Technological Solutions to Decrease Protein Content in Piglet Weaning Feed, Improving Performance, Gut Efficiency, and Environmental Sustainability
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Feeding Thesis
- -
- Control Feed (C): High-quality and low-protein commercial feeds studied for an antibiotic-free supply chain, containing plasma and fishmeal;
- -
- Thesis 1 (T1): Low-protein experimental feed with 7 synthetic amino acids, containing plasma and fishmeal;
- -
- Thesis 2 (T2): Low-protein experimental feed with 7 synthetic amino acids, without plasma and fishmeal.
2.2. Data Collection and Calculation
2.3. Statistical Analysis
3. Results
3.1. Diarrhea
3.2. Tail Biting
3.3. Average Weight
3.4. Feed Intake
3.5. Feed Conversion Rate (FCR)
3.6. Average Daily Gain (ADG)
3.7. Nitrogen Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADG | Average Daily Growth |
FCR | Feed Conversion Rate |
PWD | Post-Weaning Diarrhea |
References
- Rodrigues, L.A.; Koo, B.; Nyachoti, M.; Columbus, D. Formulating Diets for Improved Health Status of Pigs: Current Knowledge and Perspectives. Animals 2022, 12, 2877. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, C.; Peng, Y.; Zhang, Y.; Liu, Y.; Liu, Y.; Yin, Y. Research progress on anti-stress nutrition strategies in swine. Anim. Nutr. 2023, 13, 342–360. [Google Scholar] [CrossRef] [PubMed]
- Pluske, J.R.; Pethick, D.W.; Hopwood, D.E.; Hampson, D.J. Nutritional influences on some major enteric bacterial diseases of pig. Nutr. Res. Rev. 2002, 15, 333–371. [Google Scholar] [CrossRef]
- Wellock, I.J.; Fortomaris, P.D.; Houdijk, J.G.M.M.; Kyriazakis, I. The effect of dietary protein supply on the performance and risk of post-weaning enteric disorders in newly weaned pigs. Anim. Sci. 2006, 82, 327–335. [Google Scholar] [CrossRef]
- Wellock, I.J.; Fortomaris, P.D.; Houdijik, G.M.; Kyriazakis, I. Effects of dietary protein supply, weaning age and experimental enterotoxigenic Escherichia coli infection on newly weaned pigs: Performance. Animal 2008, 2, 825–833. [Google Scholar] [CrossRef]
- Htoo, J.K.; Araiza, B.A.; Sauer, W.C.; Rademacher, M.; Zhang, Y.; Cervantes, M.; Zijlstra, R.T. Effect of dietary protein content on ileal amino acid digestibility, growth performance, and formation of microbial metabolites in ileal and cecal digesta of early-weaned pigs. J. Anim. Sci. 2007, 85, 3303–3312. [Google Scholar] [CrossRef]
- Opapeju, F.O.; Krause, D.O.; Payne, R.L.; Rademacher, M.; Nyachoti, C.M. Effect of dietary protein level on growth performance, indicators of enteric health, and gastroin testinal microbial ecology of weaned pigs induced with postweaning colibacillosis. J. Anim. Sci. 2009, 87, 2635–2643. [Google Scholar] [CrossRef]
- Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastro intestinal health and function in weaned pigs: A review of feeding strategies to con trol post-weaning diarrhoea without using in-feed antimicrobial compounds. J. Anim. Physiol. Anim. Nutr. 2012, 97, 207–237. [Google Scholar] [CrossRef]
- Rhouma, M.; Fairbrother, J.M.; Beaudry, F.; Letellier, A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Vet. Scand. 2017, 59, 31. [Google Scholar] [CrossRef]
- Clark, A.B.; Tokach, M.D.; CeRouchey, J.M.; Dritz, S.S.; Woodworth, J.C.; Goodband, R.D.; Touchette, K.J.; Allersone, M. Effects of dietary lysine level and amino acid ratios on nursery pig performance. J. Anim. Sci. 2017, 95 (Suppl. 2), 82–83. [Google Scholar] [CrossRef]
- Millet, S.; Aluwè, M.; De Boever, J.; De Witte, B.; Douidah, L.; Van Den Broeke, A.; Leen, F.; De Cuyper, C.; Ampe, B.; De Campeneere, S. The effect of crude protein reduction on performance and nitrogen metabolism in piglets (four to nine weeks of age) fed two dietary lysine levels. J. Anim. Sci. 2018, 96, 3824–3836. [Google Scholar] [CrossRef] [PubMed]
- Lynegaard, J.C.; Kjeldsen, N.J.; Bache, J.K.; Weber, N.R. Low protein diets without medicinal zinc oxide for weaned pigs reduced diarrhea treatments and daily gain. Animal 2021, 15, 100075. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, R.; Faeti, V.; Gallo, M.; Pindo, M.; Bochicchio, D.; Buttazzoni, L.; Della Casa, G. Protein Content in the Diet Influences Growth and Diarrhea in Weaning Piglets. Animals 2023, 13, 795. [Google Scholar] [CrossRef]
- Connolly, K.R.; Sweeney, T.; Maher, S.; O’Doherty, J.V. Acid-treating low protein piglet diets reduces the incidence of post-weaning diarrhoea without compromising growth performance. Animal 2023, 14, 804–805. [Google Scholar] [CrossRef]
- Duarte, M.E.; Parnsen, W.; Zhang, S.; Abreu, M.L.T.; Kim, S.W. Low crude protein formulation with supplemental amino acids for its impacts on intestinal health and growth performance of growing-finishing pigs. J. Anim. Sci. Biotechnol. 2024, 15, 55. [Google Scholar] [CrossRef]
- Kjeldsen, N.; Krogsdahl Bache, J. Test of feeding concepts as an alternative to zinc oxide for weaned pigs. SEGES Dan. Pig Res. Cent. Medd. 2018, 114, 1–25. [Google Scholar]
- Millet, S.; Aluwé, M.; Van Den Broeke, A.; Leen, F.; De Boever, J.; De Campeneere, S. Review: Pork production with maxi mal nitrogen efficiency. Animal 2018, 12, 1060–1067. [Google Scholar] [CrossRef]
- Andretta, I.; Hickmann, F.M.W.; Remus, A.; Franceschi, C.H.; Mariani, A.B.; Orso, C.; Kipper, M.; Létourneau-Montminy, M.P.; Pomar, C. Environmental impacts of pig and poultry production: Insights from a systematic review. Front. Vet. Sci. 2021, 8, 750733. [Google Scholar] [CrossRef]
- Lindberg, J.E. Review: Nutrient and energy supply in monogastric food producing animals with reduced environmental and climatic footprint and improved gut health. Animal 2023, 17, 100832. [Google Scholar] [CrossRef]
- Wageningen Livestock Research (WLR). Booklet of Feeding Tables for Pigs—Nutrient Requirements and Feed Ingredient Composition for Pigs—CVB-Series No. 68 June 2023; Wageningen Livestock Research (WLR): Wageningen, The Netherlands, 2023. [Google Scholar]
- United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations, Department of Economic and Social Affairs, A/RES/70/1. 2015. Available online: https://sdgs.un.org/goals (accessed on 15 June 2022).
- Witjes, V.L.; Veldkamp, F.; Velkers, F.C.; de Jong, I.C.; Meijer, E.; Rebel, J.M.J.; Stegeman, J.A.; Tijs, J.T. Early behavioral indicators of aberrant feces in newly-weaned piglets. Porc. Health Manag. 2024, 10, 47. [Google Scholar] [CrossRef]
- Xiccato, G.; Schiavon, S.; Gallo, L.; Bailoni, L.; Bittante, G. Nitrogen excretion in dairy cow, beef and veal cattle, pig, and rabbit farms in Northern Italy. Ital. J. Anim. Sci 2005, 4, 103–111. [Google Scholar] [CrossRef]
- Minussi, I.; Gerrits, W.J.J.; Jansman, A.J.M.; Gerritsen, R.; Lambert, W.; Zonderland, J.J.; Bolhius, J.E. Amino acid supplementation counteracts negative effects of low protein diets on tail biting in pigs more than extra environmental enrichment. Sci. Rep. 2023, 13, 19268. [Google Scholar] [CrossRef] [PubMed]
Control | T1 | T2 | |
---|---|---|---|
Barley (%) | 30 | 35 | 35 |
Biscuit meal (%) | 10.2 | 5 | 7.5 |
Soft wheat (%) | 8 | ||
Wheat flakes (%) | 7.4 | ||
Corn (%) | 3 | 9 | 7 |
Corn flakes (%) | 15 | 15 | |
Wheat bran (%) | 5 | 5 | 2.8 |
Dehulled oat (%) | 5 | 5 | 7.5 |
Fishmeal (%) | 3.5 | 3.5 | |
Concentrated soybean meal (60% raw protein) (%) | 3.2 | 4 | |
Plasma (%) | 1 | 1 | |
High digestible protein sources 1 (%) | 5.5 | 7.4 | 8.6 |
Milk by-products (%) | 8 | 4.25 | 4.6 |
Beet pulp (%) | 2.5 | 1 | |
Sugars (saccarose, dextrose) (%) | 1 | 0.5 | 0.5 |
Coconut oil (%) | 0.5 | 0.6 | 0.65 |
Vitamins & trace-minerals (%) | 0.25 | 0.25 | 0.25 |
Inorganic and organic calcium sources (%) | 4.25 | 1.25 | 0.75 |
Salt (%) | 0.45 | 0.45 | 0.45 |
MCP (%) | 0.8 | 0.55 | 0.6 |
Organic acids (%) | 1.1 | 1.2 | 1.2 |
Full herb, dried (%) | 0.5 | ||
Aminoacids (%) | 0.67 | 2.3 | 2.3 |
Probiotics 2 (%) | 0.3 | 0.3 | 0.3 |
Other additives (%) | 0.33 | ||
Crude protein (%) | 16.33 | 15.62 | 15.45 |
Fats and oils (%) | 4.86 | 3.92 | 3.88 |
Cellulose (%) | 3.3 | 4 | 3.68 |
Starch (%) | 39.1 | 43.24 | 41.34 |
Ash (%) | 5.01 | 4.22 | 4.66 |
Biotin (mg) | 0.10 | 0.3 | 0.3 |
Vit B1 (mg) | 3.29 | 3 | 3 |
Vit C (mg) | 40 | 105 | 105 |
Folic acid (mg) | 1 | 1.5 | 1.5 |
Vit B6 (mg) | 2.97 | 6 | 6 |
Vit A | 15,000 | 15,000 | 15,000 |
Vit D3 | 2000 | 1995 | 1995 |
Calcium D-pantothenate (mg) | 16.44 | 25 | 25 |
Vit B2 (mg) | 6.97 | 9.88 | 9.88 |
Vit B12 (mg) | 0.04 | 0.05 | 0.05 |
Niacinamide (mg) | 32.46 | 35 | 35 |
Vit E (mg) | 100 | 101 | 101 |
Vit K3 (mg) | 2.36 | 10 | 10 |
Betaine (mg) | 156 | 427.5 | 427.5 |
Cu (mg) | 90 | 150 | 150 |
Fe (mg) | 170 | 97 | 97 |
Mn (mg) | 50 | 41.7 | 41.7 |
I (mg) | 1.5 | 1.9 | 1.9 |
Zn (mg) | 105 | 72 | 72 |
Se (mg) | 0.42 | 0.42 | 0.42 |
Aflatoxins (ppm) | 1.93 | 0.7 | 1.53 |
Deoxynivalenol (ppm) | 0.59 | 0.57 | 0.68 |
Control | T1 | T2 | |
---|---|---|---|
Barley (%) | 30 | 30 | 30 |
Biscuit meal (%) | 10 | 10 | |
Soft wheat (%) | 6.4 | ||
Wheat flakes (%) | 4 | ||
Corn (%) | 18 | 43.6 | 30 |
Wheat bran (%) | 7.7 | 2.5 | 5.5 |
Dehulled oat (%) | 2 | ||
Fishmeal (%) | 5 | 4 | |
Concentrated soybean meal (60% raw protein) (%) | 1.5 | 4.4 | |
Soybean meal 47% (%) | 3 | 9 | 9 |
High digestible protein sources 1 (%) | 3 | 3.4 | 3.4 |
Milk by-products (%) | 2 | ||
Beet pulp (%) | 2.5 | 2.5 | |
Sugars (saccarose, dextrose) (%) | 0.4 | 0.4 | |
Soy oil (%) | 0.7 | 1 | 1 |
Coconut oil (%) | 0.3 | ||
Vitamins and trace minerals (%) | 0.25 | 0.25 | 0.25 |
Inorganic and organic calcium sources (%) | 3.05 | 1.15 | 1.25 |
Salt (%) | 0.5 | 0.4 | 0.4 |
Monocalcium Phosphate (%) | 0.5 | 0.5 | 0.6 |
Organic acids (%) | 0.6 | ||
Full herb, dried (%) | 0.6 | ||
Aminoacids (%) | 0.9 | 1.3 | 1.3 |
Probiotics 2 (%) | 0.3 | 0.3 | 0.3 |
Crude protein (%) | 16.05 | 15.51 | 15.85 |
Fats and oils (%) | 4.71 | 4.25 | 4.05 |
Cellulose (%) | 3.69 | 4.28 | 4.77 |
Starch (%) | 41.08 | 45.66 | 41.65 |
Ash (%) | 4.85 | 4.28 | 4.54 |
Biotin (mg) | 0.05 | 0.3 | 0.3 |
Vit B1 (mg) | 1.5 | 3 | 3 |
Vit C (mg) | 26.25 | 105 | 105 |
Folic acid (mg) | 0.69 | 1.5 | 1.5 |
Vit B6 (mg) | 2 | 6 | 6 |
Vit A | 13,500 | 15,000 | 15,000 |
Vit D3 | 2000 | 1995 | 1995 |
Calcium D-pantothenate (mg) | 13.5 | 25 | 25 |
Vit B2 (mg) | 5.5 | 9.88 | 9.88 |
Vit B12 (mg) | 0.03 | 0.05 | 0.05 |
Niacinamide (mg) | 27.5 | 35 | 35 |
Vit E (mg) | 77.5 | 101 | 101 |
Vit K3 (mg) | 1.35 | 10 | 10 |
Betaine (mg) | 125 | 427.5 | 427.5 |
Cu (mg) | 90 | 150 | 150 |
Fe (mg) | 165 | 97 | 97 |
Mn (mg) | 50 | 41.7 | 41.7 |
I (mg) | 11.5 | 1.9 | 1.9 |
Zn (mg) | 102.5 | 72 | 72 |
Se (mg) | 0.42 | 0.42 | 0.42 |
Aflatoxins (ppm) | 0.24 | 0.59 | / |
Deoxynivalenol (ppm) | not detected | 0.8 | not detected |
Fraction of Litter 1 Suffering from Diarrhea | Diarrhea Intensity | ||
---|---|---|---|
Mild | Medium | Serious | |
0 | 0 | 0 | 0 |
1/3 | 1 | 4 | 7 |
2/3 | 2 | 5 | 8 |
3/3 | 3 | 6 | 9 |
Pen1 | Pen2 | Pen3 | Pen4 | Pen5 | Pen6 | Tot Tail Bites | |
---|---|---|---|---|---|---|---|
Control | 6 | 10 | 0 | 1 | 0 | 10 | 27 A |
T1 | 2 | 10 | 3 | 0 | 0 | 9 | 24 A |
T2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 B |
Control | T1 | T2 | |
---|---|---|---|
Average Weight at 32 days (Kg) | 8.40 | 8.46 | 8.47 |
Average Weight at 45 days (Kg) | 11.90 B | 13.09 A | 13.08 A |
Average Weight at 69 days (Kg) | 24.57 B | 26.05 AB | 27.82 B |
Average Daily Gain 32–45 days (Kg/d) | 0.23 B | 0.31 A | 0.31 A |
Average Daily Gain 45–69 days (Kg/d) | 0.55 B | 0.56 AB | 0.64 A |
Average Daily Gain 32–69 days (Kg/d) | 0.43 B | 0.46 AB | 0.51 A |
32–45 Feed Intake (Kg) | 7.43 b | 7.97 a | 7.91 a |
45–69 Feed intake (Kg) | 23.18 b | 25.26 ab | 25.79 a |
Feed Conversion Rate 32–45 days | 2.12 A | 1.72 B | 1.72 B |
Feed Conversion Rate 45–69 days | 1.83 b | 1.95 a | 1.75 b |
Feed Conversion Rate 32–69 days | 1.89 a | 1.89 a | 1.74 b |
Nitrogen efficiency (%) | 54.02 B | 54.13 B | 58.71 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanzoni, M.; De Smet, P.; Ferrari, G.; Bochicchio, D.; Santini, S.; Faeti, V. Technological Solutions to Decrease Protein Content in Piglet Weaning Feed, Improving Performance, Gut Efficiency, and Environmental Sustainability. Animals 2025, 15, 1720. https://doi.org/10.3390/ani15121720
Lanzoni M, De Smet P, Ferrari G, Bochicchio D, Santini S, Faeti V. Technological Solutions to Decrease Protein Content in Piglet Weaning Feed, Improving Performance, Gut Efficiency, and Environmental Sustainability. Animals. 2025; 15(12):1720. https://doi.org/10.3390/ani15121720
Chicago/Turabian StyleLanzoni, Michele, Paul De Smet, Giovanni Ferrari, Davide Bochicchio, Sujen Santini, and Valerio Faeti. 2025. "Technological Solutions to Decrease Protein Content in Piglet Weaning Feed, Improving Performance, Gut Efficiency, and Environmental Sustainability" Animals 15, no. 12: 1720. https://doi.org/10.3390/ani15121720
APA StyleLanzoni, M., De Smet, P., Ferrari, G., Bochicchio, D., Santini, S., & Faeti, V. (2025). Technological Solutions to Decrease Protein Content in Piglet Weaning Feed, Improving Performance, Gut Efficiency, and Environmental Sustainability. Animals, 15(12), 1720. https://doi.org/10.3390/ani15121720