Pro-Angiogenic Effects of Canine Platelet-Rich Plasma: In Vitro and In Vivo Evidence
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. cPRP Preparation and Activation
2.2. Proliferation Assay
2.3. Migration Assay
2.4. Tube Formation Assay
2.5. Rabbit Corneal Micropocket Assay
2.6. Statistical Analysis
3. Results
3.1. Proliferation Assay
3.2. Migration Assay
3.3. Tube Formation Assay
3.4. Rabbit Corneal Micropocket Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Semenza, G.L. Vasculogenesis, angiogenesis, and arteriogenesis: Mechanisms of blood vessel formation and remodeling. J. Cell. Biochem. 2007, 102, 840–847. [Google Scholar] [CrossRef]
- Vailhé, B.; Vittet, D.; Feige, J.J. In vitro models of vasculogenesis and angiogenesis. Lab. Investig. 2001, 81, 439–452. [Google Scholar] [CrossRef]
- Heil, M.; Eitenmüller, I.; Schmitz-Rixen, T.; Schaper, W. Arteriogenesis versus angiogenesis: Similarities and differences. J. Cell. Mol. Med. 2006, 10, 45–55. [Google Scholar] [CrossRef]
- Jee, C.H.; Eom, N.Y.; Jang, H.M.; Jung, H.W.; Choi, E.S.; Won, J.H.; Hong, I.H.; Kang, B.T.; Jeong, D.W.; Jung, D.I. Effect of autologous platelet-rich plasma application on cutaneous wound healing in dogs. J. Vet. Sci. 2016, 17, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.; Grimalt, R. A Review of Platelet-Rich Plasma: History, Biology, Mechanism of Action, and Classification. Ski. Appendage Disord. 2018, 4, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Blair, P.; Flaumenhaft, R. Platelet alpha-granules: Basic biology and clinical correlates. Blood Rev. 2009, 23, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Dhurat, R.; Sukesh, M. Principles and Methods of Preparation of Platelet-Rich Plasma: A Review and Author’s Perspective. J. Cutan. Aesthet. Surg. 2014, 7, 189–197. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, C.; Park, H.M. Curative effect of autologous platelet-rich plasma on a large cutaneous lesion in a dog. Vet. Derm. 2009, 20, 123–126. [Google Scholar] [CrossRef]
- Vilar, J.M.; Manera, M.E.; Santana, A.; Spinella, G.; Rodriguez, O.; Rubio, M.; Carrillo, J.M.; Sopena, J.; Batista, M. Effect of leukocyte-reduced platelet-rich plasma on osteoarthritis caused by cranial cruciate ligament rupture: A canine gait analysis model. PLoS ONE 2018, 13, e0194752. [Google Scholar] [CrossRef]
- Cook, J.L.; Smith, P.A.; Bozynski, C.C.; Kuroki, K.; Cook, C.R.; Stoker, A.M.; Pfeiffer, F.M. Multiple injections of leukoreduced platelet rich plasma reduce pain and functional impairment in a canine model of ACL and meniscal deficiency. J. Orthop. Res. 2016, 34, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Geburek, F.; Gaus, M.; van Schie, H.T.; Rohn, K.; Stadler, P.M. Effect of intralesional platelet-rich plasma (PRP) treatment on clinical and ultrasonographic parameters in equine naturally occurring superficial digital flexor tendinopathies—A randomized prospective controlled clinical trial. BMC Vet. Res. 2016, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- Etulain, J. Platelets in wound healing and regenerative medicine. Platelets 2018, 29, 556–568. [Google Scholar] [CrossRef]
- Kakudo, N.; Morimoto, N.; Kushida, S.; Ogawa, T.; Kusumoto, K. Platelet-rich plasma releasate promotes angiogenesis in vitro and in vivo. Med. Mol. Morph. 2014, 47, 83–89. [Google Scholar] [CrossRef]
- Anitua, E.; Pelacho, B.; Prado, R.; Aguirre, J.J.; Sánchez, M.; Padilla, S.; Aranguren, X.L.; Abizanda, G.; Collantes, M.; Hernandez, M.; et al. Infiltration of plasma rich in growth factors enhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia. J. Control. Release 2015, 202, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Gau, C.H.; Shen, E.C.; Tu, H.P.; Chiu, H.C.; Fu, E.; Wang, W.N.; Chiang, C.Y. Freezing procedure without thrombin activation to retain and store growth factors from platelet concentrates. J. Dent. Sci. 2011, 6, 102–106. [Google Scholar] [CrossRef]
- Eker, İ.; Yilmaz, S.; Çetinkaya, R.A.; Ünlü, A.; Pekel, A.; Sağkan, R.I.; Ertaş, Z.; Gürsel, O.; Muşabak, H.U.; Yazici, E.; et al. A cycle of freezing and thawing as a modified method for activating platelets in platelet-rich plasma to use in regenerative medicine. Panam. J. Trauma Crit. Care Emerg. Surg. 2020, 9, 101–104. [Google Scholar]
- Lee, H.; Kang, K.T. Advanced tube formation assay using human endothelial colony forming cells for in vitro evaluation of angiogenesis. Korean J. Physiol. Pharmacol. 2018, 22, 705–712. [Google Scholar] [CrossRef]
- Morbidelli, L.; Ziche, M. The Rabbit Corneal Pocket Assay. Methods Mol. Biol. 2016, 1430, 299–310. [Google Scholar]
- Berndt, S.; Carpentier, G.; Turzi, A.; Borlat, F.; Cuendet, M.; Modarressi, A. Angiogenesis Is Differentially Modulated by Platelet-Derived Products. Biomedicines 2021, 9, 251. [Google Scholar] [CrossRef]
- DeCicco-Skinner, K.L.; Henry, G.H.; Cataisson, C.; Tabib, T.; Gwilliam, J.C.; Watson, N.J.; Bullwinkle, E.M.; Falkenburg, L.; O’Neill, R.C.; Morin, A.; et al. Endothelial cell tube formation assay for the in vitro study of angiogenesis. J. Vis. Exp. 2014, 91, e51312. [Google Scholar]
- Taniguchi, Y.; Yoshioka, T.; Sugaya, H.; Gosho, M.; Aoto, K.; Kanamori, A.; Yamazaki, M. Growth factor levels in leukocyte-poor platelet-rich plasma and correlations with donor age, gender, and platelets in the Japanese population. J. Exp. Orthop. 2019, 6, 4. [Google Scholar] [CrossRef]
- Saik, J.E.; Gould, D.J.; Watkins, E.M.; Dickinson, M.E.; West, J.L. Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels. Acta Biomater. 2011, 7, 133–143. [Google Scholar] [CrossRef]
- Brill, A.; Elinav, H.; Varon, D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc. Res. 2004, 63, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Pintucci, G.; Froum, S.; Pinnell, J.; Mignatti, P.; Rafii, S.; Green, D. Trophic effects of platelets on cultured endothelial cells are mediated by platelet-associated fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF). Thromb. Haemost. 2002, 88, 834–842. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, S.-W.; Kwon, Y.-S. Pro-Angiogenic Effects of Canine Platelet-Rich Plasma: In Vitro and In Vivo Evidence. Animals 2025, 15, 2260. https://doi.org/10.3390/ani15152260
An S-W, Kwon Y-S. Pro-Angiogenic Effects of Canine Platelet-Rich Plasma: In Vitro and In Vivo Evidence. Animals. 2025; 15(15):2260. https://doi.org/10.3390/ani15152260
Chicago/Turabian StyleAn, Seong-Won, and Young-Sam Kwon. 2025. "Pro-Angiogenic Effects of Canine Platelet-Rich Plasma: In Vitro and In Vivo Evidence" Animals 15, no. 15: 2260. https://doi.org/10.3390/ani15152260
APA StyleAn, S.-W., & Kwon, Y.-S. (2025). Pro-Angiogenic Effects of Canine Platelet-Rich Plasma: In Vitro and In Vivo Evidence. Animals, 15(15), 2260. https://doi.org/10.3390/ani15152260