Comparing Morphometric and Mitochondrial DNA Data from Honeybees and Honey Samples for Identifying Apis mellifera ligustica Subspecies at the Colony Level
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Honeybees and Honey Samples
2.2. Morphometric Analysis of the Honeybees
2.3. DNA Extraction
2.4. PCR Analyses and Sequencing
2.4.1. Analyses on Honeybee DNA
2.4.2. Analyses on Honey DNA
2.5. Data Analyses
2.5.1. Morphometric Data Analyses
2.5.2. Sequence Data Analyses
2.5.3. Comparison of Results from Different Methods
3. Results
3.1. Overview of Morphometric Profiles of the Analyzed Honeybee Samples
3.2. Description of mtDNA Haplotypes of the Analyzed Honeybees
3.3. Description of A. mellifera mtDNA Lineages Retrieved from Honey Samples
3.4. Comparing Results Obtained from the Three Methods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
mtDNA | Mitochondrial DNA |
PCR | Polymerase chain reaction |
References
- Ruttner, F. (Ed.) Morphometric Analysis and Classification. In Biogeography and Taxonomy of Honeybees; Springer: Berlin/Heidelberg, Germany, 1988; pp. 66–78. [Google Scholar]
- Bouga, M.; Alaux, C.; Bienkowska, M.; Büchler, R.; Carreck, N.L.; Cauia, E.; Chlebo, R.; Dahle, B.; Dall’Olio, R.; De la Rúa, P.; et al. A review of methods for discrimination of honey bee populations as applied to European beekeeping. J. Apic. Res. 2011, 50, 51–84. [Google Scholar] [CrossRef]
- Ilyasov, R.A.; Lee, M.; Takahashi, J.; Kwon, H.W.; Nikolenko, A.G. A revision of subspecies structure of western honey bee Apis mellifera. Saudi J. Biol. Sci. 2020, 27, 3615–3621. [Google Scholar] [CrossRef] [PubMed]
- De la Rúa, P.; Jaffé, R.; Dall’Olio, R.; Muñoz, I.; Serrano, J. Biodiversity, conservation and current threats to European honeybees. Apidologie 2009, 40, 263–284. [Google Scholar] [CrossRef]
- Fontana, P.; Costa, C.; Di Prisco, G.; Ruzzier, E.; Annoscia, D.; Battisti, A.; Caoduro, G.; Carpana, C.; Contessi, A.; Dal Lago, A.; et al. Appeal for biodiversity protection of native honey bee subspecies of Apis mellifera in Italy (San Michele all’Adige declaration). Bull. Insectol. 2018, 71, 257–271. [Google Scholar]
- Requier, F.; Garnery, L.; Kohl, P.L.; Njovu, H.K.; Pirk, C.W.W.; Crewe, R.M.; Steffan-Dewenter, I. The conservation of native honey bees is crucial. Trends Ecol. Evol. 2019, 34, 789–798. [Google Scholar] [CrossRef]
- Leroy, T.; Faux, P.; Basso, B.; Eynard, S.; Wragg, D.; Vignal, A. Inferring long-term and short-term determinants of genetic diversity in honey bees: Beekeeping impact and conservation strategies. Mol. Biol. Evol. 2024, 41, msae249. [Google Scholar] [CrossRef]
- Jensen, A.B.; Palmer, K.A.; Boomsma, J.J.; Pedersen, B.V. Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in northwest Europe. Mol. Ecol. 2005, 14, 93–106. [Google Scholar] [CrossRef]
- Strange, J.P.; Garnery, L.; Sheppard, W.S. Morphological and molecular characterization of the Landes honey bee (Apis mellifera L.) ecotype for genetic conservation. J. Insect Conserv. 2008, 12, 527–537. [Google Scholar] [CrossRef]
- Muñoz, I.; De la Rúa, P. Temporal analysis of the genetic diversity in a honey bee mating area of an island population (La Palma, Canary Islands, Spain). J. Apic. Sci. 2012, 56, 41–49. [Google Scholar] [CrossRef]
- Ellis, J.S.; Soland-Reckeweg, G.; Buswell, V.G.; Huml, J.V.; Brown, A.; Knight, M.E. Introgression in native populations of Apis mellifera mellifera L: Implications for conservation. J. Insect Conserv. 2018, 22, 377–390. [Google Scholar] [CrossRef]
- Muñoz, I.; De La Rúa, P. Wide genetic diversity in Old World honey bees threaten by introgression. Apidologie 2021, 52, 200–217. [Google Scholar] [CrossRef]
- Ruttner, F.; Tassencourt, L.; Loveaux, J. Biometrical-statistical analysis of the geographic variability of Apis mellifera L. Apidologie 1978, 9, 363–381. [Google Scholar] [CrossRef]
- Alpatov, W.W. Biometrical studies on variation and races of the honey bee (Apis mellifera L.). Quart. Rev. Biol. 1929, 4, 1–58. [Google Scholar] [CrossRef]
- Goetze, G.K.L. Die Honigbiene in natürlicher und künstlicher Zuchtauslese, Teil 1: Systematik, Zeugung und Vererbung. Monogr. Angew. Entomol. 1964, 19, 1–120. [Google Scholar]
- Garnery, L.; Cornuet, J.M.; Solignac, M. Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Mol. Ecol. 1992, 1, 145–154. [Google Scholar] [CrossRef]
- Arias, M.C.; Sheppard, W.S. Molecular phylogenetics of honey bee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequence. Mol. Phylogenetics Evol. 1996, 5, 557–566. [Google Scholar] [CrossRef]
- Momeni, J.; Parejo, M.; Nielsen, R.O.; Langa, J.; Montes, I.; Papoutsis, L.; Farajzadeh, L.; Bendixen, C.; Căuia, E.; Charrière, J.D.; et al. Authoritative subspecies diagnosis tool for European honey bees based on ancestry informative SNPs. BMC Genom. 2021, 22, 101. [Google Scholar] [CrossRef]
- Bovo, S.; Utzeri, V.J.; Ribani, A.; Taurisano, V.; Schiavo, G.; Fontanesi, L. A genotyping by sequencing approach can disclose Apis mellifera population genomic information contained in honey environmental DNA. Sci. Rep. 2022, 12, 19541. [Google Scholar] [CrossRef]
- Alburaki, M.; Madella, S.; Lopez, J.; Bouga, M.; Chen, Y.; vanEngelsdorp, D. Honey bee populations of the USA display restrictions in their mtDNA haplotype diversity. Front. Genet. 2023, 13, 1092121. [Google Scholar] [CrossRef]
- Vecchi, A. Sulla distribuzione geografica dell’Apis mellifica ligustica Spin. Italia. Bollettino del Laboratorio di Zoologia Generale e Agraria Della R. Sc. Super. D’agricoltura Portici 1927, 20, 150–168. [Google Scholar]
- Nazzi, F. Morphometric analysis of honey bees from an area of racial hybridization in north-eastern Italy. Apidologie 1992, 23, 89–96. [Google Scholar] [CrossRef]
- Sinacori, A.; Rinderer, T.E.; Lancaster, V.; Sheppard, W.S. A morphological and mitochondrial assessment of Apis mellifera from Palermo, Italy. Apidologie 1998, 29, 481–490. [Google Scholar] [CrossRef]
- Franck, P.; Garnery, L.; Celebrano, G.; Solignac, M.; Cornuet, J.-M. Hybrid origins of honeybees from Italy (Apis mellifera ligustica) and Sicily (A. m. sicula). Mol. Ecol. 2000, 9, 907–921. [Google Scholar] [CrossRef]
- Cánovas, F.; De la Rúa, P.; Serrano, J.; Galián, J. Geographical patterns of mitochondrial DNA variation in Apis mellifera iberiensis (Hymenoptera: Apidae). J. Zool. Syst. Evol. Res. 2007, 46, 24–30. [Google Scholar] [CrossRef]
- Smith, D.R.; Palopoli, M.F.; Taylor, B.R.; Garnery, L.; Cornuet, J.M.; Solignac, M.; Brown, W.M. Geographical overlap of two mitochondrial genomes in Spanish honeybees (Apis mellifera iberica). J. Hered. 1991, 82, 96–100. [Google Scholar] [CrossRef]
- Miguel, I.; Iriondo, M.; Garnery, L.; Sheppard, W.S.; Estonba, A. Gene flow within the M evolutionary lineage of Apis mellifera: Role of the Pyrenees, isolation by distance and post-glacial re-colonization routes in the western Europe. Apidologie 2007, 38, 141–155. [Google Scholar] [CrossRef]
- Regione Emilia-Romagna. Legge Regionale 4 Marzo 2019, n. 2. Norme per lo Sviluppo, L’esercizio e la Tutela Dell’apicoltura in Emilia-Romagna. 2019, 2. Available online: https://demetra.regione.emilia-romagna.it/al/articolo?urn=er:assemblealegislativa:legge (accessed on 15 February 2025).
- Utzeri, V.J.; Ribani, A.; Fontanesi, L. Authentication of honey based on a DNA method to differentiate Apis mellifera subspecies: Application to Sicilian honey bee (A. m. siciliana) and Iberian honey bee (A. m. iberiensis) honeys. Food Control 2018, 91, 294–301. [Google Scholar] [CrossRef]
- Utzeri, V.J.; Ribani, A.; Taurisano, V.; Banqué, C.H.I.; Fontanesi, L. Distribution of the main Apis mellifera mitochondrial DNA lineages in Italy assessed using an environmental DNA approach. Insects 2021, 12, 620. [Google Scholar] [CrossRef]
- Utzeri, V.J.; Ribani, A.; Taurisano, V.; Fontanesi, L. Entomological authentication of honey based on a DNA method that distinguishes Apis mellifera mitochondrial C mitotypes: Application to honey produced by A. m. ligustica and A. m. carnica. Food Control 2022, 134, 108713. [Google Scholar] [CrossRef]
- Satta, A.; Floris, I.; Pigliaru, G. DataBees: Uno strumento informatico per la gestione delle risorse Api e Mieli. APOidea-Riv. Ital. Apic. 2004, 1, 25–30. [Google Scholar]
- Cermak, K.; Kaspar, F. A method of classifying honey bee races by their body characters. Pszczel. Zesz. Nauk. 2000, 44, 81–86. [Google Scholar]
- Disciplinare dell’Albo Nazionale Degli Allevatori di Api Italiane—Regulation of the National Register of Italian Honey Bee Breeders. Available online: https://www.crea.gov.it/documents/71515/0/Api_it_disciplinare.pdf/a9063372-a0d0-3b84-ee42-9efa405695a3?t=1579185596323 (accessed on 15 February 2025).
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Taurisano, V.; Ribani, A.; Sami, D.; Nelson Johnson, K.E.; Schiavo, G.; Utzeri, V.J.; Bovo, S.; Fontanesi, L. Distribution of honey bee mitochondrial DNA haplotypes in an Italian region where a legislative act is protecting the Apis mellifera ligustica subspecies. Sci. Rep. 2024, 14, 20583. [Google Scholar] [CrossRef]
- Rortais, A.; Arnold, G.; Alburaki, M.; Legout, H.; Garnery, L. Review of the DraICOI-COII test for the conservation of the black honeybee (Apis mellifera mellifera). Conserv. Genet. Resour. 2011, 3, 383–391. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Chen, H.; Boutros, P.C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 2011, 12, 35. [Google Scholar] [CrossRef]
- Fontanesi, L.; Taurisano, V.; Ribani, A.; Utzeri, V.J. A reply to the Letter to the Editor of Moškrič et al. entitled “A comment on the paper from Utzeri et al. (2022) “Entomological authentication of honey based on a DNA method that distinguishes Apis mellifera mitochondrial C mitotypes: Application to honey produced by A. m. ligustica and A. m. carnica, Food control, Volume 121, March 2021, 107626”. Food Control 2023, 147, 109570. [Google Scholar]
- Rodrigues, P.J.; Gomes, W.; Pinto, M.A. DeepWings©: Automatic wing geometric morphometrics classification of honey bee (Apis mellifera) subspecies using deep learning for detecting landmarks. Big Data Cogn. Comput. 2022, 6, 70. [Google Scholar] [CrossRef]
- Oleksa, A.; Căuia, E.; Siceanu, A.; Puškadija, Z.; Kovačić, M.; Pinto, M.A.; Rodrigues, P.J.; Hatjina, F.; Charistos, L.; Bouga, M.; et al. Honey bee (Apis mellifera) wing images: A tool for identification and conservation. Gigascience 2023, 12, giad019. [Google Scholar] [CrossRef]
- García, C.A.Y.; Rodrigues, P.J.; Tofilski, A.; Elen, D.; McCormak, G.P.; Oleksa, A.; Henriques, D.; Ilyasov, R.; Kartashev, A.; Bargain, C.; et al. Using the Software DeepWings© to Classify Honey Bees across Europe through Wing Geometric Morphometrics. Insects 2022, 13, 1132. [Google Scholar] [CrossRef]
- Groeneveld, L.F.; Kirkerud, L.A.; Dahle, B.; Sunding, M.; Flobakk, M.; Kjos, M.; Henriques, D.; Pinto, M.A.; Berg, P. Conservation of the dark bee (Apis mellifera mellifera): Estimating C-lineage introgression in Nordic breeding stocks. Acta Agric. Scand. Section A-Anim. Sci. 2020, 69, 157–168. [Google Scholar] [CrossRef]
- Chávez-Galarza, J.; Garnery, L.; Henriques, D.; Neves, C.J.; Loucif-Ayad, W.; Pinto, M.A. Mitochondrial DNA variation of Apis mellifera iberiensis: Further insights from a large-scale study using sequence data of the tRNAleu-cox2 intergenic region. Apidologie 2017, 48, 533–544. [Google Scholar] [CrossRef]
- Chávez-Galarza, J.; López-Montañez, R.; Jiménez, A.; Ferro-Mauricio, R.; Oré, J.; Medina, S.; Rea, R.; Vásquez, H. Mitochondrial DNA variation in Peruvian honey bee (Apis mellifera L.) populations using the tRNAleu-cox2 intergenic region. Insects 2021, 12, 641. [Google Scholar] [CrossRef] [PubMed]
- Tanasković, M.; Erić, P.; Patenković, A.; Erić, K.; Mihajlović, M.; Tanasić, V.; Stanisavljević, L.; Davidović, S. MtDNA analysis indicates human-induced temporal changes of Serbian honey bees diversity. Insects 2021, 12, 767. [Google Scholar] [CrossRef]
- Techer, M.A.; Clémencet, J.; Simiand, C.; Preeaduth, S.; Azali, H.A.; Reynaud, B.; Hélène, D. Large-scale mitochondrial DNA analysis of native honey bee Apis mellifera populations reveals a new African subgroup private to the South West Indian Ocean islands. BMC Genet. 2017, 18, 53. [Google Scholar] [CrossRef]
- Muñoz, I.; Stevanović, J.; Stanimirović, Z.; De la Rua, P. Genetic variation of Apis mellifera from Serbia inferred from mitochondrial analysis. J. Apic. Sci. 2012, 56, 59–69. [Google Scholar] [CrossRef]
- Düttmann, C.; Flores, B.; Sheleby-Elías, J.; Castillo, G.; Rodriguez, D.; Maggi, M.; Demedio, J. Africanized honeybee population (Apis mellifera L) in Nicaragua: Forewing length and mitotype lineages. PLoS ONE 2022, 17, e0267600. [Google Scholar] [CrossRef]
- Ostroverkhova, N.V.; Konusova, O.L.; Kucher, A.N.; Kireeva, T.N.; Vorotov, A.A.; Belykh, E.A. Genetic diversity of the locus COI-COII of mitochondrial DNA in honeybee populations (Apis mellifera L.) from the Tomsk region. Russ. J. Genet. 2015, 51, 80–90. [Google Scholar] [CrossRef]
- Lin, Z.; Zhu, Z.; Zhuang, M.; Wang, Z.; Zhang, Y.; Gao, F.; Niu, Q.; Ji, T. Effects of local domestication warrant attention in honey bee population genetics. Sci. Adv. 2023, 9, eade7917. [Google Scholar] [CrossRef]
- Lin, Z.; Yang, L.; Wang, Z.; Wang, K.; Niu, Q.; Ji, T. Honey Bee Breeding and Breed: Advancements, Challenges, and Prospects. Anim. Res. One Health 2025, 1–8. [Google Scholar] [CrossRef]
- Buswell, V.G.; Ellis, J.S.; Huml, J.V.; Wragg, D.; Barnett, M.W.; Brown, A.; The Scottish Beekeepers Association Citizen Science Group; Knight, M.E. When one’s not enough: Colony pool-seq outperforms individual-based methods for assessing introgression in Apis mellifera mellifera. Insects 2023, 14, 421. [Google Scholar] [CrossRef] [PubMed]
- Buswell, V.G.; Huml, J.V.; Ellis, J.S.; Brown, A.; Knight, M.E. Whole genome analyses of introgression in British and Irish Apis mellifera mellifera. J. Apic. Res. 2024, 64, 185–197. [Google Scholar] [CrossRef]
- Bubnič, J.; Mole, K.; Prešern, J.; Moškrič, A. Non-destructive genotyping of honeybee queens to support selection and breeding. Insects 2020, 11, 896. [Google Scholar] [CrossRef] [PubMed]
Methods 1 | Dataset 1 2 | Sub-Dataset 2 2 | Sub-Dataset 3 2 | |||
---|---|---|---|---|---|---|
Comp. 3 | Non-Comp. 3 | Comp. | Non-Comp. | Comp. | Non-Comp. | |
Morphometric analysis | 63 (0.79) | 17 (0.21) | 33 (0.79) | 9 (0.21) | 30 (0.79) | 8 (0.21) |
mtDNA from honeybees | 73 (0.91) ab | 7 (0.09) | 41 (0.98) a | 1 (0.02) | 32 (0.84) b | 6 (0.16) |
mtDNA from honey | 68 (0.85) | 12 (0.15) | 39 (0.93) | 3 (0.07) | 29 (0.76) | 9 (0.24) |
Datasets | Method 1 | Fisher Exact Test/Cohen’s Kappa 2 | Bayesian Analyses 3 | ||||
---|---|---|---|---|---|---|---|
Morph. | mtDNA Honeybees | mtDNA Honey | Morph. | mtDNA Honeybees | mtDNA Honey | ||
Dataset 1 | Morphometric | - | −0.046 (0.086) | −0.130 (0.081) | - | 0.905 | 0.825 |
mtDNA from honeybees | 0.053 | - | 0.659 (0.128) | 0.781 | - | 0.904 | |
mtDNA from honey | 0.412 | 0.329 | - | 0.765 | 0.971 | - | |
Sub-dataset 2 | Morphometric | - | −0.045 (0.042) | −0.120 (0.056) | - | 0.970 | 0.909 |
mtDNA from honeybees | 0.015 | - | 0.641 (0.235) | 0.780 | - | 0.927 | |
mtDNA from honey | 0.010 | 0.116 | - | 0.769 | 0.882 | - | |
Sub-Dataset 3 | Morphometric | - | −0.046 (0.149) | −0.015 (0.159) | - | 0.833 | 0.733 |
mtDNA from honeybees | 0.768 | - | 0.689 (0.140) | 0.781 | - | 0.875 | |
mtDNA from honey | 1.000 | 0.566 | - | 0.759 | 0.793 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taurisano, V.; Ribani, A.; Utzeri, V.J.; Sami, D.; Johnson, K.E.N.; Formato, G.; Milito, M.; Schiavo, G.; Bovo, S.; Bertolini, F.; et al. Comparing Morphometric and Mitochondrial DNA Data from Honeybees and Honey Samples for Identifying Apis mellifera ligustica Subspecies at the Colony Level. Animals 2025, 15, 1743. https://doi.org/10.3390/ani15121743
Taurisano V, Ribani A, Utzeri VJ, Sami D, Johnson KEN, Formato G, Milito M, Schiavo G, Bovo S, Bertolini F, et al. Comparing Morphometric and Mitochondrial DNA Data from Honeybees and Honey Samples for Identifying Apis mellifera ligustica Subspecies at the Colony Level. Animals. 2025; 15(12):1743. https://doi.org/10.3390/ani15121743
Chicago/Turabian StyleTaurisano, Valeria, Anisa Ribani, Valerio Joe Utzeri, Dalal Sami, Kate Elise Nelson Johnson, Giovanni Formato, Marcella Milito, Giuseppina Schiavo, Samuele Bovo, Francesca Bertolini, and et al. 2025. "Comparing Morphometric and Mitochondrial DNA Data from Honeybees and Honey Samples for Identifying Apis mellifera ligustica Subspecies at the Colony Level" Animals 15, no. 12: 1743. https://doi.org/10.3390/ani15121743
APA StyleTaurisano, V., Ribani, A., Utzeri, V. J., Sami, D., Johnson, K. E. N., Formato, G., Milito, M., Schiavo, G., Bovo, S., Bertolini, F., & Fontanesi, L. (2025). Comparing Morphometric and Mitochondrial DNA Data from Honeybees and Honey Samples for Identifying Apis mellifera ligustica Subspecies at the Colony Level. Animals, 15(12), 1743. https://doi.org/10.3390/ani15121743