Influence of Local and Reimported United States and South American Corn Sources on Broiler Performance, Nutrient Digestibility, and Processing Yield
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Care
2.2. Bird Husbandry
2.3. Feed Formulation, Manufacture, and Experimental Design
2.4. Measurements
2.5. Nutrient Digestibility Analyses
2.6. Statistical Analyses
3. Results
3.1. Chemical and Physical Analyses of Corn
3.2. Broiler Performance
3.3. Processing Yield
3.4. Nutrient Digestibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barszcz, M.; Tuśnio, A.; Taciak, M. Poultry Nutrition. Phys. Sci. Rev. 2024, 9, 611–650. [Google Scholar] [CrossRef]
- USGC. Feeding Applications of Corn Fermented Protein Co-Products in Poultry Diets. 2023. Available online: https://grains.org/buying-selling/ddgs/user-handbook/chapter-3-feeding-applications-of-corn-fermented-protein-co-products-in-poultry-diets/ (accessed on 16 February 2025).
- Cowieson, A.J. Factors That Affect the Nutritional Value of Maize for Broilers. Anim. Feed Sci. Technol. 2005, 119, 293–305. [Google Scholar] [CrossRef]
- Li, Z.; Hong, T.; Shen, G.; Gu, Y.; Guo, Y.; Han, J. Amino Acid Profiles and Nutritional Evaluation of Fresh Sweet–Waxy Corn from Three Different Regions of China. Nutrients 2022, 14, 3887. [Google Scholar] [CrossRef] [PubMed]
- Siyuan, S.; Tong, L.; Liu, R. Corn Phytochemicals and Their Health Benefits. Food Sci. Hum. Wellness 2018, 7, 185–195. [Google Scholar] [CrossRef]
- Song, G.L.; Li, D.F.; Piao, X.S.; Chi, F.; Chen, Y.; Moughan, P.J. True Amino Acid Availability in Chinese High-Oil Corn Varieties Determined in Two Types of Chickens. Poult. Sci. 2004, 83, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Zilic, S.; Milasinovic, M.; Terzic, D.; Barac, M.; Ignjatovic-Micic, D. Grain Characteristics and Composition of Maize Specialty Hybrids. Span. J. Agric. Res. 1970, 9, 230–241. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; Alshaal, T.A.; Amer, M.; Domokos-Szabolcsy, É.; Elhawat, N.; Prokisch, J.; Fári, M. Soil Quality and Plant Nutrition. In Sustainable Agriculture Reviews 14: Agroecology and Global Change; Ozier-Lafontaine, H., Lesueur-Jannoyer, M., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 345–447. ISBN 978-3-319-06016-3. [Google Scholar]
- Becerra-Sanchez, F.; Taylor, G. Reducing Post-Harvest Losses and Improving Quality in Sweet Corn (Zea mays L.): Challenges and Solutions for Less Food Waste and Improved Food Security. Food Energy Secur. 2021, 10, e277. [Google Scholar] [CrossRef]
- Yin, D.; Yuan, J.; Guo, Y.; Chiba, L.I. Effect of Storage Time on the Characteristics of Corn and Efficiency of Its Utilization in Broiler Chickens. Anim. Nutr. 2017, 3, 252–257. [Google Scholar] [CrossRef]
- Zia-Ur-Rehman. Storage Effects on Nutritional Quality of Commonly Consumed Cereals. Food Chem. 2006, 95, 53–57. [Google Scholar] [CrossRef]
- Selle, P.H.; Liu, S.Y. The Relevance of Starch and Protein Digestive Dynamics in Poultry. J. Appl. Poult. Res. 2019, 28, 531–545. [Google Scholar] [CrossRef]
- Dohlman, E.; Hansen, J.; Boussios, D. USDA Agricultural Projections to 2030. 2021. Available online: https://www.ers.usda.gov/publications/pub-details?pubid=100525 (accessed on 16 February 2025).
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global Maize Production, Utilization, and Consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Caneppele, C.; Sardhina, S. Fontes de perdas no transporte de milho da lavoura até a unidade armazenadora. In Proceedings of the XLIII Congresso Brasileiro de Engenharia Agrícola—CONBEA, Fortaleza, Brasil, 4–8 August 2013. [Google Scholar]
- Lucas, P.; Cornelio, P. Losses of Corn in the Harvest, Loading and Transportation at Rural Property Level. Afr. J. Agric. Res. 2015, 10, 4317–4321. [Google Scholar] [CrossRef]
- Semprebom, P.A. XIV Ciclo de Estudos de Política e Estratégia. 2009. Available online: http://adesg.org.br/wp-content/uploads/2018/08/monografia-sistema-de-radio-comunicacao-com-criptografia.pdf (accessed on 2 May 2025).
- USDA. Subpart D—United States Standards for Corn. 1996. Available online: https://www.ams.usda.gov/sites/default/files/media/CornStandards.pdf (accessed on 2 May 2025).
- USDA Corn and Other Feed Grains—Feed Grains Sector at a Glance|Economic Research Service. Available online: https://www.ers.usda.gov/topics/crops/corn-and-other-feed-grains/feed-grains-sector-at-a-glance (accessed on 16 February 2025).
- Fitting, E. 6. Importing Corn, Exporting Labor: The Neoliberal Corn Regime, GMOs, and the Erosion of Mexican Biodiversity. In Food for the Few: Neoliberal Globalism and Biotechnology in Latin America; Otero, G., Ed.; University of Texas Press: Austin, TX, USA, 2009; pp. 135–158. ISBN 978-0-292-79425-2. [Google Scholar]
- Meade, B.; Puricelli, E.; McBride, W.D.; Valdes, C.; Hoffman, L.; Foreman, L.; Dohlman, E. Corn and Soybean Production Costs and Export Competitiveness in Argentina, Brazil, and the United States; United States Department of Agriculture: Washington, DC, USA, 2016. [Google Scholar]
- Salin, D. Weather Extremes, Infrastructure, and Its Impacts on U.S. Corn and Soybean Basis Levels (Summary); U.S. Department of Agriculture, Agricultural Marketing Service, University of Missouri: Columbia, MO, USA, 2022. [Google Scholar]
- Wu, X.; Zhao, R.; Wang, D.; Bean, S.R.; Seib, P.A.; Tuinstra, M.R.; Campbell, M.; O’Brien, A. Effects of Amylose, Corn Protein, and Corn Fiber Contents on Production of Ethanol from Starch-Rich Media. Cereal Chem. 2006, 83, 569–575. [Google Scholar] [CrossRef]
- Vargas, J.I.; Gulizia, J.P.; Bonilla, S.M.; Sasia, S.; Pacheco, W.J. Effect of Corn Origin on Broiler Performance, Processing Yield, and Nutrient Digestibility from 1 to 35 Days of Age. Animals 2023, 13, 1248. [Google Scholar] [CrossRef]
- Aviagen Broiler ROSS. Nutrition Specifications All Plant Protein-Based Feeds 2002; Aviagen: Huntsville, AL, USA, 2022; p. 6. [Google Scholar]
- Wolf, A.; Watson, M.; Wolf, N. Recommended Methods of Manure Analysis; University of Wisconsin Cooperative Extension: Madison, WI, USA, 2003. [Google Scholar]
- Short, F.J.; Gorton, P.; Wiseman, J.; Boorman, K.N. Determination of Titanium Dioxide Added as an Inert Marker in Chicken Digestibility Studies. Anim. Feed Sci. Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- Stein, H.H.; Fuller, M.F.; Moughan, P.J.; Sève, B.; Mosenthin, R.; Jansman, A.J.M.; Fernández, J.A.; de Lange, C.F.M. Definition of Apparent, True, and Standardized Ileal Digestibility of Amino Acids in Pigs. Livest. Sci. 2007, 109, 282–285. [Google Scholar] [CrossRef]
- SAS SAS/STAT 14.3 User’s Guide: High-Performance Procedures. 2010. Available online: https://support.sas.com/documentation/onlinedoc/stat/143/stathpug.pdf (accessed on 25 March 2025).
- Clark, P.M.; Behnke, K.C.; Fahrenholz, A.C. Effects of Feeding Cracked Corn and Concentrate Protein Pellets on Broiler Growth Performance. J. Appl. Poult. Res. 2009, 18, 259–268. [Google Scholar] [CrossRef]
- Leeson, S.; Summers, J.D. Commercial Poultry Nutrition, 3rd ed.; Nottingham University Press: Nottingham, UK, 2012; ISBN 978-1-904761-09-9. [Google Scholar]
- USGC 2017/2018 Corn Harvest Quality Report. 2017. Available online: https://grains.org/wp-content/uploads/2018/02/2017-Corn-Harvest-Report.pdf (accessed on 5 February 2025).
- Stefanello, C.; Vieira, S.L.; Rios, H.V.; Soster, P.; Simoes, C.T.; Godoy, G.; Fascina, V. Research Note: Corn Energy and Nutrient Utilization by Broilers as Affected by Geographic Areas and Carbohydrases. Poult. Sci. 2023, 102, 102366. [Google Scholar] [CrossRef] [PubMed]
- Khanal, S.; Kinoshita, C.; Turn, S. HAWAII BIOENERGY MASTER PLAN Bioenergy Technology. Available online: https://www.researchgate.net/publication/237458142_HAWAII_BIOENERGY_MASTER_PLAN_Bioenergy_Technology (accessed on 3 June 2025).
- USGC. Corn Harvest Quality Report 2018/2019—Page 3 of 25. US GRAINS Council. 2019. Available online: https://grains.org/corn_report/corn-harvest-quality-report-2018-2019/25/ (accessed on 3 June 2025).
- Lee, J.; Nam, D.S.; Kong, C. Variability in Nutrient Composition of Cereal Grains from Different Origins. SpringerPlus 2016, 5, 419. [Google Scholar] [CrossRef] [PubMed]
- Babula, R.A.; Ruppel, F.J.; Bessler, D.A. U.S. Corn Exports: The Role of the Exchange Rate. Agric. Econ. 1995, 13, 75–88. [Google Scholar] [CrossRef]
- Melo-Durán, D.; Perez, J.F.; González-Ortiz, G.; Villagómez-Estrada, S.; Bedford, M.R.; Graham, H.; Sola-Oriol, D. Growth Performance and Total Tract Digestibility in Broiler Chickens Fed Different Corn Hybrids. Poult. Sci. 2021, 100, 101218. [Google Scholar] [CrossRef] [PubMed]
- Giacobbo, F.C.N.; Eyng, C.; Nunes, R.V.; de Souza, C.; Teixeira, L.V.; Pilla, R.; Suchodolski, J.S.; Bortoluzzi, C. Influence of Enzyme Supplementation in the Diets of Broiler Chickens Formulated with Different Corn Hybrids Dried at Various Temperatures. Animals 2021, 11, 643. [Google Scholar] [CrossRef]
- Kereliuk, G.R.; Sosulski, F.W. Comparison of Starch from Flint Corn with That from Dent Corn and Potato. LWT Food Sci. Technol. 1996, 29, 349–356. [Google Scholar] [CrossRef]
- Brown, W.L.; Anderson, E. The Southern Dent Corns. Ann. Mo. Bot. Gard. 1948, 35, 255–268. [Google Scholar] [CrossRef]
- Moore, S.M.; Stalder, K.J.; Beitz, D.C.; Stahl, C.H.; Fithian, W.A.; Bregendahl, K. The Correlation of Chemical and Physical Corn Kernel Traits with Production Performance in Broiler Chickens and Laying Hens. Poult. Sci. 2008, 87, 665–676. [Google Scholar] [CrossRef]
- Tetlow, I.J. Recent Developments in Understanding the Regulation of Starch Metabolism in Higher Plants. J. Exp. Bot. 2004, 55, 2131–2145. [Google Scholar] [CrossRef]
- Pawar, R.; Jadhav, W.; Bhusare, S.; Borade, R.; Farber, S.; Itzkowitz, D.; Domb, A. Amylopectin—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/chemistry/amylopectin (accessed on 3 March 2025).
- Junejo, S.A.; Flanagan, B.M.; Zhang, B.; Dhital, S. Starch Structure and Nutritional Functionality—Past Revelations and Future Prospects. Carbohydr. Polym. 2022, 277, 118837. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.W.; Tillman, A.D.; Totusek, R. Digestibility, Nitrogen Retention and Energy Values of Sorghum Grain and Corn Rations at Three Levels of Intake. J. Anim. Sci. 1968, 27, 170. [Google Scholar] [CrossRef] [PubMed]
- Kljak, K.; Duvnjak, M.; Grbeša, D. Contribution of Zein Content and Starch Characteristics to Vitreousness of Commercial Maize Hybrids. J. Cereal Sci. 2018, 80, 57–62. [Google Scholar] [CrossRef]
- Bernardes, R.; Oliveira, C.; Calderano, A.; Ferreira, R.; Dias, K.; Almeida, B.; Aleixo, P.; Teixeira, L. (PDF) Effect of Phytase and Protease Combination on Performance, Metabolizable Energy, and Amino Acid Digestibility of Broilers Fed Nutrient-Restricted Diets. Available online: https://www.researchgate.net/publication/362172728_Effect_of_phytase_and_protease_combination_on_performance_metabolizable_energy_and_amino_acid_digestibility_of_broilers_fed_nutrient-restricted_diets#fullTextFileContent (accessed on 31 May 2025).
- Cowieson, A.J.; Wilcock, P.; Bedford, M.R. Super-Dosing Effects of Phytase in Poultry and Other Monogastrics. Worlds Poult. Sci. J. 2011, 67, 225–236. [Google Scholar] [CrossRef]
- Svihus, B. The Gizzard: Function, Influence of Diet Structure and Effects on Nutrient Availability. Worlds Poult. Sci. J. 2011, 67, 207–224. [Google Scholar] [CrossRef]
- Mateos, G.G.; Jiménez-Moreno, E.; Serrano, M.P.; Lázaro, R.P. Poultry Response to High Levels of Dietary Fiber Sources Varying in Physical and Chemical Characteristics1. J. Appl. Poult. Res. 2012, 21, 156–174. [Google Scholar] [CrossRef]
- Borrás, L.; Caballero-Rothar, N.N.; Saenz, E.; Segui, M.; Gerde, J.A. Challenges and Opportunities of Hard Endosperm Food Grade Maize Sourced from South America to Europe. Eur. J. Agron. 2022, 140, 126596. [Google Scholar] [CrossRef]
- Gear, J. Maíz y Nutrición; Serie de Informes Especiales; ILSI Argentina: Buenos Aires, Argentina, 2006. [Google Scholar]
- Abd El-Hack, M.E.; Ashour, E.A.; AlMalki, F.; Khafaga, A.F.; Moustafa, M.; Alshaharni, M.O.; Youssef, I.M.; Elolimy, A.A.; Świątkiewicz, S. Harmful Impacts of Microplastic Pollution on Poultry and Biodegradation Techniques Using Microorganisms for Consumer Health Protection: A Review. Poult. Sci. 2025, 104, 104456. [Google Scholar] [CrossRef]
- Fernandes, J.; Gonçalves, D.; Pazdiora, D.; Santos, A.; Oliveira, M.; Marcante, T.; Guirro, E. Evaluation of the Ingestive Behavior of Foreign Fragments and the Integrity of Gastrointestinal Tract of Broiler Chickens. Braz. J. Poult. Sci. 2021, 23, eRBCA-2020-1414. [Google Scholar] [CrossRef]
- Aljohani, A.S.M. Heavy Metal Toxicity in Poultry: A Comprehensive Review. Front. Vet. Sci. 2023, 10, 1161354. [Google Scholar] [CrossRef]
Ingredient | Starter 1 to 10 d | Grower 11 to 21 d | Finisher 22 to 35 d | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
USA-L 1 | USA-R 1 | ARG 1 | BRA 1 | USA-L | USA-R | ARG | BRA | USA-L | USA-R | ARG | BRA | |
Corn | 53.12 | 53.34 | 53.74 | 54.13 | 58.50 | 58.74 | 59.16 | 59.57 | 61.59 | 61.84 | 62.30 | 62.73 |
Soybean meal, 48% CP | 40.11 | 40.08 | 40.02 | 39.96 | 35.27 | 35.25 | 35.20 | 35.16 | 31.71 | 31.67 | 31.62 | 31.57 |
Poultry oil | 3.11 | 2.92 | 2.58 | 2.25 | 3.34 | 3.13 | 2.75 | 2.39 | 3.77 | 3.54 | 3.14 | 2.76 |
Dicalcium phosphate, 18% P | 1.04 | 1.04 | 1.04 | 1.04 | 0.66 | 0.66 | 0.66 | 0.66 | 0.37 | 0.37 | 0.37 | 0.37 |
Limestone | 0.89 | 0.89 | 0.89 | 0.89 | 0.67 | 0.67 | 0.67 | 0.67 | 0.62 | 0.62 | 0.62 | 0.63 |
Salt | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
DL-Methionine, 99% | 0.42 | 0.42 | 0.42 | 0.42 | 0.37 | 0.37 | 0.37 | 0.37 | 0.34 | 0.34 | 0.34 | 0.34 |
L-Lysine HCl | 0.27 | 0.27 | 0.27 | 0.27 | 0.22 | 0.22 | 0.22 | 0.23 | 0.20 | 0.20 | 0.20 | 0.20 |
L-Threonine, 98% | 0.16 | 0.16 | 0.16 | 0.16 | 0.13 | 0.13 | 0.13 | 0.13 | 0.11 | 0.10 | 0.10 | 0.10 |
L-Valine | 0.08 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 | 0.05 | 0.05 | 0.05 | 0.04 |
L-Isoleucine | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 |
Choline Cl, 70% | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
Trace-mineral premix 2 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Vitamin premix 3 | 0.10 | 0.10 | 0.10 | 0.10 | 0.08 | 0.08 | 0.08 | 0.08 | 0.05 | 0.05 | 0.05 | 0.05 |
Titanium dioxide | - | - | - | - | - | - | - | - | 0.50 | 0.50 | 0.50 | 0.50 |
OptiPhos® Plus 4, g/kg | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Calculated Analysis | Starter | Grower | Finisher | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 to 10 d | 11 to 21 d | 22 to 35 d | ||||||||||
USA-L 1 | USA-R 1 | ARG 1 | BRA 1 | USA-L | USA-R | ARG | BRA | USA-L | USA-R | ARG | BRA | |
AMEn 2, kcal/kg | 2975 | 2975 | 2975 | 2975 | 3050 | 3050 | 3050 | 3050 | 3100 | 3100 | 3100 | 3100 |
Crude protein | 23.80 | 23.60 | 23.72 | 23.73 | 21.77 | 21.56 | 21.69 | 21.72 | 20.22 | 20.00 | 20.13 | 20.16 |
Digestible Lys | 1.32 | 1.32 | 1.32 | 1.32 | 1.18 | 1.18 | 1.18 | 1.18 | 1.08 | 1.08 | 1.08 | 1.08 |
Digestible Met | 0.71 | 0.71 | 0.71 | 0.71 | 0.65 | 0.65 | 0.65 | 0.65 | 0.60 | 0.60 | 0.60 | 0.60 |
Digestible TSAA 3 | 1.00 | 1.00 | 1.00 | 1.00 | 0.92 | 0.92 | 0.92 | 0.92 | 0.86 | 0.86 | 0.86 | 0.86 |
Digestible Thr | 0.88 | 0.88 | 0.88 | 0.88 | 0.79 | 0.79 | 0.79 | 0.79 | 0.72 | 0.72 | 0.72 | 0.72 |
Digestible Val | 1.00 | 1.00 | 1.00 | 1.00 | 0.91 | 0.91 | 0.91 | 0.91 | 0.84 | 0.84 | 0.84 | 0.84 |
Digestible Ile | 0.88 | 0.88 | 0.88 | 0.88 | 0.80 | 0.80 | 0.80 | 0.80 | 0.75 | 0.75 | 0.75 | 0.75 |
Digestible Leu | 1.65 | 1.65 | 1.66 | 1.66 | 1.55 | 1.55 | 1.55 | 1.55 | 1.46 | 1.46 | 1.47 | 1.47 |
Digestible Arg | 1.40 | 1.40 | 1.40 | 1.40 | 1.27 | 1.27 | 1.27 | 1.27 | 1.17 | 1.17 | 1.17 | 1.17 |
Digestible Trp | 0.26 | 0.26 | 0.26 | 0.26 | 0.23 | 0.23 | 0.23 | 0.23 | 0.21 | 0.21 | 0.21 | 0.21 |
Total calcium | 0.95 | 0.95 | 0.95 | 0.95 | 0.75 | 0.75 | 0.75 | 0.75 | 0.65 | 0.65 | 0.65 | 0.65 |
Non-phytate phosphorus | 0.50 | 0.50 | 0.50 | 0.50 | 0.42 | 0.42 | 0.42 | 0.42 | 0.36 | 0.36 | 0.36 | 0.36 |
Sodium | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Chloride | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Choline, mg/kg | 1700 | 1700 | 1700 | 1700 | 1600 | 1600 | 1600 | 1600 | 1500 | 1500 | 1500 | 1500 |
Treatment 1 | Crude Protein | Starch | Fat | Crude Fiber |
---|---|---|---|---|
USA-L | 7.99 | 62.32 | 3.66 | 1.78 |
USA-R | 7.74 | 63.98 | 3.56 | 1.86 |
ARG | 7.81 | 64.37 | 3.67 | 1.77 |
BRA | 7.49 | 65.28 | 3.54 | 1.74 |
Treatment 1 | Test Weight (kg/m3) | Moisture (%) | Damaged Kernels (%) | Broken Corn and Foreign Material (%) |
---|---|---|---|---|
USA-L | 746.57 | 13.40 | 0.20 | 1.30 |
USA-R | 731.12 | 13.10 | 0.50 | 4.00 |
ARG | 733.70 | 12.60 | 0.00 | 3.40 |
BRA | 749.14 | 12.00 | 0.20 | 2.60 |
Treatment 5 | BW 1, g/bird | BWG 2, g/bird | FI 3, g/bird | FCR 4, g:g | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 d | 10 d | 21 d | 35 d | 1–10 d | 1–21 d | 1–35 d | 1–10 d | 1–21 d | 1–35 d | 1–10 d | 1–21 d | 1–35 d | |
USA-L | 39 | 276 | 998 | 2445 | 237 | 959 | 2406 | 276 | 1219 | 3372 b | 0.996 | 1.223 | 1.376 c |
USA-R | 39 | 270 | 984 | 2438 | 231 | 945 | 2399 | 269 | 1196 | 3396 ab | 0.999 | 1.214 | 1.385 bc |
ARG | 39 | 275 | 993 | 2488 | 236 | 954 | 2449 | 275 | 1218 | 3470 a | 1.000 | 1.223 | 1.397 ab |
BRA | 39 | 271 | 992 | 2462 | 232 | 953 | 2422 | 273 | 1222 | 3463 a | 1.011 | 1.226 | 1.401 a |
SEM 6 | 0.19 | 2 | 9 | 19 | 2 | 9 | 19 | 2 | 9 | 24 | 0.005 | 0.004 | 0.004 |
p-value | 0.392 | 0.153 | 0.731 | 0.263 | 0.153 | 0.730 | 0.260 | 0.073 | 0.140 | 0.012 | 0.115 | 0.141 | <0.001 |
Treatment 3 | d 36 Live Weight | Chilled Carcass | Breast | Tenders | Wings | Legs | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
g/bird | Weight, g/bird | Yield 1, % | Weight, g/bird | Yield 2, % | Weight, g/bird | Yield 2, % | Weight, g/bird | Yield 2, % | Weight, g/bird | Yield 2, % | |
USA-L | 2589 | 1941 ab | 75.33 | 561 | 28.76 | 118 | 6.05 | 195 | 10.01 | 552 | 28.42 |
USA-R | 2572 | 1911 b | 74.54 | 556 | 28.97 | 118 | 6.16 | 191 | 9.95 | 544 | 28.23 |
ARG | 2603 | 1971 a | 75.61 | 568 | 28.91 | 120 | 6.11 | 196 | 9.99 | 555 | 28.18 |
BRA | 2590 | 1957 ab | 75.41 | 570 | 29.11 | 118 | 6.06 | 195 | 9.99 | 559 | 28.4 |
SEM 4 | 9 | 15 | 0.54 | 6 | 0.17 | 1 | 0.05 | 1 | 0.05 | 4 | 0.12 |
p-value | 0.075 | 0.032 | 0.516 | 0.346 | 0.537 | 0.474 | 0.430 | 0.057 | 0.893 | 0.076 | 0.410 |
Treatment 2 | Apparent Ileal Digestibility 1, % | ||||
---|---|---|---|---|---|
Crude Protein | Crude Fat | Phosphorus | Calcium | Potassium | |
USA-L | 81.47 | 88.32 | 75.13 b | 64.03 | 89.90 |
USA-R | 81.70 | 88.02 | 78.07 ab | 66.20 | 90.77 |
ARG | 83.33 | 89.99 | 79.92 a | 63.72 | 90.97 |
BRA | 81.99 | 88.60 | 77.95 ab | 61.38 | 89.77 |
SEM 3 | 0.57 | 1.00 | 0.90 | 1.00 | 0.40 |
p-value | 0.125 | 0.564 | 0.007 | 0.097 | 0.096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brizuela, M.J.; Vargas, J.I.; Dias, I.C.; Gulizia, J.P.; Guzmán, E.G.; Hernández, J.R.; Simões, C.T.; Pacheco, W.J. Influence of Local and Reimported United States and South American Corn Sources on Broiler Performance, Nutrient Digestibility, and Processing Yield. Animals 2025, 15, 1770. https://doi.org/10.3390/ani15121770
Brizuela MJ, Vargas JI, Dias IC, Gulizia JP, Guzmán EG, Hernández JR, Simões CT, Pacheco WJ. Influence of Local and Reimported United States and South American Corn Sources on Broiler Performance, Nutrient Digestibility, and Processing Yield. Animals. 2025; 15(12):1770. https://doi.org/10.3390/ani15121770
Chicago/Turabian StyleBrizuela, Maria J., Jose I. Vargas, Isabella C. Dias, Joseph P. Gulizia, Eva G. Guzmán, Jose R. Hernández, Cristina T. Simões, and Wilmer J. Pacheco. 2025. "Influence of Local and Reimported United States and South American Corn Sources on Broiler Performance, Nutrient Digestibility, and Processing Yield" Animals 15, no. 12: 1770. https://doi.org/10.3390/ani15121770
APA StyleBrizuela, M. J., Vargas, J. I., Dias, I. C., Gulizia, J. P., Guzmán, E. G., Hernández, J. R., Simões, C. T., & Pacheco, W. J. (2025). Influence of Local and Reimported United States and South American Corn Sources on Broiler Performance, Nutrient Digestibility, and Processing Yield. Animals, 15(12), 1770. https://doi.org/10.3390/ani15121770