Development of Mid-Infrared Spectroscopy (MIR) Diagnostic Model for Udder Health Status of Dairy Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dairy Herd
2.2. Sample Collection and Testing
2.3. Data Processing and Analysis
2.4. Spectral Modeling and Evaluation
2.4.1. Spectral Preprocessing and Feature Extraction
2.4.2. Model Establishment
2.4.3. Model Evaluation
3. Results
3.1. The Differences in Milk Yield and Composition Among the Different Mastitis Cattle
3.2. MIR Diagnostic Model for Healthy and Mastitis Cattle
3.3. MIR Diagnostic Model for Healthy and Suspicious Mastitis Cattle
3.4. MIR Diagnostic Model for Mastitis and Chronic/Persistent Mastitis Cattle
4. Discussion
4.1. The Relationship Between Somatic Cell Counts, Differential Somatic Cell Counts, and Milk Composition
4.2. MIR Diagnostic Models for Mastitis with the Criterion of Mastitis Identification of SCC and DSCC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCC | Somatic cell count |
DSCC | Differential somatic cell count |
MIR | Mid-infrared spectroscopy |
RF | Random forest |
KNN | K-nearest neighbor |
LR | Linear regression |
NBM | Naive Bayes model |
Adaboost | Adaptive boosting |
SVM | Support vector machine |
SG | Savitzky–Golay convolution smoothing |
DIFF | Difference |
None | No preprocessing for MIR data |
ACCU | Accuracy |
SENS | Sensitivity |
SPEC | Specificity |
PPV | Positive predictive value |
NPV | Negative predictive value |
MCC | Matthews correlation coefficient |
AUC | Area under receiver operating characteristic curve |
References
- Petrovski, K.R.; Trajcev, M.; Buneski, G. A Review of the Factors Affecting the Costs of Bovine Mastitis. J. S. Afr. Vet. Assoc. 2006, 77, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Halasa, T.; Huijps, K.; Østerås, O.; Hogeveen, H. Economic Effects of Bovine Mastitis and Mastitis Management: A Review. Vet. Q. 2007, 29, 18–31. [Google Scholar] [CrossRef]
- Viguier, C.; Arora, S.; Gilmartin, N.; Welbeck, K.; O’Kennedy, R. Mastitis Detection: Current Trends and Future Perspectives. Trends Biotechnol. 2009, 27, 486–493. [Google Scholar] [CrossRef]
- He, W.; Ma, S.; Lei, L.; He, J.; Li, X.; Tao, J.; Wang, X.; Song, S.; Wang, Y.; Wang, Y.; et al. Prevalence, Etiology, and Economic Impact of Clinical Mastitis on Large Dairy Farms in China. Vet. Microbiol. 2020, 242, 108570. [Google Scholar] [CrossRef]
- Lozada-Soto, E.; Maltecca, C.; Anderson, K.; Tiezzi, F. Analysis of Milk Leukocyte Differential Measures for Use in Management Practices for Decreased Mastitis Incidence. J. Dairy Sci. 2020, 103, 572–582. [Google Scholar] [CrossRef]
- Neculai-Valeanu, A.-S.; Ariton, A.-M. Udder Health Monitoring for Prevention of Bovine Mastitis and Improvement of Milk Quality. Bioengineering 2022, 9, 608. [Google Scholar] [CrossRef] [PubMed]
- Kirkeby, C.; Toft, N.; Schwarz, D.; Farre, M.; Nielsen, S.S.; Zervens, L.; Hechinger, S.; Halasa, T. Differential Somatic Cell Count as an Additional Indicator for Intramammary Infections in Dairy Cows. J. Dairy Sci. 2020, 103, 1759–1775. [Google Scholar] [CrossRef]
- Damm, M.; Holm, C.; Blaabjerg, M.; Bro, M.N.; Schwarz, D. Differential Somatic Cell Count—A Novel Method for Routine Mastitis Screening in the Frame of Dairy Herd Improvement Testing Programs. J. Dairy Sci. 2017, 100, 4926–4940. [Google Scholar] [CrossRef]
- Wall, S.K.; Wellnitz, O.; Bruckmaier, R.M.; Schwarz, D. Differential Somatic Cell Count in Milk before, during, and after Lipopolysaccharide- and Lipoteichoic-Acid-Induced Mastitis in Dairy Cows. J. Dairy Sci. 2018, 101, 5362–5373. [Google Scholar] [CrossRef]
- Schwarz, D.; Kleinhans, S.; Reimann, G.; Stückler, P.; Reith, F.; Ilves, K.; Pedastsaar, K.; Yan, L.; Zhang, Z.; Valdivieso, M.; et al. Investigation of Dairy Cow Performance in Different Udder Health Groups Defined Based on a Combination of Somatic Cell Count and Differential Somatic Cell Count. Prev. Vet. Med. 2020, 183, 105123. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, M.; Toffanin, V.; Cassandro, M.; Penasa, M. Invited Review: Mid-Infrared Spectroscopy as Phenotyping Tool for Milk Traits. J. Dairy Sci. 2014, 97, 1171–1186. [Google Scholar] [CrossRef]
- Mesgaran, S.D.; Eggert, A.; Höckels, P.; Derno, M.; Kuhla, B. The Use of Milk Fourier Transform Mid-Infrared Spectra and Milk Yield to Estimate Heat Production as a Measure of Efficiency of Dairy Cows. J. Anim. Sci. Biotechnol. 2020, 11, 43. [Google Scholar] [CrossRef]
- Zhao, X.; Song, Y.; Zhang, Y.; Cai, G.; Xue, G.; Liu, Y.; Chen, K.; Zhang, F.; Wang, K.; Zhang, M.; et al. Predictions of Milk Fatty Acid Contents by Mid-Infrared Spectroscopy in Chinese Holstein Cows. Molecules 2023, 28, 666. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Visentin, G.; De Marchi, M.; Cassandro, M.; Penasa, M. Genetic Relationships of Lactose and Freezing Point with Minerals and Coagulation Traits Predicted from Milk Mid-Infrared Spectra in Holstein Cows. J. Dairy Sci. 2019, 102, 7217–7225. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.P.; Ferrand, M.; Gelé, M.; Pourchet, D.; Miranda, G.; Martin, P.; Brochard, M.; Boichard, D. Short Communication: Genetic Parameters for Milk Protein Composition Predicted Using Mid-Infrared Spectroscopy in the French Montbéliarde, Normande, and Holstein Dairy Cattle Breeds. J. Dairy Sci. 2017, 100, 6371–6375. [Google Scholar] [CrossRef]
- Zaalberg, R.M.; Poulsen, N.A.; Bovenhuis, H.; Sehested, J.; Larsen, L.B.; Buitenhuis, A.J. Genetic Analysis on Infrared-Predicted Milk Minerals for Danish Dairy Cattle. J. Dairy Sci. 2021, 104, 8947–8958. [Google Scholar] [CrossRef]
- Bonfatti, V.; Turner, S.-A.; Kuhn-Sherlock, B.; Luke, T.D.W.; Ho, P.N.; Phyn, C.V.C.; Pryce, J.E. Prediction of Blood β-Hydroxybutyrate Content and Occurrence of Hyperketonemia in Early-Lactation, Pasture-Grazed Dairy Cows Using Milk Infrared Spectra. J. Dairy Sci. 2019, 102, 6466–6476. [Google Scholar] [CrossRef]
- Bonfatti, V.; Ho, P.N.; Pryce, J.E. Usefulness of Milk Mid-Infrared Spectroscopy for Predicting Lameness Score in Dairy Cows. J. Dairy Sci. 2020, 103, 2534–2544. [Google Scholar] [CrossRef]
- Bastin, C.; Théron, L.; Lainé, A.; Gengler, N. On the Role of Mid-Infrared Predicted Phenotypes in Fertility and Health Dairy Breeding Programs. J. Dairy Sci. 2016, 99, 4080–4094. [Google Scholar] [CrossRef] [PubMed]
- Franzoi, M.; Manuelian, C.L.; Penasa, M.; De Marchi, M. Effects of Somatic Cell Score on Milk Yield and Mid-Infrared Predicted Composition and Technological Traits of Brown Swiss, Holstein Friesian, and Simmental Cattle Breeds. J. Dairy Sci. 2020, 103, 791–804. [Google Scholar] [CrossRef]
- Zecconi, A.; Dell’Orco, F.; Vairani, D.; Rizzi, N.; Cipolla, M.; Zanini, L. Differential Somatic Cell Count as a Marker for Changes of Milk Composition in Cows with Very Low Somatic Cell Count. Animals 2020, 10, 604. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Lenth, R.V. Least-Squares Means: The R Package Lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Zhang, H. The Optimality of Naive Bayes. In Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference, Miami Beach, FL, USA, 1 January 2004; FLAIRS. Volume 2. [Google Scholar]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009; ISBN 978-1-4414-1269-0. [Google Scholar]
- Ogola, H.; Shitandi, A.; Nanua, J. Effect of Mastitis on Raw Milk Compositional Quality. J. Vet. Sci. 2007, 8, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimie, E.; Ebrahimi, F.; Ebrahimi, M.; Tomlinson, S.; Petrovski, K.R. A Large-Scale Study of Indicators of Sub-Clinical Mastitis in Dairy Cattle by Attribute Weighting Analysis of Milk Composition Features: Highlighting the Predictive Power of Lactose and Electrical Conductivity. J. Dairy Res. 2018, 85, 193–200. [Google Scholar] [CrossRef]
- Stocco, G.; Summer, A.; Cipolat-Gotet, C.; Zanini, L.; Vairani, D.; Dadousis, C.; Zecconi, A. Differential Somatic Cell Count as a Novel Indicator of Milk Quality in Dairy Cows. Animals 2020, 10, 753. [Google Scholar] [CrossRef]
- Bisutti, V.; Vanzin, A.; Toscano, A.; Pegolo, S.; Giannuzzi, D.; Tagliapietra, F.; Schiavon, S.; Gallo, L.; Trevisi, E.; Negrini, R.; et al. Impact of Somatic Cell Count Combined with Differential Somatic Cell Count on Milk Protein Fractions in Holstein Cattle. J. Dairy Sci. 2022, 105, 6447–6459. [Google Scholar] [CrossRef] [PubMed]
- Pegolo, S.; Giannuzzi, D.; Bisutti, V.; Tessari, R.; Gelain, M.E.; Gallo, L.; Schiavon, S.; Tagliapietra, F.; Trevisi, E.; Ajmone Marsan, P.; et al. Associations between Differential Somatic Cell Count and Milk Yield, Quality, and Technological Characteristics in Holstein Cows. J. Dairy Sci. 2021, 104, 4822–4836. [Google Scholar] [CrossRef] [PubMed]
- De Haas, Y.; Barkema, H.W.; Veerkamp, R.F. The Effect of Pathogen-Specific Clinical Mastitis on the Lactation Curve for Somatic Cell Count. J. Dairy Sci. 2002, 85, 1314–1323. [Google Scholar] [CrossRef] [PubMed]
- De Haas, Y.; Veerkamp, R.F.; Barkema, H.W.; Gröhn, Y.T.; Schukken, Y.H. Associations between Pathogen-Specific Cases of Clinical Mastitis and Somatic Cell Count Patterns. J. Dairy Sci. 2004, 87, 95–105. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, N.K.; Bhadwal, M.S. Relationship of Somatic Cell Count and Mastitis: An Overview. Asian-Australas. J. Anim. Sci. 2011, 24, 429–438. [Google Scholar] [CrossRef]
- Schwarz, D.; Lipkens, Z.; Piepers, S.; De Vliegher, S. Investigation of Differential Somatic Cell Count as a Potential New Supplementary Indicator to Somatic Cell Count for Identification of Intramammary Infection in Dairy Cows at the End of the Lactation Period. Prev. Vet. Med. 2019, 172, 104803. [Google Scholar] [CrossRef]
- Anglart, D.; Hallén-Sandgren, C.; Emanuelson, U.; Rönnegård, L. Comparison of Methods for Predicting Cow Composite Somatic Cell Counts. J. Dairy Sci. 2020, 103, 8433–8442. [Google Scholar] [CrossRef]
- Bresolin, T.; Dórea, J.R.R. Infrared Spectrometry as a High-Throughput Phenotyping Technology to Predict Complex Traits in Livestock Systems. Front. Genet. 2020, 11, 923. [Google Scholar] [CrossRef]
Groups | Modeling Algorithm (Spectral Preprocessing Methods) | Modeling Spectral Wavenumbers | Datasets | Model Evaluation Metrics | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ACCU | SENS | SPEC | PPV | NPV | MCC | AUC | ||||
Healthy (Group A) vs. mastitis (Group BCD) | ||||||||||
KNN (SG) | 1060 | Train | 0.63 | 0.65 | 0.61 | 0.62 | 0.63 | 0.26 | 0.67 | |
Test | 0.59 | 0.68 | 0.50 | 0.57 | 0.61 | 0.18 | 0.64 | |||
NBM (SG) | 1060 | Train | 0.69 | 0.60 | 0.78 | 0.73 | 0.66 | 0.38 | 0.73 | |
Test | 0.62 | 0.53 | 0.71 | 0.64 | 0.60 | 0.24 | 0.69 | |||
RF (DIFF) | 1060 | Train | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
Test | 0.73 | 0.66 | 0.81 | 0.77 | 0.70 | 0.47 | 0.80 | |||
SVM (None) | 1060 | Train | 0.77 | 0.69 | 0.85 | 0.82 | 0.73 | 0.55 | 0.86 | |
Test | 0.73 | 0.67 | 0.78 | 0.75 | 0.70 | 0.45 | 0.79 | |||
LR (None) | 1060 | Train | 0.79 | 0.75 | 0.83 | 0.81 | 0.77 | 0.58 | 0.87 | |
Test | 0.75 | 0.69 | 0.80 | 0.78 | 0.72 | 0.49 | 0.80 | |||
Adaboost (SG) | 1060 | Train | 0.98 | 0.97 | 0.98 | 0.98 | 0.97 | 0.95 | 1.00 | |
Test | 0.70 | 0.66 | 0.73 | 0.71 | 0.68 | 0.39 | 0.79 | |||
Healthy (Group A) vs. suspicious mastitis (Group B) | ||||||||||
Adaboost (SG) | 1060 | Train | 0.99 | 0.98 | 0.99 | 0.99 | 0.98 | 0.97 | 1.00 | |
Test | 0.62 | 0.56 | 0.68 | 0.63 | 0.61 | 0.24 | 0.63 | |||
SVM (DIFF) | 212 | Train | 0.68 | 0.69 | 0.67 | 0.67 | 0.68 | 0.35 | 0.75 | |
Test | 0.58 | 0.56 | 0.59 | 0.58 | 0.57 | 0.15 | 0.63 | |||
SVM (DIFF) | 274 | Train | 0.67 | 0.68 | 0.67 | 0.67 | 0.67 | 0.35 | 0.75 | |
Test | 0.57 | 0.55 | 0.59 | 0.57 | 0.57 | 0.14 | 0.64 | |||
Mastitis (Group C) vs. chronic/persistent mastitis (Group D) | ||||||||||
RF (SG) | 1060 | Train | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
Test | 0.74 | 0.74 | 0.75 | 0.75 | 0.74 | 0.49 | 0.82 | |||
SVM (DIFF) | 274 | Train | 0.80 | 0.78 | 0.83 | 0.82 | 0.79 | 0.60 | 0.87 | |
Test | 0.79 | 0.73 | 0.85 | 0.83 | 0.76 | 0.58 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Chu, C.; Bao, X.; Yan, L.; Bai, X.; Lu, H.; Liu, C.; Zhang, Z.; Zhang, S. Development of Mid-Infrared Spectroscopy (MIR) Diagnostic Model for Udder Health Status of Dairy Cattle. Animals 2025, 15, 2242. https://doi.org/10.3390/ani15152242
Ren X, Chu C, Bao X, Yan L, Bai X, Lu H, Liu C, Zhang Z, Zhang S. Development of Mid-Infrared Spectroscopy (MIR) Diagnostic Model for Udder Health Status of Dairy Cattle. Animals. 2025; 15(15):2242. https://doi.org/10.3390/ani15152242
Chicago/Turabian StyleRen, Xiaoli, Chu Chu, Xiangnan Bao, Lei Yan, Xueli Bai, Haibo Lu, Changlei Liu, Zhen Zhang, and Shujun Zhang. 2025. "Development of Mid-Infrared Spectroscopy (MIR) Diagnostic Model for Udder Health Status of Dairy Cattle" Animals 15, no. 15: 2242. https://doi.org/10.3390/ani15152242
APA StyleRen, X., Chu, C., Bao, X., Yan, L., Bai, X., Lu, H., Liu, C., Zhang, Z., & Zhang, S. (2025). Development of Mid-Infrared Spectroscopy (MIR) Diagnostic Model for Udder Health Status of Dairy Cattle. Animals, 15(15), 2242. https://doi.org/10.3390/ani15152242