Effect of Rumen-Protected Cod Liver Oil Supplementation on Fatty Acid Profile of Meat from Limousin and Red Angus Cattle
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Experimental Design
2.2. Chemical Analysis
2.3. Meat and Fat
2.4. Statistical Analysis
3. Results
3.1. Chemical Composition of Meat: Protein Content, Fat Content, and Fatty Acid Profile
3.2. Fatty Acid Composition of Subcutaneous Fat
4. Discussion
4.1. Protein and Fat Content in Muscle Tissue
4.2. Fatty Acid Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anwar, A.; Ali, E.; Nisar, W.; Ashraf, S.; Javed, N.; Anwar, L.; Zulfiqar, A.; Nazir, M.A.; Tahir, F. Development and quality evaluation of functional carbonated pomegranate orange nectar. Agrobiol. Rec. 2024, 15, 52–58. [Google Scholar] [CrossRef]
- Ahmad, M.; Ali, S.W.; Aasim, M.; Awais, M.; Ahmad, Z.; Murtaza, A.; Nadeem, M.; Muzzafar, M.A.; Ahmed, A. Development and characterization of locally prepared Aloe Vera juice and its functional potential against Hyperlipidemia. Pak. J. Agric. Sci. 2023, 61, 93–101. [Google Scholar] [CrossRef]
- Hussain, N.; Xia, Y.; Han, J.; Saeed, M.; Arain, M.A.; Hassan, M.F.; Chen, H. Lactoferrin in aquaculture: A holistic review of its health benefits and functional feed application. Pak. Vet. J. 2024, 3, 581–591. [Google Scholar] [CrossRef]
- Subtain, M.; Pasha, I.; Rakha, A.; Jamil, A. Extraction efficiency and characteristic evaluation of turmeric oleoresins; a potential functional ingredient. Pak. J. Agric. Res. 2023, 2, 283–290. [Google Scholar] [CrossRef]
- Boukrouh, S.; Mnaouer, I.; Mendes de Souza, P.; Hornick, J.-L.; Nilahyane, A.; El Amiri, B.; Hirich, A. Microalgae supplementation improves goat milk composition and fatty acid profile: A meta-analysis and meta-regression. Arch. Anim. Breed. 2025, 68, 223–238. [Google Scholar] [CrossRef]
- Decker, E.A.; Park, Y. Healthier meat products as functional foods. Meat Sci. 2010, 86, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Prado, J.M.; Prado, I.N.; Visentainer, J.V.; Rotta, P.P.; Perotto, D.; Moletta, J.L.; Prado, I.M.; Ducatti, T. The effect of breed on the chemical composition and fatty acid profile of the Longissimus dorsi muscle of Brazilian beef cattle. J. Anim. Feed Sci. 2009, 18, 231–240. [Google Scholar] [CrossRef]
- Griel, A.E.; Kris-Etherton, P.M. Beyond Saturated Fat: The Importance of the Dietary Fatty Acid Profile on Cardiovascular Disease. Nutr. Rev. 2006, 64, 257–262. [Google Scholar] [CrossRef]
- World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases; WHO Technical Report Series 916; WHO: Brussels, Belgium, 2003; pp. 1–160. [Google Scholar]
- World Health Organization. Saturated Fatty Acid and Trans-Fatty Acid Intake for Adults and Children; WHO Guideline: Geneva, Switzerland, 2023; pp. 1–117. [Google Scholar]
- Fuente, J.D.L.; Díaz, M.T.; Álvarez, I.; Oliver, M.A.; Font I Furnols, M.; Sañudo, C.; Campo, M.M.; Montossi, F.; Nute, G.R.; Cañeque, V. Fatty acid and vitamin E composition of intramuscular fat in cattle reared in different production systems. Meat Sci. 2009, 82, 331–337. [Google Scholar] [CrossRef]
- Listrat, A.; Gagaoua, M.; Andueza, D.; Gruffat, D.; Normand, J.; Mairessec, G.; Picard, B.; Hocquettea, J.F. What are the drivers of beef sensory quality using metadata of intramuscular connective tissue, fatty acids and muscle fiber characteristics? Livest. Sci. 2020, 240, 104209. [Google Scholar] [CrossRef]
- Nogoy, K.M.C.; Sun, B.; Shin, S.; Lee, Y.; Li, X.Z.; Choi, S.H.; Park, S. Fatty Acid Composition of Grain- and Grass-Fed Beef and Their Nutritional Value and Health Implication. Food Sci. Anim. Resour. 2022, 42, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Pitchford, W.S.; Deland, M.P.B.; Siebert, B.D.; Malau-Aduliand, A.E.O.; Bottema, C.D.K. Genetic variation in fatness and fatty acid composition of crossbred cattle. J. Anim. Sci. 2002, 80, 2825–2832. [Google Scholar] [CrossRef] [PubMed]
- Jukna, V.; Jukna, Č.; Garmienė, G.; Zaborskienė, G.; Meškinytė-Kaušilienė, E.; Klementavičiūtė, J.; Valaitienė, V.; Narkevičius, R. An impact of animal breed on the compositions of fatty acid in musculus longissimus doris. Vet. Ir Zootech. 2013, 64, 16–22. [Google Scholar]
- Chambaz, A.; Scheeder, M.R.L.; Kreuzer, M.; Dufey, P.-A. Meat quality of Angus, Simmental, Charolais and Limousin steers compared at the same intramuscular fat content. Meat Sci. 2002, 63, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Filippini, R.; Gennai-Schott, S.; Sabbatini, T.; Lardon, S.; Marraccini, E. Quality Labels as Drivers of Peri-Urban Livestock Systems Resilience. Land 2020, 9, 211. [Google Scholar] [CrossRef]
- Prieto, N.; Ross, D.W.; Navajas, E.A.; Richardson, R.I.; Hyslop, J.J.; Simm, G.; Roehe, R. Online prediction of fatty acid profiles in crossbred Limousin and Aberdeen Angus beef cattle using near infrared reflectance spectroscopy. Animal 2011, 5, 155–165. [Google Scholar] [CrossRef]
- Liu, T.; Wu, J.-P.; Lei, Z.-M.; Zhang, M.; Gong, X.-Y.; Cheng, S.-R.; Liang, Y.; Wang, J.-F. Fatty Acid Profile of Muscles from Crossbred Angus-Simmental, Wagyu-Simmental, and Chinese Simmental Cattles. Food Sci. Anim. Resour. 2020, 40, 563–577. [Google Scholar] [CrossRef]
- Park, S.J.; Beak, S.-H.; Jung, D.J.; Yeob, K.S.; Jeong, I.H.; Piao, M.Y.; Kang, H.J.; Fassah, D.M.; Na, S.W.; Baik, M.; et al. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle—A review. Asian-Australas J. Anim. Sci. 2018, 31, 1043–1061. [Google Scholar] [CrossRef]
- Wahid, A.S.; Purwanti, S.; Pakiding, W. Performance and meat quality of broiler chicken with the addition of guanidino acetic acid and betaine as feed additive. J. Glob. Innov. Agric. Sci. 2024, 12, 355–364. [Google Scholar] [CrossRef]
- Purwanti, S.; Syamsu, J.A.; Lahay, N.; Nadir, M.; Dwiyana, Z.; Yamin, A.A.; Laras, R.G.; Sumiati; Akit, H. Supplementation of guanidinoacetic acid in feed on growth performance, intestine histomorphology, muscle histology, and meat quality of native chicken. Int. J. Agric. Biosci. 2024, 13, 588–595. [Google Scholar]
- Enriquez, R.L.M.; Secondez, S.J. Enhancing Muscovy Duck Meat Quality and Growth Development through Oregano Extract Supplementation: A Study in Agricultural Innovation. J. Glob. Innov. Agric. Sci. 2024, 12, 449–455. [Google Scholar] [CrossRef]
- Ahmad, S.; Yousaf, M.S.; Tahir, S.K.; Rashid, M.A.; Majeed, K.A.; Naseem, M.; Raza, M.; Hayat, Z.; Khalid, A.; Zaneb, H.; et al. Effects of co-supplementation of β-galacto-oligosaccharides and methionine on breast meat quality, meat oxidative stability, and selected meat quality genes in broilers. Pak. Vet. J. 2023, 3, 428–434. [Google Scholar] [CrossRef]
- Yu, H.; Rahman, A.; Umer, F.; Waqas, M.; Mahmood, M.; Berberoğlu, T.M.; Riaz, T.; Sherzada, S.; Khan, M.; Raza, A.; et al. Effect of supplementing a blend of essential oils on the growth performance, carcass characteristics, meat quality, serological parameters and gut health in broiler chickens. Pak. Vet. J. 2024, 44, 1329–1337. [Google Scholar] [CrossRef]
- Olsen, R.L.; Toppe, J.; Karunasagar, I. Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends Food Sci. Technol. 2014, 36, 144–151. [Google Scholar] [CrossRef]
- Rustad, T.; Storrø, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. + Technol. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Monteiro, J.P.; Domingues, M.R.; Calado, R. Marine Animal Co-Products—How Improving Their Use as Rich Sources of Health- Promoting Lipids Can Foster Sustainability. Mar. Drugs 2024, 22, 73. [Google Scholar] [CrossRef]
- Bachis, E.; The Marine Ingredients Organisation (IFFO). Update on by-Product Marine Ingredients. Available online: https://www.iffo.com/by-product (accessed on 21 June 2025).
- Shahidi, F.; Naczk, M.; Pegg, R.B.; Synowiecki, J. Chemical composition and nutritional value of processing discards of cod (Gadus morhua). Food Chem. 1991, 42, 145–151. [Google Scholar] [CrossRef]
- Bodkowski, R.; Wierzbicki, H.; Mucha, A.; Cholewińska, P.; Wojnarowski, K.; Patkowska-Sokoła, B. Composition and fatty acid profile of milk from cows fed diets supplemented with raw and n-3 PUFA-enriched fish oil. Sci. Rep. 2024, 14, 10968. [Google Scholar] [CrossRef]
- Šimat, V.; Vlahović, J.; Soldo, B.; Skroza, D.; Ljubenkov, I.; Mekinić, I.G. Production and Refinement of Omega-3 Rich Oils from Processing By-Products of Farmed Fish Species. Foods 2019, 8, 125. [Google Scholar] [CrossRef]
- Plaha, N.S.; Kaushik, N.; Awasthi, S.; Singh, M.; Kaur, V.; Langyan, S.; Kumar, A.; Kalia, S. Comparison of nutritional quality of fourteen wild Linum species based on fatty acid composition, lipid health indices, and chemometric approaches unravelling their nutraceutical potential. Helyon 2023, 9, e21192. [Google Scholar] [CrossRef]
- de Medeiros, V.P.B.; Pimentel, T.C.; Sant’Ana, A.S.; Magnani, M. Microalgae in the meat processing chain: Feed for animal production or source of techno-functional ingredients. Curr. Opin. Food Sci. 2021, 37, 125–134. [Google Scholar] [CrossRef]
- Wistuba, T.J.; Kegley, E.B.; Apple, J.K.; Rule, D.C. Feeding feedlot steers fish oil alters the fatty acid composition of adipose and muscle tissue. Meat Sci. 2007, 77, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Cant, J.P.; Fredeen, J.H.; MacIntyre, T.; Gunn, J.; Crowe, N. Effect of fish oil on milk composition in dairy cows. Can. J. Anim. Sci. 1997, 77, 125–131. [Google Scholar] [CrossRef]
- Boukrouh, S.; Noutfia, A.; Moula, N.; Avril, C.; Hornick, J.-L.; Chentouf, M.; Cabaraux, J.-F. Effects of Sulla Flexuosa Hay as Alternative Feed Resource on Goat’s Milk Production and Quality. Animals 2023, 13, 709. [Google Scholar] [CrossRef] [PubMed]
- Pecka-Kiełb, E.; Tumanowicz, J.; Zachwieja, A.; Miśta, D.; Kupczyński, R.; Króliczewska, B.; Kaszuba, J.; Zigo, F.; Suchocki, T. Changes in Fatty Acid Levels during In Vitro Ruminal Fluid Incubation with Different Proportions of Maize Distillers Dried Grains (DDGS). Agriculture 2023, 13, 763. [Google Scholar] [CrossRef]
- Pena, O.M.; Murphy, K.; Long, N.; Lascano, G.J.; Jenkins, T.C.; Aguerre, M.J. Evaluating the Rumen Degradation of Novel Protected Gelatin Capsules Containing Fish Oil Fed to Lactating Dairy Cows. Animals 2023, 13, 2555. [Google Scholar] [CrossRef]
- Rico, J.E.; Sáinz de la Maza-Escolà, V.; Senevirathne, N.D.; Deme, P.; Haughey, N.J.; Gervais, R.; McFadden, J.W. Temporal changes in plasma and milk lipids in response to an esophageal bolus of rumen-protected fish oil in lactating Holstein dairy cows. Animal 2025, 19, 101381. [Google Scholar] [CrossRef]
- Jenkins, T.C.; Wallace, R.J.; Moate, P.J.; Mosley, E.E. Board-Invited Review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 2008, 86, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ellies-Oury, M.-P.; Stoyanchev, T.; Hocquette, J.-F. Consumer Perception of Beef Quality and How to Control, Improve and Predict It? Focus on Eating Quality. Foods 2022, 11, 1732. [Google Scholar] [CrossRef]
- Marino, R.; della Malva, A.; Caroprese, M.; de Palo, P.; Santillo, A.; Sevi, A.; Albenzio, M. Effects of whole linseed supplementation and treatment duration on fatty acid profile and endogenous bioactive compounds of beef muscle. Animal 2019, 13, 444–452. [Google Scholar] [CrossRef]
- Hennessy, A.A.; Kenny, D.A.; Byrne, C.J.; Childs, S.; Ross, R.P.; Devery, R.; Stanton, C. Fatty acid concentration of plasma, muscle, adipose and liver from beef heifers fed an encapsulated n-3 polyunsaturated fatty acid supplement. Animal 2021, 15, 100039. [Google Scholar] [CrossRef]
- Loudon, K.M.W.; Tarr, G.; Lean, I.J.; McLerie, L.; Leahy, N.; Pethick, D.W.; Gardner, G.E.; McGilchrist, P. Short term magnesium supplementation to reduce dark cutting in pasture finished beef cattle. Meat Sci. 2021, 180, 108560. [Google Scholar] [CrossRef]
- INRA. Alimentation Minérale et Vitaminique des Ruminants: Actualisation des Connaissances, 16th ed.; INRA: Paris, France, 2007. [Google Scholar]
- Council of Europe. Council Regulation (EC) 1099/2009 of 24 September 2009 on the Protection of Animals at the Time of Killing. OJ. Eur. Union. 2009, L303. pp. 1–30. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32009R1099 (accessed on 21 June 2025).
- AOAC. International Official Methods of Analysis, 18th ed.; AOAC International: Arlington, TX, USA, 2005. [Google Scholar]
- Polish Standard, PN-ISO 1444:2000; Meat and Meat Products. Free Fat Contents Determination. Polish Committee for Standardization: Warsaw, Poland, 2000. (In Polish)
- Polish Standard, PN-75/A-04018:1975/Az3:2002; Agricultural Food Products. Nitrogen Contents Determination with Kjeldahl’s Method and Recalculation into Protein. Polish Committee for Standardization: Warsaw, Poland, 2002. (In Polish)
- Christie, W.; William, S. Lipid Analysis. Isolation, Separation, Identification and Structural Analysis of Lipids; The Isolation of Lipids from Tissues; Pergamon Press: Oxford, UK, 1973; pp. 39–40. [Google Scholar]
- Christopherson, S.W.; Glass, R.L. Preparation of milk fat methyl esters by alcoholysis in an essentially nonalcoholic solution. J. Dairy Sci. 1969, 52, 1289–1290. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- STATISTICA (Data Analysis Software System), v. 13.3; StatSoft. Inc.: Tulsa, OK, USA, 2020.
- Bureš, D.; Barton, L.; Teslik, V.; Zahradkova, R. Chemical composition, sensory characteristics and fatty acid profile of muscle from Aberdeen Angus, Charolais, Simmental and Hereford bulls. Czech J. Anim. Sci. 2006, 51, 279–284. [Google Scholar] [CrossRef]
- Wiśniewski, K.; Swiątek, M.; Król, J.; Kuczyńska, B. The nutritional value of beef from Polish Red and Limousin cattle breeds maintained by an extensive production system. Arch. Anim. Breed. 2024, 67, 259–269. [Google Scholar] [CrossRef]
- Correa, L.B.; Netto, A.S.; da Silva, J.S.; Cônsolo, N.R.B.; Pugine, S.M.P.; de Melo, M.P.; de Souza Santana, R.S.; Zanetti, M.A. Changes on meat fatty acid profile, cholesterol and hepatic metabolism associated with antioxidants and canola oil supplementation for Nellore cattle. Livest. Sci. 2022, 257, 104850. [Google Scholar] [CrossRef]
- Welter, K.C.; de Magalhães Rodrigues Martins, C.M.; de Palma, A.S.V.; Martins, M.M.; dos Reis, B.R.; Schmidt, B.L.U.; Netto, A.S. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content. PLoS ONE 2016, 25, e0151876. [Google Scholar] [CrossRef]
- Oliveira, E.A.; Sampaio, A.A.M.; Henrique, W.; Pivaro, T.M.; Rosa, B.L.; Fernandes, A.R.M.; Andrade, A.T. Quality traits and lipid composition of meat from Nellore young bulls fed with different oils either protected or unprotected from rumen degradation. Meat Sci. 2012, 90, 28–35. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Priyashantha, H.; Vidanarachchi, J.K.; Kiani, A.; Holman, B.W.B. Effects of Nutritional Factors on Fat Content, Fatty Acid Composition, and Sensorial Properties of Meat and Milk from Domesticated Ruminants: An Overview. Animals 2024, 14, 840. [Google Scholar] [CrossRef]
- Gil, M.; Rudy, M.; Duma-Kocan, P.; Stanisławczyk, R.; Krajewska, A.; Dziki, D.; Hassoon, W.H. Sustainability of Alternatives to Animal Protein Sources, a Comprehensive Review. Sustainability 2024, 16, 7701. [Google Scholar] [CrossRef]
- Tan, Z.; Jiang, H. Molecular and Cellular Mechanisms of Intramuscular Fat Development and Growth in Cattle. Int. J. Mol. Sci. 2024, 25, 2520. [Google Scholar] [CrossRef]
- Leroy, F.; Smith, N.W.; Adesogan, A.T.; Beal, T.; Iannotti, L.; Moughan, P.J.; Mann, N. The role of meat in the human diet: Evolutionary aspects and nutritional value. Anim. Front. 2023, 13, 11–18. [Google Scholar] [CrossRef]
- Shramko, V.S.; Polonskaya, Y.V.; Kashtanova, E.V.; Stakhneva, E.M.; Ragino, Y.I. The short overview on the relevance of fatty acids for human cardiovascular disorders. Biomolecules 2020, 10, 1127. [Google Scholar] [CrossRef]
- Davis, H.; Magistrali, A.; Butler, G.; Stergiadis, S. Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef. Foods 2022, 11, 646. [Google Scholar] [CrossRef]
- Paliwal, B.K.; Wan, M. Elimination of industrial Trans Fatty Acids from the food supply chain: With a focus on India. Food Chem. Adv. 2024, 5, 100802. [Google Scholar] [CrossRef]
- Shoko, P.T.; Landry, J.D.; Blanch, E.W.; Torley, P.J. The prediction of fatty acid composition in beef muscles using Raman spectroscopy and chemometrics. J. Food Compos. Anal. 2025, 139, 107069. [Google Scholar] [CrossRef]
- Shaw, D.I.; Thompson, A.K.; Minihane, A.-M.; Williams, C.M. Update on Trans Fatty Acids and Health: Position Statement by the Scientific Advisory Committee on Nutrition (SACN); TSO, Government Report; City of Publication: London, UK, 2007. [Google Scholar]
- Scollan, N.D.; Choi, N.; Kurt, E.; Fisher, A.V.; Enser, M.; Wood, J.D. Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. Br. J. Nutr. 2001, 85, 115–124. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Moon, Y.S.; Cho, K.K. ω-6 and ω-3 Polyunsaturated Fatty Acids: Inflammation, Obesity and Foods of Animal Resources. Food Sci. Anim. Resour. 2024, 44, 988–1010. [Google Scholar] [CrossRef]
- Calkins, C.R.; Hodgen, J.M. A fresh look at meat flavour. Meat Sci. 2007, 77, 63–80. [Google Scholar] [CrossRef]
- Zhang, F.; Li, L.; Meng, X.; Liu, J.; Cui, X.; Ma, Q.; Wei, Y.; Liang, M.; Xu, H.; Rombenso, A. Feeding Strategy to Use Beef Tallow and Modify Farmed Tiger Puffer Fatty Acid Composition. Animals 2023, 13, 3037. [Google Scholar] [CrossRef]
- United States Department of Agriculture USDA National Nutrient Database for Standard Reference. 2011. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds-download-databases/ (accessed on 21 June 2025).
- Raes, K.; De Smet, S.; Demeyer, D. Demeyer Effect of double-muscling in Belgium Blue young bulls on the intramuscular fatty acid composition with emphasis on conjugated linoleic acid and polyunsaturated fatty acids. Anim. Sci. 2001, 73, 253–260. [Google Scholar] [CrossRef]
- Cancino-Padilla, N.; Catalán, N.; Siu-Ting, K.; Creevey, C.J.; Huws, S.A.; Romero, J.; Vargas-Bello-Pérez, E. Long-Term Effects of Dietary Supplementation with Olive Oil and Hydrogenated Vegetable Oil on the Rumen Microbiome of Dairy Cows. Microorganisms 2021, 9, 1121. [Google Scholar] [CrossRef]
- Schumacher, M.; DelCurto-Wyffels, H.; Thomson, J.; Boles, J. Fat Deposition and Fat Effects on Meat Quality—A Review. Animals 2022, 12, 1550. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Tweed, J.K.S.; Moloney, A.P.; Scollan, N.D. The effects of fish oil supplementation on rumen metabolism and the biohydrogenation of unsaturated fatty acids in beef steers given diets containing sunflower oil. Anim. Sci. 2005, 80, 361–367. [Google Scholar] [CrossRef]
- Flowers, S.; Hamblen, H.; Leal-Gutiérrez, J.D.; Elzo, M.A.; Johnson, D.D.; Mateescu, R.G. Fatty acid profile, mineral content, and palatability of beef from a multibreed Angus–Brahman population. J. Anim. Sci. 2018, 23, 4264–4275. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Y.; Luo, H.; Pang, W.; Martin, G.B. Fat deposition and partitioning for meat production in cattle and sheep. Anim. Nutr. 2024, 17, 376–386. [Google Scholar] [CrossRef]
- Nishimura, T.; Hattori, A.; Takahashi, K. Structural changes in intramuscular connective tissue during the fattening of Japanese black cattle: Effect of marbling on beef tenderization. J. Anim. Sci. 1999, 77, 93–104. [Google Scholar] [CrossRef]
- Bergen, R.; Miller, S.; Wilton, J.; Mandell, I. Genetic correlations between live yearling bull and steer carcass traits adjusted to different slaughter end points. J. Anim. Sci. 2006, 84, 558–566. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, I.R.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2003, 66, 21–32. [Google Scholar] [CrossRef]
- Dinh, T.T.N.; To, K.V.; Schilling, M.W. Fatty Acid Composition of Meat Animals as Flavor Precursors. Meat Muscle Biol. Meat Muscle Biol. 2021, 5, 1–16. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Cavallo, M.; Menchetti, L.; Angelucci, E.; Cartoni Mancinelli, A.; Vaudo, G.; Marconi, S.; Camilli, E.; Galli, F.; Castellini, C.; et al. The Healthy Fatty Index Allows for Deeper Insights into the Lipid Composition of Foods of Animal Origin When Compared with the Atherogenic and Thrombogenicity Indexes. Foods 2024, 13, 1568. [Google Scholar] [CrossRef] [PubMed]
- Goluch, Z.; Rybarczyk, A.; Poławska, E.; Haraf, G. Fatty Acid Profile and Lipid Quality Indexes of the Meat and Backfat from Porkers Supplemented with EM Bokashi Probiotic. Animals 2023, 13, 3298. [Google Scholar] [CrossRef] [PubMed]
- Króliczewska, B.; Miśta, D.; Korzeniowska, M.; Pecka-Kiełb, E.; Zachwieja, A. Comparative evaluation of the quality and fatty acid profile of meat from brown hares and domestic rabbits offered the same diet. Meat Sci. 2018, 145, 292–299. [Google Scholar] [CrossRef] [PubMed]
Item | Concentration | ||||
---|---|---|---|---|---|
Ingredient (% of DM) | |||||
Triticale | 37.3 | ||||
Rapeseed cake | 29 | ||||
Wheat | 19 | ||||
Protein concentrates for fattening cattle | 6 | ||||
Soybean meal | 4 | ||||
Sodium bicarbonate | 3 | ||||
Soybean oil | 1 | ||||
Vitamin and mineral mix | 0.7 | ||||
DM | CP | EE | NDF | ADF | |
(%) | (% of DM) | ||||
Proximate composition | 88.4 | 23.9 | 2.9 | 12.8 | 6.9 |
Corn silage | 38.57 | 2.83 | 1.08 | 16.5 | 8.09 |
Grass silage | 37.00 | 9.19 | 1.24 | 22.39 | 12.23 |
Barley straw | 88.86 | 4.12 | 2.69 | 71.79 | 49.45 |
Fatty Acid | g/100 g Fat | Fatty Acid | g/100 g Fat |
---|---|---|---|
C14:0 | 3.64 | C20:5 | 8.22 |
C16:0 | 11.60 | C22:0 | 0.70 |
C16:1 | 9.11 | C22:1 | 10.01 |
C18:0 | 2.22 | C22:5 | 1.86 |
C18:1 | 24.50 | C22:6 | 11.31 |
C18:2 | 2.36 | n-3 | 22.47 |
C18:3 | 1.08 | n-6 | 2.36 |
C20:1 | 10.01 | n-6/n-3 | 0.11 |
Limousine | Red Angus | SEM | p-Value | |||
---|---|---|---|---|---|---|
CL | EL | CA | EA | |||
Protein | 20.81 Bb | 22.65 A | 22.45 A | 21.85 a | 0.178 | 0.000 |
Fat | 0.74 Ba | 0.57 Bb | 1.21 Aa | 1.03 Ab | 0.068 | 0.003 |
Saturated Fatty Acid | Limousine | Red Angus | SEM | p-Value | ||
---|---|---|---|---|---|---|
CL | EL | CA | EA | |||
C14:0 | 1.33 B | 1.08 Bb | 1.71 a | 2.00 A | 0.009 | 0.010 |
C15:0 | 0.55 A | 0.40 B | 0.42 B | 0.42 B | 0.019 | 0.007 |
C16:0 | 20.21 B | 19.42 B | 22.87 A | 23.38 A | 0.437 | 0.001 |
C17:0 | 0.92 | 0.81 | 0.88 | 0.98 | 0.033 | 0.302 |
C18:0 | 19.70 | 18.27 | 19.21 | 19.66 | 0.442 | 0.589 |
C20:0 | 0.25 a | 0.24 a | 0.17 b | 0.17 b | 0.013 | 0.014 |
∑SFA | 42.69 A | 39.99 B | 45.22 A | 46.60 A | 0.478 | 0.000 |
Unsaturated Fatty Acid | Limousine | Red Angus | SEM | p-Value | ||
---|---|---|---|---|---|---|
CL | EL | CA | EA | |||
C14:1 | 0.40 | 0.62 | 0.45 | 0.57 | 0.077 | 0.344 |
C15:1 | 0.35 | 0.29 | 0.32 | 0.34 | 0.010 | 0.193 |
C16:1 | 2.19 B | 2.11 B | 2.94 A | 3.20 A | 0.120 | 0.000 |
C17:1 | 0.76 b | 0.63 Bb | 0.84 a | 0.99 A | 0.039 | 0.002 |
C18:1n9c | 26.11 B | 23.85 B | 31.44 Ab | 34.87 Aa | 0.951 | 0.000 |
C18:1n8c | 1.92 b | 2.23 a | 1.96 b | 1.92 b | 0.049 | 0.030 |
C18:1n9t | 0.40 | 0.42 | 0.28 | 0.29 | 0.038 | 0.331 |
C18:1n7t | 1.25 | 1.19 | 1.11 | 1.56 | 0.067 | 0.108 |
C20:1 | 0.12 Bb | 0.19 b | 0.30 Aa | 0.28 | 0.019 | 0.002 |
MUFA | 33.42 B | 30.78 B | 39.91 Aa | 44.47 Ab | 1.190 | 0.000 |
C18:2n6c | 10.96 A | 15.38 A | 6.87 B | 4.32 B | 1.046 | 0.000 |
C18:2n6 | 1.50 | 0.31 | 0.33 | 0.34 | 0.020 | 0.864 |
C18:3n3 | 2.36 A | 2.61 A | 1.53 Ba | 0.94 Bb | 0.153 | 0.000 |
C20:4n6 | 4.24 A | 5.17 A | 2.60 ab | 1.15 Bb | 0.434 | 0.001 |
C20:5n3 | 1.00 A | 1.06 Aa | 0.56 b | 0.26 B | 0.087 | 0.001 |
C22:6 n3 | 0.27 A | 0.30 A | 0.12 B | 0.06 B | 0.032 | 0.003 |
PUFA | 19.65 A | 24.55 A | 11.92 B | 6.98 B | 1.674 | 0.000 |
∑ UFA | 53.07 | 55.2 | 51.77 | 51.43 | 0.6467 | 0.116 |
PUFA/∑SFA | 0.50 A | 0.63 A | 0.27 B | 0.15 B | 0.049 | 0.000 |
n3 | 3.45 A | 3.80 A | 2.17 Ba | 1.17 Bb | 0.248 | 0.000 |
n6 | 16.20 A | 20.75 A | 9.75 B | 5.80 B | 1.442 | 0.000 |
n3/n6 | 0.21 | 0.19 | 0.23 | 0.20 | 0.006 | 0.230 |
n6/n3 | 4.76 b | 5.44 a | 4.41 | 5.03 | 0.092 | 0.017 |
AI index | 0.49 b | 0.43 B | 0.58 A | 0.61 Aa | 0.020 | 0.001 |
TI index | 1.23 B | 1.05 B | 1.40 C | 1.57 A | 0.0543 | 0.000 |
Saturated Fatty Acid | Limousine | Red Angus | SEM | p-Value | ||
---|---|---|---|---|---|---|
CL | EL | CA | EA | |||
C14:0 | 2.23 Bb | 2.55 a | 2.70 A | 2.88 A | 0.066 | 0.003 |
C15:0 | 0.87 | 0.88 | 0.76 | 0.69 | 0.030 | 0.091 |
C16:0 | 19.98 B | 19.38 B | 22.49 A | 23.87 A | 0.472 | 0.000 |
C17:0 | 1.55 Aa | 1.42 b | 1.42 b | 1.30 Ba | 0.025 | 0.002 |
C18:0 | 39.57 Aa | 35.64 b | 36.11 b | 28.62 Ba | 0.921 | 0.000 |
C20:0 | 0.53 Aa | 0.61 a | 0.47 | 0.36 Bb | 0.028 | 0.008 |
∑SFA | 64.71 A | 60.44 BCa | 63.93 Cb | 57.38 Bb | 0.675 | 0.000 |
Unsaturated Fatty Acid | Limousine | Red Angus | SEM | p-Value | ||
---|---|---|---|---|---|---|
CL | EL | CA | EA | |||
C14:1 | 0.63 | 0.75 | 0.64 | 0.69 | 0.021 | 0.151 |
C15:1 | 0.66 | 0.68 | 0.61 | 0.58 | 0.018 | 0.149 |
C16:1 | 2.09 Bb | 2.57 a | 2.41 | 2.75 A | 0.072 | 0.039 |
C17:1 | 0.53 b | 0.53 b | 0.59 b | 0.68 Aa | 0.019 | 0.004 |
C18:1n9c | 20.12 B | 22.64 B | 22.41 B | 28.20 A | 0.708 | 0.001 |
C18:1n8c | 1.23 b | 1.38 a | 1.17 b | 1.43 a | 0.037 | 0.017 |
C18:1n9t | 0.51 | 0.61 | 0.39 | 0.44 | 0.044 | 0.403 |
C18:1n7t | 2.63 | 3.12 a | 2.32 b | 2.71 | 0.094 | 0.034 |
C20:1 | 0.36 | 0.36 | 0.35 | 0.30 | 0.041 | 0.632 |
MUFA | 28.63 Bb | 32.34 a | 30.66 a | 36.29 Ab | 0.678 | 0.001 |
C18:2n6c | 1.45 | 1.67 | 1.21 | 1.47 | 0.049 | 0.598 |
C18:2n6 | 0.25 | 0.26 | 0.27 | 0.34 | 0.016 | 0.247 |
C18:3n3 | 0.53 | 0.52 | 0.46 | 0.51 | 0.018 | 0.971 |
C20:4n6 | 0.51 | 0.71 | 0.38 | 1.78 | 0.424 | 0.772 |
C20:5n3 | 0.62 | 0.48 | 0.38 | 0.59 | 0.786 | 0.371 |
PUFA | 2.99 | 3.53 | 2.34 | 3.29 | 0.357 | 0.714 |
∑ UFA | 31.62 B | 36.87 A | 33.49 B | 40.37 A | 0.758 | 0.001 |
PUFA/∑SFA | 0.04 | 0.06 | 0.04 | 0.06 | 0.006 | 0.622 |
n3 | 0.89 | 1.35 | 0.64 | 0.52 | 0.280 | 0.648 |
n6 | 1.85 | 2.18 | 1.70 | 2.77 | 0.949 | 0.486 |
n3/n6 | 0.48 | 0.51 | 0.41 | 0.28 | 0.087 | 0.771 |
n6/n3 | 2.64 | 3.56 | 1.85 | 3.23 | 0.283 | 0.532 |
AI index | 0.93 a | 0.53 b | 1.01 b | 0.9 | 0.194 | 0.010 |
TI index | 3.41 Aa | 2.85 b | 3.35 a | 2.61 Bb | 0.104 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zachwieja, A.; Pecka-Kiełb, E.; Zielak-Steciwko, A.; Króliczewska, B.; Kaszuba, J.; Kupczyński, R. Effect of Rumen-Protected Cod Liver Oil Supplementation on Fatty Acid Profile of Meat from Limousin and Red Angus Cattle. Animals 2025, 15, 1856. https://doi.org/10.3390/ani15131856
Zachwieja A, Pecka-Kiełb E, Zielak-Steciwko A, Króliczewska B, Kaszuba J, Kupczyński R. Effect of Rumen-Protected Cod Liver Oil Supplementation on Fatty Acid Profile of Meat from Limousin and Red Angus Cattle. Animals. 2025; 15(13):1856. https://doi.org/10.3390/ani15131856
Chicago/Turabian StyleZachwieja, Andrzej, Ewa Pecka-Kiełb, Anna Zielak-Steciwko, Bożena Króliczewska, Jowita Kaszuba, and Robert Kupczyński. 2025. "Effect of Rumen-Protected Cod Liver Oil Supplementation on Fatty Acid Profile of Meat from Limousin and Red Angus Cattle" Animals 15, no. 13: 1856. https://doi.org/10.3390/ani15131856
APA StyleZachwieja, A., Pecka-Kiełb, E., Zielak-Steciwko, A., Króliczewska, B., Kaszuba, J., & Kupczyński, R. (2025). Effect of Rumen-Protected Cod Liver Oil Supplementation on Fatty Acid Profile of Meat from Limousin and Red Angus Cattle. Animals, 15(13), 1856. https://doi.org/10.3390/ani15131856