Physical Activity Monitors in Companion Animal Chronic Pain Research—A Review Focused on Osteoarthritis Pain
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Terminology
3. Part I: Technical Considerations When Using Accelerometers
3.1. Accelerometer Technology
3.1.1. Accelerometer Function
3.1.2. Piezoelectric Accelerometers
3.1.3. Capacitance Accelerometers
3.1.4. Axes Information
3.2. Data Acquisition and Processing
3.2.1. Data Acquisition
3.2.2. Data Filtration
3.2.3. Data Processing, Output, and Resolution
3.2.4. Data Storage and Presentation
3.3. Device Calibration, Reliability and Validity
3.3.1. Device Calibration
3.3.2. Device Sensitivity and Validity
3.3.3. Device Reliability
3.3.4. Data Summation and Analysis
3.4. Part I Discussion
4. Part II: Biological and Analysis Considerations
4.1. Biological and Use Considerations
4.1.1. Sensor Placement and Attachments
4.1.2. Body Conformation
4.1.3. Age
4.2. Patterns of Activity
4.3. Biologic Meaning of Changes in Activity
4.4. Detecting and Understanding the Effects of Analgesics in Chronic Pain Conditions
4.5. Future Directions
4.5.1. Integrated Units
4.5.2. Detecting Specific Movements and Behaviors
4.5.3. Smoothness of Motion
4.5.4. Implantable Accelerometers
4.5.5. Future Integration of PAM Data into Research
4.6. Part II Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PAM | Physical activity monitors |
IMU | Inertial measurement units |
Hz | Hertz |
MEMS | Micro-electro mechanical systems |
DC | Direct current |
AC | Alternating current |
FLM | Functional linear modeling |
FDA | Functional data analysis |
DJD | Degenerative joint disease |
ML | Machine learning |
NSAID | Non-steroidal anti-inflammatory drug |
OA | Osteoarthritis |
ES | Effect size |
NNT | Number needed to treat |
NGF | Nerve growth factor |
mAb | Monocolonal antibody |
GPS | Global positioning system |
References
- Lascelles, B.D.X.; Brown, D.C.; Conzemius, M.G.; Gill, M.; Oshinsky, M.L.; Sharkey, M. Measurement of chronic pain in companion animals: Discussions from the Pain in Animals Workshop (PAW) 2017. Vet. J. 2019, 250, 71–78. [Google Scholar] [CrossRef]
- McClintock, M.K.; Dale, W.; Laumann, E.O.; Waite, L. Empirical redefinition of comprehensive health and well-being in the older adults of the United States. Proc. Natl. Acad. Sci. USA 2016, 113, E3071–E3080. [Google Scholar] [CrossRef]
- Benzo, R. Activity monitoring in chronic obstructive pulmonary disease. J. Cardiopulm. Rehabil. Prev. 2009, 29, 341–347. [Google Scholar] [CrossRef]
- Warburton, D.E.R.; Nicol, C.W.; Bredin, S.S.D. Health benefits of physical activity: The evidence. CMAJ Can. Med. Assoc. J. 2006, 174, 801–809. [Google Scholar] [CrossRef]
- Brown, D.C.; Michel, K.E.; Love, M.; Dow, C. Evaluation of the effect of signalment and body conformation on activity monitoring in companion dogs. Am. J. Vet. Res. 2010, 71, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Culp, W.T.N.; Mayhew, P.D.; Brown, D.C. The effect of laparoscopic versus open ovariectomy on postsurgical activity in small dogs. Vet. Surg. VS 2009, 38, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Guillot, M.; Moreau, M.; Heit, M.; Martel-Pelletier, J.; Pelletier, J.P.; Troncy, E. Characterization of osteoarthritis in cats and meloxicam efficacy using objective chronic pain evaluation tools. Vet. J. 2013, 196, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Dowling-Guyer, S.; Patronek, G.J.; Marder, A.R.; Segurson D’Arpino, S.; McCobb, E. Use of accelerometers to measure stress levels in shelter dogs. J. Appl. Anim. Welf. Sci. 2014, 17, 18–28. [Google Scholar] [CrossRef]
- Mayhew, P.D.; Brown, D.C. Prospective evaluation of two intracorporeally sutured prophylactic laparoscopic gastropexy techniques compared with laparoscopic-assisted gastropexy in dogs. Vet. Surg. 2009, 38, 738–746. [Google Scholar] [CrossRef]
- Menor-Campos, D.J.; Molleda-Carbonell, J.M.; Lopez-Rodriguez, R. Effects of exercise and human contact on animal welfare in a dog shelter. Vet. Rec. 2011, 169, 388. [Google Scholar] [CrossRef]
- Nuttall, T.; McEwan, N. Objective measurement of pruritus in dogs: A preliminary study using activity monitors. Vet. Dermatol. 2006, 17, 348–351. [Google Scholar] [CrossRef]
- Plant, J.D. Correlation of observed nocturnal pruritus and actigraphy in dogs. Vet. Rec. 2008, 162, 624–625. [Google Scholar] [CrossRef]
- Wernham, B.G.; Trumpatori, B.; Hash, J.; Lipsett, J.; Davidson, G.; Wackerow, P.; Thomson, A.; Lascelles, B.D. Dose reduction of meloxicam in dogs with osteoarthritis-associated pain and impaired mobility. J. Vet. Intern. Med./Am. Coll. Vet. Intern. Med. 2011, 25, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Gruen, M.E.; Thomson, A.E.; Griffith, E.H.; Paradise, H.; Gearing, D.P.; Lascelles, B.D. A Feline-Specific Anti-Nerve Growth Factor Antibody Improves Mobility in Cats with Degenerative Joint Disease-Associated Pain: A Pilot Proof of Concept Study. J. Vet. Intern. Med./Am. Coll. Vet. Intern. Med. 2016, 30, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
- Carr, B.; Levine, D.; Marcellin-Little, D. Gait Changes Resulting from Orthopedic and Neurologic Problems in Companion Animals: A Review. Adv. Small Anim. Care 2023, 4, 1–20. [Google Scholar] [CrossRef]
- Godfrey, A.; Conway, R.; Meagher, D.; Ólaighin, G. Direct measurement of human movement by accelerometry. Med. Eng. Phys. 2008, 30, 1364–1386. [Google Scholar] [CrossRef] [PubMed]
- Hokkanen, A.-H.; Hänninen, L.; Tiusanen, J.; Pastell, M. Predicting sleep and lying time of calves with a support vector machine classifier using accelerometer data. Appl. Anim. Behav. Sci. 2011, 134, 10–15. [Google Scholar] [CrossRef]
- Ladha, C.; Hoffman, C.L. A Combined Approach to Predicting Rest in Dogs Using Accelerometers. Sensors 2018, 18, 2649. [Google Scholar] [CrossRef]
- Watanabe, S.; Izawa, M.; Kato, A.; Ropert-Coudert, Y.; Naito, Y. A new technique for monitoring the detailed behaviour of terrestrial animals: A case study with the domestic cat. Appl. Anim. Behav. Sci. 2005, 94, 117–131. [Google Scholar] [CrossRef]
- Lévesque, L. Revisiting the Nyquist criterion and aliasing in data analysis. Eur. J. Phys. 2001, 22, 127. [Google Scholar] [CrossRef]
- Cavagna, G.A.; Franzetti, P.; Heglund, N.C.; Willems, P. The determinants of the step frequency in running, trotting and hopping in man and other vertebrates. J. Physiol. 1988, 399, 81–92. [Google Scholar] [CrossRef]
- Eskander, B.S.; Barbar, M.; Evans, R.B.; Enomoto, M.; Lascelles, B.D.X.; Conzemius, M.G. Correlation of activity data in normal dogs to distance traveled. Can. J. Vet. Res. 2020, 84, 44–51. [Google Scholar]
- Welk, G.J.; McClain, J.; Ainsworth, B.E. Protocols for Evaluating Equivalency of Accelerometry-Based Activity Monitors. Med. Sci. Sports Exerc. 2012, 44, S39–S49. [Google Scholar] [CrossRef]
- Bassett, D.R.; Rowlands, A.; Trost, S.G. Calibration and validation of wearable monitors. Med. Sci. Sports Exerc. 2012, 44, S32–S38. [Google Scholar] [CrossRef] [PubMed]
- Coolbaugh, C.L.; Hawkins, D.A. Standardizing Accelerometer-Based Activity Monitor Calibration and Output Reporting. J. Appl. Biomech. 2014, 30, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.D.; Lascelles, B.D.; Keene, B.W.; Adams, A.K.; Thomson, A.E. Evaluation of an accelerometer for at-home monitoring of spontaneous activity in dogs. Am. J. Vet. Res. 2007, 68, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Lascelles, B.D.X.; Hansen, B.D.; Thomson, A.; Pierce, C.C.; Boland, E.; Smith, E.S. Evaluation of a digitally integrated accelerometer-based activity monitor for the measurement of activity in cats. Vet. Anaesth. Analg. 2008, 35, 173–183. [Google Scholar] [CrossRef]
- Yam, P.S.; Penpraze, V.; Young, D.; Todd, M.S.; Cloney, A.D.; Houston-Callaghan, K.A.; Reilly, J.J. Validity, practical utility and reliability of Actigraph accelerometry for the measurement of habitual physical activity in dogs. J. Small Anim. Pract. 2011, 52, 86–91. [Google Scholar] [CrossRef]
- Yamada, M.; Tokuriki, M. Spontaneous activities measured continuously by an accelerometer in beagle dogs housed in a cage. J. Vet. Med. Sci. 2000, 62, 443–447. [Google Scholar] [CrossRef]
- Mejia, S.; Duerr, F.M.; Salman, M. Comparison of activity levels derived from two accelerometers in dogs with osteoarthritis: Implications for clinical trials. Vet. J. 2019, 252, 105355. [Google Scholar] [CrossRef]
- Belda, B.; Enomoto, M.; Case, B.C.; Lascelles, B.D.X. Initial evaluation of PetPace activity monitor. Vet. J. 2018, 237, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Yashari, J.M.; Duncan, C.G.; Duerr, F.M. Evaluation of a novel canine activity monitor for at-home physical activity analysis. BMC Vet. Res. 2015, 11, 146. [Google Scholar] [CrossRef]
- Hyytiäinen, H.; Levine, D.; Marcellin-Little, D. Clinical Instruments for the Evaluation of Orthopedic Problems in Dogs and Human Patients, a Review. Adv. Small Anim. Care 2023, 4, 37–52. [Google Scholar] [CrossRef]
- Piccione, G.; Marafioti, S.; Giannetto, C.; Panzera, M.; Fazio, F. Daily rhythm of total activity pattern in domestic cats (Felis silvestris catus) maintained in two different housing conditions. J. Vet. Behav. Clin. Appl. Res. 2013, 8, 189–194. [Google Scholar] [CrossRef]
- Siwak, C.T.; Tapp, P.D.; Zicker, S.C.; Murphey, H.L.; Muggenburg, B.A.; Head, E.; Cotman, C.W.; Milgram, N.W. Locomotor activity rhythms in dogs vary with age and cognitive status. Behav. Neurosci. 2003, 117, 813–824. [Google Scholar] [CrossRef]
- Olsen, A.M.; Evans, R.B.; Duerr, F.M. Evaluation of Accelerometer Inter-Device Variability and Collar Placement in Dogs. Vet. Evid. 2016, 1, 1–9. [Google Scholar] [CrossRef]
- Brown, D.C.; Boston, R.C.; Farrar, J.T. Use of an activity monitor to detect response to treatment in dogs with osteoarthritis. J. Am. Vet. Med. Assoc. 2010, 237, 66–70. [Google Scholar] [CrossRef]
- Dow, C.; Michel, K.E.; Love, M.; Brown, D.C. Evaluation of optimal sampling interval for activity monitoring in companion dogs. Am. J. Vet. Res. 2009, 70, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Adrian, D.; King, J.N.; Parrish, R.S.; King, S.B.; Budsberg, S.C.; Gruen, M.E.; Lascelles, B.D.X. Robenacoxib shows efficacy for the treatment of chronic degenerative joint disease-associated pain in cats: A randomized and blinded pilot clinical trial. Sci. Rep. 2021, 11, 7721. [Google Scholar] [CrossRef]
- Rialland, P.; Bichot, S.; Moreau, M.; Guillot, M.; Lussier, B.; Gauvin, D.; Martel-Pelletier, J.; Pelletier, J.-P.; Troncy, E. Clinical validity of outcome pain measures in naturally occurring canine osteoarthritis. BMC Vet. Res. 2012, 8, 162. [Google Scholar] [CrossRef]
- Gruen, M.E.; Griffith, E.H.; Thomson, A.E.; Simpson, W.; Lascelles, B.D.X. Criterion Validation Testing of Clinical Metrology Instruments for Measuring Degenerative Joint Disease Associated Mobility Impairment in Cats. PLoS ONE 2015, 10, e0131839. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, P.D.; Brown, D.C. Comparison of three techniques for ovarian pedicle hemostasis during laparoscopic-assisted ovariohysterectomy. Vet. Surg. 2007, 36, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Morrison, R.; Penpraze, V.; Greening, R.; Underwood, T.; Reilly, J.J.; Yam, P.S. Correlates of objectively measured physical activity in dogs. Vet. J. 2014, 199, 263–267. [Google Scholar] [CrossRef]
- Lascelles, B.D.X.; Knazovicky, D.; Case, B.; Freire, M.; Innes, J.F.; Drew, A.C.; Gearing, D.P. A canine-specific anti-nerve growth factor antibody alleviates pain and improves mobility and function in dogs with degenerative joint disease-associated pain. BMC Vet. Res. 2015, 11, 101. [Google Scholar] [CrossRef]
- Gruen, M.E.; Alfaro-Córdoba, M.; Thomson, A.E.; Worth, A.C.; Staicu, A.-M.; Lascelles, B.D.X. The Use of Functional Data Analysis to Evaluate Activity in a Spontaneous Model of Degenerative Joint Disease Associated Pain in Cats. PLoS ONE 2017, 12, e0169576. [Google Scholar] [CrossRef] [PubMed]
- Sharon, K.P.; Thompson, C.M.; Lascelles, B.D.X.; Parrish, R.S. Novel use of an activity monitor to model jumping behaviors in cats. Am. J. Vet. Res. 2020, 81, 334–343. [Google Scholar] [CrossRef]
- Xu, Z.; Laber, E.; Staicu, A.-M.; Lascelles, B.D.X. Novel approach to modeling high-frequency activity data to assess therapeutic effects of analgesics in chronic pain conditions. Sci. Rep. 2021, 11, 7737. [Google Scholar] [CrossRef]
- Montout, A.X. Prediction of Poor Health in Small Ruminants and Companion Animals with Accelerometers and Machine Learning. Ph.D. Dissertation, University of Bristol, Bristol, UK, 2023. [Google Scholar]
- Chambers, R.D.; Yoder, N.C.; Carson, A.B.; Junge, C.; Allen, D.E.; Prescott, L.M.; Bradley, S.; Wymore, G.; Lloyd, K.; Lyle, S. Deep Learning Classification of Canine Behavior Using a Single Collar-Mounted Accelerometer: Real-World Validation. Animals 2021, 11, 1549. [Google Scholar] [CrossRef]
- Preston, T.; Baltzer, W.; Trost, S. Accelerometer validity and placement for detection of changes in physical activity in dogs under controlled conditions on a treadmill. Res. Vet. Sci. 2012, 93, 412–416. [Google Scholar] [CrossRef]
- Martin, K.W.; Olsen, A.M.; Duncan, C.G.; Duerr, F.M. The method of attachment influences accelerometer-based activity data in dogs. BMC Vet. Res. 2017, 13, 48. [Google Scholar] [CrossRef]
- Muller, C.; Gines, J.A.; Conzemius, M.; Meyers, R.; Lascelles, B.D.X. Evaluation of the effect of signalment and owner-reported impairment level on accelerometer-measured changes in activity in osteoarthritic dogs receiving a non-steroidal anti-inflammatory. Vet. J. 2018, 242, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Siwak, C.T.; Murphey, H.L.; Muggenburg, B.A.; Milgram, N.W. Age-dependent decline in locomotor activity in dogs is environment specific. Physiol. Behav. 2002, 75, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Satlin, A.; Teicher, M.H.; Lieberman, H.R.; Baldessarini, R.J.; Volicer, L.; Rheaume, Y. Circadian locomotor activity rhythms in Alzheimer’s disease. Neuropsychopharmacology 1991, 5, 115–126. [Google Scholar] [PubMed]
- Rackoll, T.; Neumann, K.; Passmann, S.; Grittner, U.; Kulzow, N.; Ladenbauer, J.; Floel, A. Applying time series analyses on continuous accelerometry data—A clinical example in older adults with and without cognitive impairment. PLoS ONE 2021, 16, e0251544. [Google Scholar] [CrossRef]
- Smit, M.; Corner-Thomas, R.A.; Draganova, I.; Andrews, C.J.; Thomas, D.G. How Lazy Are Pet Cats Really? Using Machine Learning and Accelerometry to Get a Glimpse into the Behaviour of Privately Owned Cats in Different Households. Sensors 2024, 24, 2623. [Google Scholar] [CrossRef]
- Kappen, K.L.; Garner, L.M.; Kerr, K.R.; Swanson, K.S. Effects of photoperiod on food intake, activity and metabolic rate in adult neutered male cats. J. Anim. Physiol. Anim. Nutr. 2014, 98, 958–967. [Google Scholar] [CrossRef]
- Lee, A.H.; Detweiler, K.B.; Harper, T.A.; Knap, K.E.; de Godoy, M.R.C.; Swanson, K.S. Physical activity patterns of free living dogs diagnosed with osteoarthritis. J. Anim. Sci. 2021, 99, skab204. [Google Scholar] [CrossRef]
- Knazovicky, D.; Tomas, A.; Motsinger-Reif, A.; Lascelles, B.D.X. Initial evaluation of nighttime restlessness in a naturally occurring canine model of osteoarthritis pain. PeerJ 2015, 3, e772. [Google Scholar] [CrossRef]
- Gruen, M.E.; Samson, D.R.; Lascelles, B.D.X. Functional linear modeling of activity data shows analgesic-mediated improved sleep in dogs with spontaneous osteoarthritis pain. Sci. Rep. 2019, 9, 14192. [Google Scholar] [CrossRef]
- Malek, S.; Sample, S.J.; Schwartz, Z.; Nemke, B.; Jacobson, P.B.; Cozzi, E.M.; Schaefer, S.L.; Bleedorn, J.A.; Holzman, G.; Muir, P. Effect of analgesic therapy on clinical outcome measures in a randomized controlled trial using client-owned dogs with hip osteoarthritis. BMC Vet. Res. 2012, 8, 185. [Google Scholar] [CrossRef]
- Lapane, K.L.; Shridharmurthy, D.; Harkey, M.S.; Driban, J.B.; Dube, C.E.; Liu, S.H. The relationship between restless sleep and symptoms of the knee: Data from the Osteoarthritis Initiative. Clin. Rheumatol. 2021, 40, 2167–2175. [Google Scholar] [CrossRef] [PubMed]
- Fielden, J.M.; Gander, P.H.; Horne, J.G.; Lewer, B.M.; Green, R.M.; Devane, P.A. An assessment of sleep disturbance in patients before and after total hip arthroplasty. J. Arthroplast. 2003, 18, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Woods, H.J.; Li, M.F.; Patel, U.A.; Lascelles, B.D.X.; Samson, D.R.; Gruen, M.E. A functional linear modeling approach to sleep-wake cycles in dogs. Sci. Rep. 2020, 10, 22233. [Google Scholar] [CrossRef]
- Mondino, A.; Khan, M.; Case, B.; Giovagnoli, S.; Thomson, A.; Lascelles, B.D.X.; Gruen, M.; Olby, N. Activity patterns are associated with fractional lifespan, memory, and gait speed in aged dogs. Sci. Rep. 2023, 13, 2588. [Google Scholar] [CrossRef]
- Wang, J.; Xian, H.; Licis, A.; Deych, E.; Ding, J.; McLeland, J.; Toedebusch, C.; Li, T.; Duntley, S.; Shannon, W. Measuring the impact of apnea and obesity on circadian activity patterns using functional linear modeling of actigraphy data. J. Circadian Rhythm. 2011, 9, 11. [Google Scholar] [CrossRef]
- Stevens, C.; Kawecki-Wright, E.; De Ortiz, A.R.; Thomson, A.; Aker, S.; Perry, E.; Haupt, E.; Mondino, A.; Enomoto, M.; Gruen, M.E.; et al. Factors influencing, and associated with, physical activity patterns in dogs with osteoarthritis-associated pain. Front. Vet. Sci. 2025, 12, 1503009. [Google Scholar] [CrossRef]
- Alves, J.C.; Innes, J.F. Minimal clinically-important differences for the “Liverpool Osteoarthritis in Dogs” (LOAD) and the “Canine Orthopedic Index” (COI) in dogs with osteoarthritis. PLoS ONE 2023, 18, e0291881. [Google Scholar] [CrossRef]
- De Ortiz, A.R.; Belda, B.; Hash, J.; Enomoto, M.; Robertson, J.; Lascelles, B.D.X. Initial exploration of the discriminatory ability of the PetPace collar to detect differences in activity and physiological variables between healthy and osteoarthritic dogs. Front. Pain Res. 2022, 3, 949877. [Google Scholar] [CrossRef]
- Morrison, R.; Reilly, J.J.; Penpraze, V.; Pendlebury, E.; Yam, P.S. A 6-month observational study of changes in objectively measured physical activity during weight loss in dogs. J. Small Anim. Pract. 2014, 55, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Gruen, M.E.; Myers, J.A.E.; Lascelles, B.D.X. Efficacy and safety of an anti-Nerve Growth Factor antibody (frunevetmab) for the treatment of degenerative joint disease-associated chronic pain in cats: A multi-site pilot field study. Front. Vet. Sci. 2021, 8, 610028. [Google Scholar] [CrossRef]
- Guedes, A.G.P.; Meadows, J.M.; Pypendop, B.H.; Johnson, E.G. Evaluation of tramadol for treatment of osteoarthritis in geriatric cats. J. Am. Vet. Med. Assoc. 2018, 252, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Guedes, A.G.P.; Meadows, J.M.; Pypendop, B.H.; Johnson, E.G.; Zaffarano, B. Assessment of the effects of gabapentin on activity levels and owner-perceived mobility impairment and quality of life in osteoarthritic geriatric cats. J. Am. Vet. Med. Assoc. 2018, 253, 579–585. [Google Scholar] [CrossRef]
- Shipley, H.; Flynn, K.; Tucker, L.; Wendt-Hornickle, E.; Baldo, C.; Almeida, D.; Allweiler, S.; Guedes, A. Owner evaluation of quality of life and mobility in osteoarthritic cats treated with amantadine or placebo. J. Feline Med. Surg. 2021, 23, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, B.P.; de Lorimier, L.P.; Moreau, M.; Beauchamp, G.; Blair, J.; Lussier, B.; Pelletier, J.P.; Troncy, E. Pain characterization and response to palliative care in dogs with naturally-occurring appendicular osteosarcoma: An open label clinical trial. PLoS ONE 2018, 13, e0207200. [Google Scholar] [CrossRef]
- Bohic, M.; Pattison, L.A.; Jhumka, Z.A.; Rossi, H.; Thackray, J.K.; Ricci, M.; Mossazghi, N.; Foster, W.; Ogundare, S.; Twomey, C.R.; et al. Mapping the neuroethological signatures of pain, analgesia, and recovery in mice. Neuron 2023, 111, 2811–2830.e8. [Google Scholar] [CrossRef] [PubMed]
- Clarke, N.; Fraser, D. Automated monitoring of resting in dogs. Appl. Anim. Behav. Sci. 2016, 174, 99–102. [Google Scholar] [CrossRef]
- Ungar, E.D.; Henkin, Z.; Gutman, M.; Dolev, A.; Genizi, A.; Ganskopp, D. Inference of Animal Activity From GPS Collar Data on Free-Ranging Cattle. Rangel. Ecol. Manag. 2005, 58, 256–266. [Google Scholar] [CrossRef]
- Westgarth, C.; Ladha, C. Evaluation of an open source method for calculating physical activity in dogs from harness and collar based sensors. BMC Vet. Res. 2017, 13, 322. [Google Scholar] [CrossRef]
- Gillette, R.L.; Angle, T.C. Recent developments in canine locomotor analysis: A review. Vet. J. 2008, 178, 165–176. [Google Scholar] [CrossRef]
- Marcato, M.; Tedesco, S.; O’Mahony, C.; O’Flynn, B.; Galvin, P. Machine learning based canine posture estimation using inertial data. PLoS ONE 2023, 18, e0286311. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Zhang, S.; Shahabi, F.; Xia, S.; Deng, Y.; Alshurafa, N. Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances. Sensors 2022, 22, 1476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jenkins, G.J.; Hakim, C.H.; Duan, D.; Yao, G. Four-limb wireless IMU sensor system for automatic gait detection in canines. Sci. Rep. 2022, 12, 4788. [Google Scholar] [CrossRef] [PubMed]
- Carson, A.; Kresnye, C.; Rai, T.; Wells, K.; Wright, A.; Hillier, A. Response of pet owners to Whistle FIT® activity monitor digital alerts of increased pruritic activity in their dogs: A retrospective observational study. Front. Vet. Sci. 2023, 10, 1123266. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ceja, E.; Brena, R.F.; Carrasco-Jimenez, J.C.; Garrido, L. Long-Term Activity Recognition from Wristwatch Accelerometer Data. Sensors 2014, 14, 22500–22524. [Google Scholar] [CrossRef]
- Kumpulainen, P.; Cardó, A.V.; Somppi, S.; Törnqvist, H.; Väätäjä, H.; Majaranta, P.; Gizatdinova, Y.; Antink, C.H.; Surakka, V.; Kujala, M.V.; et al. Dog behaviour classification with movement sensors placed on the harness and the collar. Appl. Anim. Behav. Sci. 2021, 241, 105393. [Google Scholar] [CrossRef]
- Uijl, I.D.; Álvarez, C.B.G.; Bartram, D.; Dror, Y.; Holland, R.; Cook, A. External validation of a collar-mounted triaxial accelerometer for second-by-second monitoring of eight behavioural states in dogs. PLoS ONE 2017, 12, e0188481. [Google Scholar] [CrossRef]
- Fukaya, T.; Mutsuzaki, H.; Nakano, W.; Mori, K. Smoothness of the knee joint movement during the stance phase in patients with severe knee osteoarthritis. Asia-Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2018, 14, 1–5. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Melendez-Calderon, A.; Roby-Brami, A.; Burdet, E. On the analysis of movement smoothness. J. Neuroeng. Rehabil. 2015, 12, 112. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Melendez-Calderon, A.; Burdet, E. A robust and sensitive metric for quantifying movement smoothness. IEEE Trans. Biomed. Eng. 2012, 59, 2126–2136. [Google Scholar] [CrossRef]
- Ahmmed, P.; Reynolds, J.; Bozkurt, A. A Subcutaneously Injectable Implant for Multimodal Physiological Monitoring in Animals. IEEE Sens. J. 2024, 24, 11205–11216. [Google Scholar] [CrossRef]
- Reynolds, J.; Ahmmed, P.; Bozkurt, A. An Injectable System for Subcutaneous Photoplethysmography, Accelerometry, and Thermometry in Animals. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Wu, L.; Yuan, J.; Xu, G.; Wu, Y. Self-Powered Biosensors for Monitoring Human Physiological Changes. Biosensors 2023, 13, 236. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thonen-Fleck, C.; Sharon, K.P.; Enomoto, M.; LeBouef, M.; Roberts, D.L.; Gruen, M.E.; Lascelles, B.D.X. Physical Activity Monitors in Companion Animal Chronic Pain Research—A Review Focused on Osteoarthritis Pain. Animals 2025, 15, 2025. https://doi.org/10.3390/ani15142025
Thonen-Fleck C, Sharon KP, Enomoto M, LeBouef M, Roberts DL, Gruen ME, Lascelles BDX. Physical Activity Monitors in Companion Animal Chronic Pain Research—A Review Focused on Osteoarthritis Pain. Animals. 2025; 15(14):2025. https://doi.org/10.3390/ani15142025
Chicago/Turabian StyleThonen-Fleck, Connor, Kate P. Sharon, Masataka Enomoto, Max LeBouef, David L. Roberts, Margaret E. Gruen, and B. Duncan X. Lascelles. 2025. "Physical Activity Monitors in Companion Animal Chronic Pain Research—A Review Focused on Osteoarthritis Pain" Animals 15, no. 14: 2025. https://doi.org/10.3390/ani15142025
APA StyleThonen-Fleck, C., Sharon, K. P., Enomoto, M., LeBouef, M., Roberts, D. L., Gruen, M. E., & Lascelles, B. D. X. (2025). Physical Activity Monitors in Companion Animal Chronic Pain Research—A Review Focused on Osteoarthritis Pain. Animals, 15(14), 2025. https://doi.org/10.3390/ani15142025