2019.pdf (accessed on 26 May 2025).
- Shobrak, M.Y.; Abo-Amer, A.E. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris. Braz. J. Microbiol. 2014, 45, 1199–1209. [Google Scholar] [CrossRef]
- Barguigua, A.; Rguibi Idrissi, H.; Nayme, K.; Timinouni, M. Virulence and antibiotic resistance patterns in E. coli, Morocco. EcoHealth 2019, 16, 570–575. [Google Scholar] [CrossRef]
- Giacopello, C.; Foti, M.; Mascetti, A.; Grosso, F.; Ricciardi, D.; Fisichella, V.; Piccolo, F.L. Antimicrobial resistance patterns of Enterobacteriaceae in European wild bird species admitted in a wildlife rescue centre. Vet. Ital. 2016, 52, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.A.; Gulhan, T. Determination of antibiotic resistance patterns and genotypes of Escherichia coli isolated from wild birds. Microbiome 2024, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on Chloramphenicol in food and feed. EFSA J. 2014, 12, 3907. [Google Scholar] [CrossRef]
- EMA. Categorisation of Antibiotics in the European Union—Answer to the Request from the European Commission for Updating the Scientific Advice on the Impact on Public Health and Animal Health of the Use of Antibiotics in Animals. Available online: https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific-advice-impact-public-health-and-animal-health-use-antibiotics-animals_en.pdf (accessed on 28 May 2025).
- Dolejska, M.; Cizek, A.; Literak, I. High prevalence of antimicrobial-resistant genes and integrons in Escherichia coli isolates from Black-headed Gulls in the Czech Republic. J. Appl. Microbiol. 2007, 103, 11–19. [Google Scholar] [CrossRef]
- Söderlund, R.; Skarin, H.; Börjesson, S.; Sannö, A.; Jernberg, T.; Aspán, A.; Ågren, E.O.; Hansson, I. Prevalence and genomic characteristics of zoonotic gastro-intestinal pathogens and ESBL/pAmpC producing Enterobacteriaceae among Swedish corvid birds. Infect. Ecol. Epidemiol. 2019, 9, 1701399. [Google Scholar] [CrossRef]
- Silva, N.; Felgar, A.; Gonçalves, A.; Correia, S.; Pacheco, R.; Araújo, C.; Igrejas, G.; Poeta, P. Absence of extended-spectrum-beta-lactamase-producing Escherichia coli isolates in migratory birds: Song thrush (Turdus philomelos). J. Antimicrob. Chemother. 2010, 65, 1306–1307. [Google Scholar] [CrossRef]
- Järhult, J.D.; Stedt, J.; Gustafsson, L. Zero prevalence of extended spectrum beta-lactamase-producing bacteria in 300 breeding Collared Flycatchers in Sweden. Infect. Ecol. Epidemiol. 2013, 3, 20909. [Google Scholar] [CrossRef]
- Guenther, S.; Grobbel, M.; Beutlich, J.; Bethe, A.; Friedrich, N.D.; Goedecke, A.; Lübke-Becker, A.; Guerra, B.; Wieler, L.H.; Ewers, C. CTX-M-15-type extended-spectrum beta-lactamases-producing Escherichia coli from wild birds in Germany. Environ. Microbiol. Rep. 2010, 2, 641–645. [Google Scholar] [CrossRef]
- Simões, R.R.; Poirel, L.; Da Costa, P.M.; Nordmann, P. Seagulls and beaches as reservoirs for multidrug-resistant Escherichia coli. Emerg. Infect. Dis. 2010, 16, 110–112. [Google Scholar] [CrossRef] [PubMed]
- Jamborova, I.; Dolejska, M.; Vojtech, J.; Guenther, S.; Uricariu, R.; Drozdowska, J.; Papousek, I.; Pasekova, K.; Meissner, W.; Hordowski, J.; et al. Plasmid-mediated resistance to cephalosporins and fluoroquinolones in various Escherichia coli sequence types isolated from rooks wintering in Europe. Appl. Environ. Microbiol. 2015, 81, 648–657. [Google Scholar] [CrossRef]
- Pindi, P.K.; Yadav, P.R.; Shanker, A.S. Identification of opportunistic pathogenic bacteria in drinking water samples of different rural health centers and their clinical impacts on humans. Biomed. Res. Int. 2013, 2013, 348250. [Google Scholar] [CrossRef]
- Foti, M.; Rinaldo, D.; Guercio, A.; Giacopello, C.; Aleo, A.; De Leo, F.; Fisichella, V.; Mammina, C. Pathogenic microorganisms carried by migratory birds passing through the territory of the island of Ustica, Sicily (Italy). Avian Pathol. 2011, 40, 405–409. [Google Scholar] [CrossRef]
- Machado, D.N.; Lopes, E.S.; Albuquerque, A.H.; Horn, R.V.; Bezerra, W.G.A.; Siqueira, R.A.S.; Lopes, I.T.; Nunes, F.P.; Teixeira, R.S.C.; Cardoso, W.M. Isolation and antimicrobial resistance profiles of Enterobacteria from nestling Grey-Breasted Parakeets (Pyrrhura Griseipectus). Rev. Bras. De Ciência Avícola 2018, 20, 103–110. [Google Scholar] [CrossRef]
- Korczak, L.; Majewski, P.; Iwaniuk, D.; Sacha, P.; Matulewicz, M.; Wieczorek, P.; Majewska, P.; Wieczorek, A.; Radziwon, P.; Tryniszewska, E. Molecular mechanisms of tigecycline-resistance among Enterobacterales. Front. Cell. Infect. Microbiol. 2024, 14, 1289396. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. Tigecycline: Rationale for EUCAST Clinical Breakpoints; Version 3.0. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Rationale_documents/Tigecycline_Rationale_Document_v3.0_20230404.pdf (accessed on 25 April 2025).
- Brown, D.F.J.; Canton, R.; MacGowan, A.P.; Mouton, J.W.; Rodloff, A.; Goldstein, F.; Odenholt, I.; Steinbakk, M.; Varaldo, P.; Hryniewicz, W.; et al. EUCAST Technical Note on tigecycline. Clin. Microbiol. Infect. 2006, 12, 1147–1149. [Google Scholar] [CrossRef]
- Rodrigues, J.G.C.; Nair, H.P.; O’Kane, C.; Walker, C.A. Prevalence of multidrug resistance in Pseudomonas spp. isolated from wild bird feces in an urban aquatic environment. Ecol. Evol. 2021, 11, 14303–14311. [Google Scholar] [CrossRef]
- Russo, T.P.; Minichino, A.; Gargiulo, A.; Varriale, L.; Borrelli, L.; Pace, A.; Santaniello, A.; Pompameo, M.; Fioretti, A.; Dipineto, L. Prevalence and phenotypic antimicrobial resistance among ESKAPE bacteria and Enterobacterales strains in wild birds. Antibiotics 2022, 11, 1825. [Google Scholar] [CrossRef]
- Dahiru, M.; Enabulele, O.I. Acinetobacter baumannii in birds’ feces: A public health threat to vegetables and irrigation farmers. Adv. Microbiol. 2015, 5, 693–698. [Google Scholar] [CrossRef]
- Łopińska, A.; Indykiewicz, P.; Skiebe, E.; Pfeifer, Y.; Trček, J.; Jerzak, L.; Minias, P.; Nowakowski, J.; Ledwoń, M.; Betleja, J.; et al. Low occurrence of Acinetobacter baumannii in Gulls and Songbirds. Pol. J. Microbiol. 2020, 69, 85–90. [Google Scholar] [CrossRef]
- Martins, W.M.B.S.; Narciso, A.C.; Cayô, R.; Santos, S.V.; Fehlberg, L.C.C.; Ramos, P.L.; da Cruz, J.B.; Gales, A.C. SPM-1-producing Pseudomonas aeruginosa ST277 clone recovered from microbiota of migratory birds. Diagn. Microbiol. Infect. Dis. 2018, 90, 221–227. [Google Scholar] [CrossRef]
- Lupo, A.; Haenni, M.; Madec, J.Y. Antimicrobial resistance in Acinetobacter spp. and Pseudomonas spp. Microbiol. Spectr. 2018, 6, 377–393. [Google Scholar] [CrossRef]
- Ruppé, É.; Woerther, P.L.; Barbier, F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann. Intensive Care 2015, 5, 61. [Google Scholar] [CrossRef] [PubMed]
- Bonomo, R.A.; Szabo, D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin. Infect. Dis. 2006, 43, S49–S56. [Google Scholar] [CrossRef]
- Savin, M.; Bierbaum, G.; Hammerl, J.A.; Heinemann, C.; Parcina, M.; Sib, E.; Voigt, A.; Kreyenschmidt, J. ESKAPE bacteria and Extended-Spectrum-β-Lactamase-Producing Escherichia coli isolated from wastewater and process water from German poultry slaughterhouses. Appl. Environ. Microbiol. 2020, 86, e02748–02719. [Google Scholar] [CrossRef] [PubMed]
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef]
- Strateva, T.; Yordanov, D. Pseudomonas aeruginosa—A phenomenon of bacterial resistance. J. Med. Microbiol. 2009, 58, 1133–1148. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Y.; Wang, Y.; Tang, K.; Wang, D.; Hong, J.; Wang, P.; Ye, S.; Yan, J.; Li, S.; et al. Genetic landscape and evolution of Acinetobacter pittii, an underestimated emerging nosocomial pathogen. Commun. Biol. 2025, 8, 738. [Google Scholar] [CrossRef]
- Chapartegui-González, I.; Lázaro-Díez, M.; Ramos-Vivas, J. Genetic resistance determinants in clinical Acinetobacter pittii genomes. Antibiotics 2022, 11, 676. [Google Scholar] [CrossRef]
- Singh, R.P.; Sinha, A.; Deb, S.; Kumari, K. First report on in-depth genome and comparative genome analysis of a metal-resistant bacterium Acinetobacter pittii S-30, isolated from environmental sample. Front. Microbiol. 2024, 15, 1351161. [Google Scholar] [CrossRef]
- Wilharm, G.; Skiebe, E.; Higgins, P.G.; Poppel, M.T.; Blaschke, U.; Leser, S.; Heider, C.; Heindorf, M.; Brauner, P.; Jäckel, U. Relatedness of wildlife and livestock avian isolates of the nosocomial pathogen Acinetobacter baumannii to lineages spread in hospitals worldwide. Environ. Microbiol. 2017, 19, 4349–4364. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhu, Y.; Ma, Y.; Liu, F.; Lu, N.; Yang, X.; Luan, C.; Yi, Y.; Zhu, B. Genomic insights into intrinsic and acquired drug resistance mechanisms in Achromobacter xylosoxidans. Antimicrob. Agents Chemother. 2015, 59, 1152–1161. [Google Scholar] [CrossRef]
- Olbrecht, M.; Echahidi, F.; Piérard, D.; Peeters, C.; Vandamme, P.; Wybo, I.; Demuyser, T. In vitro susceptibility of Achromobacter species isolated from cystic fibrosis patients: A 6-year survey. Antimicrob. Agents Chemother. 2023, 67, e00379–00323. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Zhang, G.; Lin, N.; Sha, Y.; Lu, J.; Zhu, T.; Zhang, X.; Li, Q.; Zhang, H.; et al. Identification and characterization of a novel β-lactamase gene, blaAMZ-1, from Achromobacter mucicolens. Front. Microbiol. 2023, 14, 1252427. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Poirel, L.; Paterson David, L.; Nordmann, P. Characterization of a naturally occurring class D β-Lactamase from Achromobacter xylosoxidans. Antimicrob. Agents Chemother. 2008, 52, 1952–1956. [Google Scholar] [CrossRef]
- Jean-Pierre, V.; Sorlin, P.; Pantel, A.; Chiron, R.; Lavigne, J.P.; Jeannot, K.; Marchandin, H.; Amara, M.; Cadot, L.; Dauwalder, O.; et al. Cefiderocol susceptibility of Achromobacter spp.: Study of an accurately identified collection of 230 strains. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 54. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Jones, R.N. Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. Int. J. Antimicrob. Agents 2005, 25, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A. AmpC beta-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef]
- Harris, P.N.A.; Ferguson, J.K. Antibiotic therapy for inducible AmpC β-lactamase-producing Gram-negative bacilli: What are the alternatives to carbapenems, quinolones and aminoglycosides? Int. J. Antimicrob. Agents 2012, 40, 297–305. [Google Scholar] [CrossRef]
- Kohlmann, R.; Bähr, T.; Gatermann, S.G. Species-specific mutation rates for ampC derepression in Enterobacterales with chromosomally encoded inducible AmpC β-lactamase. J. Antimicrob. Chemother. 2018, 73, 1530–1536. [Google Scholar] [CrossRef]
- Li, A.; Yan, C.; Zhang, L.; Liu, S.; Feng, C.; Zhang, L.; Dong, F.; Sheng, X.; Wang, L.; Zhang, Y.; et al. Characterization and identification of a novel chromosomal class C β-lactamase, LAQ-1, and comparative genomic analysis of a multidrug resistance plasmid in Lelliottia amnigena P13. Front. Microbiol. 2022, 13, 990736. [Google Scholar] [CrossRef]
- Murugaiyan, J.; Krueger, K.; Roesler, U.; Weinreich, J.; Schierack, P. Assessment of species and antimicrobial resistance among Enterobacteriaceae isolated from mallard duck faeces. Environ. Monit. Assess. 2015, 187, 127. [Google Scholar] [CrossRef] [PubMed]
- Fadare, F.T.; Okoh, A.I. Distribution and molecular characterization of ESBL, pAmpC β-lactamases, and non-β-lactam encoding genes in Enterobacteriaceae isolated from hospital wastewater in Eastern Cape Province, South Africa. PLoS ONE 2021, 16, e0254753. [Google Scholar] [CrossRef] [PubMed]
- Stock, I.; Wiedemann, B. Natural antibiotic susceptibility of Enterobacter amnigenus, Enterobacter cancerogenus, Enterobacter gergoviae and Enterobacter sakazakii strains. Clin. Microbiol. Infect. 2002, 8, 564–578. [Google Scholar] [CrossRef]
- Livermore, D.M. beta-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 1995, 8, 557–584. [Google Scholar] [CrossRef] [PubMed]
- Salvia, T.; Dolma, K.G.; Dhakal, O.P.; Khandelwal, B.; Singh, L.S. Phenotypic Detection of ESBL, AmpC, MBL, and Their Co-occurrence among MDR Enterobacteriaceae Isolates. J. Lab. Physicians 2022, 14, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Rhouma, M.; Beaudry, F.; Letellier, A. Resistance to colistin: What is the fate for this antibiotic in pig production? Int. J. Antimicrob. Agents 2016, 48, 119–126. [Google Scholar] [CrossRef]
- Andrade, F.F.; Silva, D.; Rodrigues, A.; Pina-Vaz, C. Colistin update on its mechanism of action and resistance, present and future challenges. Microorganisms 2020, 8, 1716. [Google Scholar] [CrossRef]
- Falagas, M.E.; Rafailidis, P.I. Re-emergence of colistin in today’s world of multidrug-resistant organisms: Personal perspectives. Expert Opin. Investig. Drugs 2008, 17, 973–981. [Google Scholar] [CrossRef]
- Biswas, S.; Jean-Michel, B.; Jean-Christophe, D.; Martine, R.G.; Rolain, J.M. Colistin: An update on the antibiotic of the 21st century. Expert Rev. Anti Infect. Ther. 2012, 10, 917–934. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Pogue, J.M.; Tran, T.B.; Nation, R.L.; Li, J. Agents of last resort: Polymyxin resistance. Infect. Dis. Clin. N. Am. 2016, 30, 391–414. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Z.B.; Zeng, Z.L.; Yang, X.W.; Huang, Y.; Liu, J.H. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool. Res. 2017, 38, 55–80. [Google Scholar] [CrossRef] [PubMed]
- Franklin, A.B.; Ramey, A.M.; Bentler, K.T.; Barrett, N.L.; McCurdy, L.M.; Ahlstrom, C.A.; Bonnedahl, J.; Shriner, S.A.; Chandler, J.C. Gulls as sources of environmental contamination by colistin-resistant bacteria. Sci. Rep. 2020, 10, 4408. [Google Scholar] [CrossRef]
- Wu, J.; Huang, Y.; Rao, D.; Zhang, Y.; Yang, K. Evidence for environmental dissemination of antibiotic resistance mediated by wild birds. Front. Microbiol. 2018, 9, 745. [Google Scholar] [CrossRef]
- Lawrence, J.; O’Hare, D.; van Batenburg-Sherwood, J.; Sutton, M.; Holmes, A.; Rawson, T.M. Innovative approaches in phenotypic beta-lactamase detection for personalised infection management. Nat. Commun. 2024, 15, 9070. [Google Scholar] [CrossRef] [PubMed]
- Elbehiry, A.; Marzouk, E.; Abalkhail, A.; Abdelsalam, M.H.; Mostafa, M.E.A.; Alasiri, M.; Ibrahem, M.; Ellethy, A.T.; Almuzaini, A.; Aljarallah, S.N.; et al. Detection of antimicrobial resistance via state-of-the-art technologies versus conventional methods. Front. Microbiol. 2025, 16, 1549044. [Google Scholar] [CrossRef] [PubMed]
- Vezeau, N.; Kahn, L. Current understanding and knowledge gaps regarding wildlife as reservoirs of antimicrobial resistance. Am. J. Vet. Res. 2024, 85, 1–9. [Google Scholar] [CrossRef]
- Guardia, T.; Varriale, L.; Minichino, A.; Balestrieri, R.; Mastronardi, D.; Russo, T.P.; Dipineto, L.; Fioretti, A.; Borrelli, L. Wild birds and the ecology of antimicrobial resistance: An approach to monitoring. J. Wildl. Manag. 2024, 88, e22588. [Google Scholar] [CrossRef]
Taxonomic Order | Family | Scientific Name | Common Name | Total |
---|---|---|---|---|
Accipitriformes | Accipitridae | Buteo buteo | Eurasian Buzzard | 1 |
Anseriformes | Anatidae | Anas platyrhynchos | Mallard | 7 |
Apodiformes | Apodidae | Tachymarptis melba | Alpine Swift | 4 |
Apus apus | Common Swift | 10 | ||
Bucerotiformes | Upupidae | Upupa epops | Eurasian Hoopoe | 1 |
Charadriiformes | Laridae | Larus michahellis | Yellow-legged Gull | 1 |
Scolopacidae | Scolopax rusticola | Eurasian Woodcock | 1 | |
Columbiformes | Columbidae | Columba palumbus | Common Woodpigeon | 8 |
Streptopelia decaocto | Eurasian Collared Dove | 10 | ||
Coraciiformes | Alcedinidae | Alcedo atthis | Eurasian Kingfisher | 2 |
Falconiformes | Falconidae | Falco tinnunculus | Common Kestrel | 8 |
Falco peregrinus | Peregrine Falcon | 1 | ||
Gruiformes | Rallidae | Gallinula chloropus | Common Moorhen | 1 |
Passeriformes | Corvidae | Corvus cornix | Hooded Crow | 4 |
Pica pica | Eurasian Magpie | 6 | ||
Garrulus glandarius | Eurasian Jay | 1 | ||
Fringillidae | Fringilla coelebs | Eurasian Chaffinch | 1 | |
Serinus serinus | European Serin | 4 | ||
Hirundinidae | Hirundo rustica | Barn Swallow | 3 | |
Delichon urbicum | Common house Martin | 1 | ||
Muscicapidae | Ficedula hypoleuca | European pied Flycatcher | 1 | |
Phoenicurus phoenicurus | Common Redstart | 1 | ||
Erithacus rubecula | European Robin | 3 | ||
Paridae | Parus major | Great Tit | 2 | |
Phylloscopidae | Phylloscopus collybita | Common Chiffchaff | 1 | |
Regulidae | Regulus regulus | Goldcrest | 1 | |
Sturnidae | Sturnus vulgaris | Common Starling | 1 | |
Sylviidae | Sylvia atricapilla | Blackcap | 1 | |
Turdidae | Turdus merula | Common Blackbird | 10 | |
Pelecaniformes | Ardeidae | Ardea cinerea | Grey Heron | 1 |
Bubulcus ibis | Cattle Egret | 1 | ||
Egretta garzetta | Little Egret | 1 | ||
Piciformes | Picidae | Picus viridis | Green Woodpecker | 1 |
Strigiformes | Strigidae | Strix aluco | Tawny Owl | 1 |
Otus scops | Eurasian Scops-owl | 2 | ||
Athene noctua | Little Owl | 8 | ||
Asio otus | Long-eared Owl | 1 | ||
Total | 112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapi, M.C.; Filipe, J.; Filippone Pavesi, L.; Raimondi, S.; Addis, M.F.; Franciosini, M.P.; Grilli, G. Resisting the Final Line: Phenotypic Detection of Resistance to Last-Resort Antimicrobials in Gram-Negative Bacteria Isolated from Wild Birds in Northern Italy. Animals 2025, 15, 2289. https://doi.org/10.3390/ani15152289
Rapi MC, Filipe J, Filippone Pavesi L, Raimondi S, Addis MF, Franciosini MP, Grilli G. Resisting the Final Line: Phenotypic Detection of Resistance to Last-Resort Antimicrobials in Gram-Negative Bacteria Isolated from Wild Birds in Northern Italy. Animals. 2025; 15(15):2289. https://doi.org/10.3390/ani15152289
Chicago/Turabian StyleRapi, Maria Cristina, Joel Filipe, Laura Filippone Pavesi, Stefano Raimondi, Maria Filippa Addis, Maria Pia Franciosini, and Guido Grilli. 2025. "Resisting the Final Line: Phenotypic Detection of Resistance to Last-Resort Antimicrobials in Gram-Negative Bacteria Isolated from Wild Birds in Northern Italy" Animals 15, no. 15: 2289. https://doi.org/10.3390/ani15152289
APA StyleRapi, M. C., Filipe, J., Filippone Pavesi, L., Raimondi, S., Addis, M. F., Franciosini, M. P., & Grilli, G. (2025). Resisting the Final Line: Phenotypic Detection of Resistance to Last-Resort Antimicrobials in Gram-Negative Bacteria Isolated from Wild Birds in Northern Italy. Animals, 15(15), 2289. https://doi.org/10.3390/ani15152289