Beyond the Camera Trap: A Systematic Review of Computing Technology Used to Monitor and Interact with (More) Varied Taxa in Zoos and Aquariums
Simple Summary
Abstract
1. Introduction
2. Background
2.1. Current Applications of Technology
2.2. Research Trends and Gaps
3. Materials and Methods
3.1. Data Collection
3.2. Literature Search Strategy
- Journal Inclusion: Articles were filtered to include publications from the selected four journals.
- ○
- (“Animals: an open access journal from MDPI”[Journal] OR “Zoo Biology”[Journal] OR “Journal of applied animal welfare science: JAAWS”[Journal] OR “Applied animal behaviour science”[Journal])
- Zoo and Aquarium Context: Articles had to reference terms indicating relevance to zoos, aquariums, or similar captive settings.
- ○
- (“zoo”[Title/Abstract] OR “zoos”[Title/Abstract] OR “zoological*”[Title/Abstract] OR “animal park*”[Title/Abstract] OR “aquarium*”[Title/Abstract] OR “marine park*”[Title/Abstract] OR “captive*”[Title/Abstract] OR “captivit*”[Title/Abstract])
- Technological Applications: The search included terms for computing technologies applied in monitoring or interacting with animals.
- ○
- (“camera*”[Title/Abstract] OR “video*”[Title/Abstract] OR “biosensor*”[Title/Abstract] OR “GPS”[Title/Abstract] OR “tracking device*”[Title/Abstract] OR “RFID”[Title/Abstract] OR “chip*”[Title/Abstract] OR “motion detector*”[Title/Abstract] OR “thermal”[Title/Abstract] OR “imaging*”[Title/Abstract] OR “microphone*”[Title/Abstract] OR “sound sensor*”[Title/Abstract] OR “accelerometer*”[Title/Abstract] OR “remote sensing”[Title/Abstract] OR “drone*”[Title/Abstract] OR “computer vision”[Title/Abstract] OR “playback*”[Title/Abstract] OR “microchip*”[Title/Abstract] OR “telemetry”[Title/Abstract] OR “ultrasonic”[Title/Abstract] OR “automated”[Title/Abstract] OR “automation”[Title/Abstract] OR “feeding system*”[Title/Abstract] OR “touchscreen*”[Title/Abstract] OR “interface*”[Title/Abstract] OR “virtual”[Title/Abstract] OR “augmented”[Title/Abstract] OR “reality device*”[Title/Abstract] OR “haptic”[Title/Abstract] OR “feedback system*”[Title/Abstract] OR “robot*”[Title/Abstract] OR “projection*”[Title/Abstract] OR “music”[Title/Abstract] OR “simulated”[Title/Abstract] OR “digital”[Title/Abstract] OR “artificial intelligence”[Title/Abstract] OR “machine learning”[Title/Abstract] OR “image recognition”[Title/Abstract] OR “software*”[Title/Abstract] OR “video analysis”[Title/Abstract] OR “big data”[Title/Abstract] OR “3D”[Title/Abstract] OR “deep learning”[Title/Abstract] OR “smart collar*”[Title/Abstract] OR “wearable*”[Title/Abstract] OR “health device*”[Title/Abstract] OR “infrared”[Title/Abstract] OR “bio-logg*”[Title/Abstract])
- Date Range: The search was limited to studies published between 1 January 2014, and 31 October 2024.
- ○
- (“1 January 2014”[Date-Publication]: “31 October 2024”[Date-Publication])
3.3. Data Extraction
3.3.1. Animal Information
3.3.2. Technology Used
- Cameras and/or Video Monitoring: Includes video and camera-based systems such as CCTV footage, video recordings, and camera traps.
- Infrared Technology: Covers infrared and thermal imaging tools such as thermal imaging systems and infrared cameras.
- Touchscreen Systems: Includes touchscreen or tablet-based systems like interactive enrichment devices.
- Audio Playback/Recording: Encompasses auditory systems such as audio playback tools and sound recording devices.
- Wearables, Biologgers, and RFID: Combines technologies like GPS collars, wearable biologgers, and RFID-based tagging.
- Other: Captures uncategorized technologies, including automated systems, 3D imaging, artificial intelligence, and data loggers.
3.3.3. Study Purposes
- Behavior, which focused on animal behavior, activity patterns, enrichment, welfare, and stereotypies.
- Environment, which examined the impact of environmental variables like temperature, habitat, noise, and visitor presence.
- Reproduction and breeding, which studied breeding, maternal care, offspring development, and parturition (i.e., giving birth).
- Technology testing and development, which included studies that evaluated or validated technologies, such as prototypes and calibration tools.
- Health and physiology, which focused on stress, growth, thermoregulation, and body condition.
- Conservation and management, which addressed conservation efforts, species management, population sustainability, and captive breeding programs.
- Other: Studies that did not match the predefined keywords or categories.
3.4. Categorization Process
4. Results
4.1. Technology Breakdown
4.2. Taxonomic Breakdown
4.3. The Focus on Vision
4.4. Multimodal Technology Use
4.5. Purpose of Studies
5. Discussion
5.1. Comparison to Previous Research
5.2. Dominance of Visual Technology in Welfare Research
5.3. Charismatic Species Bias and Welfare Implications
5.4. Slow Progress in Expanding Taxonomic and Technological Scope
5.5. Multimodal Technology in Research
5.6. Study Limitations
5.7. Future Directions
- Expanding Taxonomic Representation: More studies are needed on underrepresented taxa to ensure that welfare is comprehensive and inclusive of all species housed in zoos and aquariums.
- Diversifying Technological Approaches Through ACI Principles: Integrating multiple monitoring technologies—such as bioacoustics, RFID, and infrared thermography—can offer a more holistic perspective on animal welfare beyond behavioral observations alone. To maximize their effectiveness, these technologies should also be grounded in animal–computer interaction (ACI) design principles that prioritize species-specific cognitive and sensory needs, enable voluntary interaction, and align with the ACI manifesto [1,19]. This includes developing more dynamic, adaptive enrichment systems using user-centered design frameworks tailored to the animals themselves.
- Broadening Research Aims and Applications: In addition to identifying which technologies are used and which taxa are studied, future research should examine how these tools are applied to address different aspects of animal welfare. Current studies focus heavily on behavioral monitoring, often overlooking physiological, cognitive, and environmental indicators. Expanding the range of research aims to include areas such as thermal comfort, social dynamics, reproductive health, and species-specific enrichment can lead to more holistic welfare strategies. Aligning technology use with a wider range of care objectives will help ensure that scientific attention reflects the full spectrum of animal needs in managed care.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diana, A.; Salas, M.; Pereboom, Z.; Mendl, M.; Norton, T. A systematic review of the use of technology to monitor welfare in zoo animals: Is there space for improvement? Animals 2021, 11, 3048. [Google Scholar] [CrossRef] [PubMed]
- Whitham, J.C.; Miller, L.J. Using technology to monitor and improve zoo animal welfare. Anim. Welf. 2016, 25, 395–409. [Google Scholar] [CrossRef]
- Kresnye, K.C.; Chung, C.-F.; Martin, C.F.; Shih, P.C. Survey on the past decade of technology in animal enrichment: A scoping review. Animals 2022, 12, 1792. [Google Scholar] [CrossRef]
- Rose, P.E.; Brereton, J.E.; Rowden, L.J.; de Figueiredo, R.L.; Riley, L.M. What’s new from the zoo? An analysis of ten years of zoo-themed research output. Palgrave Commun. 2019, 5, 128. [Google Scholar] [CrossRef]
- Rose, P.E.; Riley, L.M. Expanding the role of the future zoo: Wellbeing should become the fifth aim for modern zoos. Front. Psychol. 2022, 13, 1018722. [Google Scholar] [CrossRef]
- Barber, J.C.E. Programmatic approaches to assessing and improving animal welfare in zoos and aquariums. Zoo Biol. 2009, 28, 519–530. [Google Scholar] [CrossRef]
- Butterworth, A.; Mench, J.A.; Wielebnowski, N. Practical strategies to assess (and improve) welfare. In Animal Welfare; CABI: Wallingford, UK, 2011; pp. 200–214. [Google Scholar] [CrossRef]
- Siegford, J.M. Multidisciplinary approaches and assessment techniques to better understand and enhance zoo nonhuman animal welfare. J. Appl. Anim. Welf. Sci. 2013, 16, 300–318. [Google Scholar] [CrossRef]
- Burghardt, G.M.; Bartmess-LeVasseur, J.N.; Browning, S.A.; Morrison, K.E.; Stec, C.L.; Zachau, C.E.; Freeberg, T.M. Minimizing observer bias in behavioral studies: A review and recommendations. Ethology 2012, 118, 511–517. [Google Scholar] [CrossRef]
- Meagher, R.K. Observer ratings: Validity and value as a tool for animal welfare research. Appl. Anim. Behav. Sci. 2009, 119, 1–14. [Google Scholar] [CrossRef]
- Clay, A.W.; Perdue, B.M.; Gaalema, D.E.; Dolins, F.L.; Bloomsmith, M.A. The use of technology to enhance zoological parks. Zoo Biol. 2011, 30, 487–497. [Google Scholar] [CrossRef]
- Congdon, J.V.; Hosseini, M.; Gading, E.F.; Masousi, M.; Franke, M.; MacDonald, S.E. The future of artificial intelligence in monitoring animal identification, health, and behaviour. Animals 2022, 12, 1711. [Google Scholar] [CrossRef] [PubMed]
- Mancini, C. Animal-computer interaction: A manifesto. Interactions 2011, 18, 69–73. [Google Scholar] [CrossRef]
- Hirskyj-Douglas, I.; Pons, P.; Read, J.C.; Jaen, J. Seven years after the manifesto: Literature review and research directions for technologies in animal-computer interaction. Multimodal Technol. Interact. 2018, 2, 30. [Google Scholar] [CrossRef]
- Buller, H.; Blokhuis, H.; Lokhorst, K.; Silberberg, M.; Veissier, I. Animal welfare management in a digital world. Animals 2020, 10, 1779. [Google Scholar] [CrossRef]
- Gabaldon, J.; Zhang, D.; Lauderdale, L.; Miller, L.; Johnson-Roberson, M.; Barton, K.; Shorter, K.A. Vision-based monitoring and measurement of bottlenose dolphins’ daily habitat use and kinematics. bioRxiv 2021. [Google Scholar] [CrossRef]
- Jukan, A.; Masip-Bruin, X.; Amla, N. Smart computing and sensing technologies for animal welfare: A systematic review. ACM Comput. Surv. 2017, 50, 10. [Google Scholar] [CrossRef]
- Schillings, J.; Bennett, R.; Rose, D.C. Exploring the potential of precision livestock farming technologies to help address farm animal welfare. Front. Anim. Sci. 2021, 2, 639678. [Google Scholar] [CrossRef]
- Coe, J.; Hoy, J. Choice, control and computers: Empowering wildlife in human care. Multimodal Technol. Interact. 2020, 4, 92. [Google Scholar] [CrossRef]
- Scheer, B.; Renteria, F.C.; Kunda, M. Technology-based cognitive enrichment for animals in zoos: A case study and lessons learned. In Proceedings of the Annual Meeting of the Cognitive Science Society, Montreal, QC, Canada, 24–27 July 2019; Volume 41. [Google Scholar]
- Kleinberger, R. Sonic enrichment at the zoo. Interact. Stud. 2023, 24, 257–288. [Google Scholar] [CrossRef]
- Binding, S.; Farmer, H.; Krusin, L.; Cronin, K. Status of animal welfare research in zoos and aquariums: Where are we, where to next? J. Zoo Aquar. Res. 2020, 8, 166–174. [Google Scholar] [CrossRef]
- Hirskyj-Douglas, I.; Kankaanpää, V. Do monkeys want audio or visual stimuli? Interactive computers for choice with white-faced sakis in zoos. In Proceedings of the 2022 ACM Designing Interactive Systems Conference, Online, 13–17 June 2022; pp. 1497–1511. [Google Scholar] [CrossRef]
- Veasey, J.S. Differing animal welfare conceptions and what they mean for the future of zoos and aquariums: Insights from an animal welfare audit. Zoo Biol. 2022, 41, 292–307. [Google Scholar] [CrossRef]
- Morrison, A.; Novikova, A. Monitoring technologies for animal welfare: A review of aspirations and deployments in zoos. In Proceedings of the Future Technologies Conference (FTC) 2022; Arai, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2023; Volume 3, pp. 116–132. [Google Scholar] [CrossRef]
- Ramey, C. Wearable and embedded sensor systems for animal welfare monitoring. In Proceedings of the Tenth International Conference on Animal-Computer Interaction, Raleigh, NC, USA, 4–8 December 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Liptovszky, M. Advancing zoo animal welfare through data science: Scaling up continuous improvement efforts. Front. Vet. Sci. 2024, 11, 1313182. [Google Scholar] [CrossRef]
- English, H.; Harvey, L.; Wilson, R.; Gunner, R.; Holton, M.; Woodroffe, R.; Börger, L. Multi-sensor biologgers and innovative training allow data collection with high conservation and welfare value in zoos. J. Zoo Aquar. Res. 2023, 11, 220–231. [Google Scholar]
- Zuerl, M.; Stoll, P.; Brehm, I.; Raab, R.; Zanca, D.; Kabri, S.; Happold, J.; Nille, H.; Prechtel, K.; Wuensch, S.; et al. Automated video-based analysis framework for behavior monitoring of individual animals in zoos using deep learning—A study on polar bears. Animals 2022, 12, 692. [Google Scholar] [CrossRef] [PubMed]
- Rose, P.E.; Lewton, J. Key concepts for enhancing zoo animal welfare: Coping, comfort, choice, control, challenge, and compassion. J. Appl. Anim. Welf. Sci. 2024, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.F.; Muramatsu, A.; Matsuzawa, T. Apex and ApeTouch: Development of a portable touchscreen system and software for primates at zoos. Animals 2022, 12, 1660. [Google Scholar] [CrossRef]
- Egelkamp, C.L.; Ross, S.R. A review of zoo-based cognitive research using touchscreen interfaces. Zoo Biol. 2019, 38, 220–235. [Google Scholar] [CrossRef]
- French, F.; Potvin, D.; Hirskyj-Douglas, I.; Evans, N.; Jalali, A.; Kleinberger, R.; Nager, R.; Iyasere, O.S.; Sabet, S.S.; Spierings, M.; et al. Empowering animals through technology: Enhancing animal agency in the sound environment. In Proceedings of the International Conference on Animal-Computer Interaction, Glasgow, UK, 2–5 December 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Wells, D.; Irwin, R. Auditory stimulation as enrichment for zoo-housed Asian elephants (Elephas maximus). Anim. Welf. 2008, 17, 335–340. [Google Scholar] [CrossRef]
- Nippert-Eng, C. Watching Closely: A Guide to Ethnographic Observation; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Wark, J.D.; Cronin, K.A.; Niemann, T.; Shender, M.A.; Horrigan, A.; Kao, A.; Ross, M.R. Monitoring the behavior and habitat use of animals to enhance welfare using the ZooMonitor app. Anim. Behav. Cogn. 2019, 6, 158–167. [Google Scholar] [CrossRef]
- Fakhar-I-Abbas, F.; Akhtar, T.; Mian, A. Behavioral monitoring in zoos and aquariums: A tool for guiding husbandry and directing research. Zoo Biol. 2009, 27, 371–380. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Alligood, C.; Leighty, K. Putting the “E” in SPIDER: Evolving trends in the evaluation of environmental enrichment efficacy in zoological settings. Anim. Behav. Cogn. 2015, 2, 200–217. [Google Scholar] [CrossRef]
- Mellen, J.; Macphee, M.S. Philosophy of environmental enrichment: Past, present, and future. Zoo Biol. 2001, 20, 211–226. [Google Scholar] [CrossRef]
- Shepherdson, D.J. Environmental enrichment: Past, present and future. Int. Zoo Yearb. 2003, 38, 118–124. [Google Scholar] [CrossRef]
- Gammelgård, F.; Nielsen, J.; Nielsen, E.J.; Hansen, M.G.; Alstrup, A.K.O.; Perea-García, J.O.; Jensen, T.H.; Pertoldi, C. Application of machine learning for automating behavioral tracking of captive Bornean orangutans (Pongo pygmaeus). Animals 2024, 14, 1729. [Google Scholar] [CrossRef]
- Wang, K.; Hou, P.; Xu, X.; Gao, Y.; Chen, M.; Lai, B.; An, F.; Ren, Z.; Li, Y.; Jia, G.; et al. Automatic identification of pangolin behavior using deep learning based on temporal relative attention mechanism. Animals 2024, 14, 1032. [Google Scholar] [CrossRef]
- Zuerl, M.; Dirauf, R.; Koeferl, F.; Steinlein, N.; Sueskind, J.; Zanca, D.; Brehm, I.; von Fersen, L.; Eskofier, B. PolarBearVidID: A video-based re-identification benchmark dataset for polar bears. Animals 2023, 13, 801. [Google Scholar] [CrossRef]
- Beltzung, B.; Pelé, M.; Renoult, J.P.; Shimada, M.; Sueur, C. Using artificial intelligence to analyze non-human drawings: A first step with orangutan productions. Animals 2022, 12, 2761. [Google Scholar] [CrossRef] [PubMed]
- Lund, S.M.; Nielsen, J.; Gammelgård, F.; Nielsen, M.G.; Jensen, T.H.; Pertoldi, C. Behavioral coding of captive African elephants (Loxodonta africana): Utilizing DeepLabCut and Create ML for nocturnal activity tracking. Animals 2024, 14, 2820. [Google Scholar] [CrossRef]
- Lei, Y.; Xiang, Y.; Zhu, Y.; Guan, Y.; Zhang, Y.; Yang, X.; Yao, X.; Li, T.; Xie, M.; Mu, J.; et al. Development of a slow loris computer vision detection model. Animals 2022, 12, 1553. [Google Scholar] [CrossRef]
- Ritzler, C.P.; Mather, S.V.; Johnson, I.T.; Dennis, P.M.; Lukas, K.E.; Koester, D.C. Using 3D photogrammetry to quantify usable space in zoo-housed primate habitats. Am. J. Primatol. 2025, 87, e70002. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.G.L.; Parsons, J.J. The various ways in which birds blink. Animals 2023, 13, 3656. [Google Scholar] [CrossRef] [PubMed]
- Hoekzema, H.; Baskir, E.; Kozlowski, C.; Elden, M.; Powell, D.M. Breeding season behaviors of captive tawny frogmouth (Podargus strigoides) pairs. Zoo Biol. 2023, 42, 616–624. [Google Scholar] [CrossRef]
- Alba, A.C.; Breeding, S.; Valuska, A.J.; Sky, C.; Dunn, M.; Schutz, P.J.; Leighty, K.A.; Ferrie, G.M. Use of passive radio frequency identification technologies to monitor nest usage in the northern carmine bee-eater (Merops n. nubicus). Zoo Biol. 2019, 38, 498–507. [Google Scholar] [CrossRef]
- Beeck, V.C.; Heilmann, G.; Kerscher, M.; Stoeger, A.S. Sound visualization demonstrates velopharyngeal coupling and complex spectral variability in Asian elephants. Animals 2022, 12, 2119. [Google Scholar] [CrossRef]
- Pavese, S.; Centeno, C.; Von Fersen, L.; Eguizábal, G.V.; Donet, L.; Asencio, C.J.; Villarreal, D.P.; Busso, J.M. Video validation of tri-axial accelerometer for monitoring zoo-housed Tamandua tetradactyla activity patterns in response to changes in husbandry conditions. Animals 2022, 12, 2516. [Google Scholar] [CrossRef]
- Fanning, L.; Larsen, H.; Taylor, P.S. A preliminary study investigating the impact of musical concerts on the behavior of captive Fiordland penguins (Eudyptes pachyrhynchus) and collared peccaries (Pecari tajacu). Animals 2020, 10, 2035. [Google Scholar] [CrossRef] [PubMed]
- Walsh, B. Asian elephant (Elephas maximus) sleep study—Long-term quantitative research at Dublin Zoo. J. Zoo Aquar. Res. 2017, 5, 82–85. [Google Scholar] [CrossRef]
- Ritvo, S.E.; Macdonald, S.E. Music as enrichment for Sumatran orangutans (Pongo abelii). J. Zoo Aquar. Res. 2016, 4, 152–156. [Google Scholar] [CrossRef]
- Gartland, K.N.; Humbyrd, M.; Brightrall, T.; Meister, B.; Fuller, G. Behavior of polar bear (Ursus maritimus) cubs post-den emergence at the Detroit Zoo. Zoo Biol. 2024, 43, 149–163. [Google Scholar] [CrossRef]
- Goulart, V.D.L.R.; Young, R.J. Investigation through animal–computer interaction: A proof-of-concept study for the behavioural experimentation of colour vision in zoo-housed primates. Animals 2024, 14, 1979. [Google Scholar] [CrossRef]
- Gartland, K.N.; Humbyrd, M.K.; Meister, B.; Fuller, G. Behavioral development of a captive polar bear (Ursus maritimus) cub in the maternal den. Zoo Biol. 2023, 42, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.D.; Snider, R.J.; Dembiec, D.P.; Siegford, J.M.; Ali, A.B. Effects of a modern exhibit design on captive tiger welfare. Zoo Biol. 2023, 42, 371–382. [Google Scholar] [CrossRef]
- Brando, S.; Vitale, A.; Bacon, M. Promoting good nonhuman primate welfare outside regular working hours. Animals 2023, 13, 1423. [Google Scholar] [CrossRef] [PubMed]
- Truax, J.; Vonk, J. Silence is golden: Auditory preferences in zoo-housed gorillas. J. Appl. Anim. Welf. Sci. 2023, 26, 404–419. [Google Scholar] [CrossRef]
- Ikeya, K.; Torisawa, S.; Yamane, H.; Mitsunaga, Y. Estimating the total length of Mekong giant catfish (Pangasianodon gigas) in an aquarium via stereo-video shooting and direct linear transformation. Zoo Biol. 2022, 41, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Seyrling, I.; Dierkes, P.W.; Burger, A.L. Diurnal and nocturnal behaviour of cheetahs (Acinonyx jubatus) and lions (Panthera leo) in zoos. Animals 2022, 12, 2367. [Google Scholar] [CrossRef] [PubMed]
- Burger, A.L.; Hartig, J.; Dierkes, P.W. Biological and environmental factors as sources of variation in nocturnal behavior of giraffe. Zoo Biol. 2021, 40, 171–181. [Google Scholar] [CrossRef]
- Eguizábal, G.V.; Palme, R.; Superina, M.; Asencio, C.J.; García Capocasa, M.C.; Busso, J.M. Characterization and correlations of behavioral and adrenocortical activities of zoo-housed lesser anteaters (Tamandua tetradactyla). Zoo Biol. 2019, 38, 334–342. [Google Scholar] [CrossRef]
- Hartstone-Rose, A.; Dickinson, E.; Paciulli, L.M.; Deutsch, A.R.; Tran, L.; Jones, G.; Leonard, K.C. Total eclipse of the zoo: Animal behavior during a total solar eclipse. Animals 2020, 10, 587. [Google Scholar] [CrossRef]
- Jakob-Hoff, R.; Kingan, M.; Fenemore, C.; Schmid, G.; Cockrem, J.F.; Crackle, A.; Van Bemmel, E.; Connor, R.; Descovich, K. Potential impact of construction noise on selected zoo animals. Animals 2019, 9, 504. [Google Scholar] [CrossRef] [PubMed]
- Takagi, N.; Saito, M.; Ito, H.; Tanaka, M.; Yamanashi, Y. Sleep-related behaviors in zoo-housed giraffes (Giraffa camelopardalis reticulata): Basic characteristics and effects of season and parturition. Zoo Biol. 2019, 38, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Narayan, E.; Perakis, A.; Meikle, W. Using thermal imaging to monitor body temperature of koalas (Phascolarctos cinereus) in a zoo setting. Animals 2019, 9, 1094. [Google Scholar] [CrossRef]
- Powell, D.M.; Vitale, C. Behavioral changes in female Asian elephants when given access to an outdoor yard overnight. Zoo Biol. 2016, 35, 298–303. [Google Scholar] [CrossRef]
- Passos, L.F.; Garcia, G.; Young, R. Do captive golden mantella frogs recognise wild conspecifics’ calls? Responses to the playback of captive and wild calls. J. Zoo Aquar. Res. 2021, 9, 28–32. [Google Scholar] [CrossRef]
- Baskir, E.A.; Hazen, R.E.; Powell, D.M. Documenting nocturnal activity of dragon-headed katydids (Lesina blanchardi) under artificial light. Zoo Biol. 2021, 40, 342–345. [Google Scholar] [CrossRef] [PubMed]
- Tetzlaff, S.J.; Tetzlaff, K.E.; Connors, R.J. Evaluation of thermal regimes for transported ambassador ectotherms: One size does not fit all. Zoo Biol. 2016, 35, 339–345. [Google Scholar] [CrossRef]
- Carr, N. An analysis of zoo visitors’ favourite and least favourite animals. Tour. Manag. Perspect. 2016, 20, 70–76. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Pereira, A.M.F.; Martínez-Burnes, J.; Domínguez-Oliva, A.; Mora-Medina, P.; Casas-Alvarado, A.; Rios-Sandoval, J.; Geraldo, A.d.M.; Wang, D. Thermal imaging to assess the health status in wildlife animals under human care: Limitations and perspectives. Animals 2022, 12, 3435. [Google Scholar] [CrossRef]
- Travain, T.; Valsecchi, P. Infrared thermography in the study of animals’ emotional responses: A critical review. Animals 2021, 11, 2510. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Tian, S.; Wang, Z.; Xiao, Z. Advances in bioacoustic monitoring and animal welfare assessment in zoos. Biodivers. Sci. 2024, 32, 297. [Google Scholar] [CrossRef]
- Hamilton, J.; Fuller, G.; Allard, S. Evaluation of the impact of behavioral opportunities on four zoo-housed aardvarks (Orycteropus afer). Animals 2020, 10, 1433. [Google Scholar] [CrossRef]
- Morrison, A.; Larsen, H.; Fieldus, C.; Kist, A.; Maiti, A. Platypus surfing: In search of the perfect wave. In Proceedings of the 2020 International Conference on Animal-Computer Interaction, Milton Keynes, UK, 10–12 November 2020; ACM: New York, NY, USA, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Albert, C.; Luque, G.M.; Courchamp, F. The twenty most charismatic species. PLoS ONE 2018, 13, e0199149. [Google Scholar] [CrossRef]
- Wikramanayake, A.; Dressel, S. Examining the Influence of Species Charisma on the Work of Conservation Organizations: A Case Study of Elephant and Vulture Conservation in Southern Africa. 2024. Available online: https://edepot.wur.nl/652865 (accessed on 10 May 2025).
- Skibins, J.C.; Dunstan, E.; Dunstan, E.; Pahlow, K. Exploring the influence of charismatic characteristics on flagship outcomes in zoo visitors. Hum. Dimens. Wildl. 2017, 22, 157–171. [Google Scholar] [CrossRef]
- Colléony, A.; Clayton, S.; Couvet, D.; Jalme, M.S.; Prévot, A.-C. Human preferences for species conservation: Animal charisma trumps endangered status. Biol. Conserv. 2017, 206, 263–269. [Google Scholar] [CrossRef]
- Root-Bernstein, M.; Douglas, L.; Smith, A.; Veríssimo, D. Anthropomorphized species as tools for conservation: Utility beyond prosocial, intelligent and suffering species. Biodivers. Conserv. 2013, 22, 1577–1589. [Google Scholar] [CrossRef]
- Winkler-Rhoades, N.; Medin, D.; Waxman, S.; Woodring, J.; Ross, N. Naming the animals that come to mind: Effects of culture and experience on category fluency. J. Cogn. Cult. 2010, 10, 205–220. [Google Scholar] [CrossRef]
- Campbell-Ward, M. Quality-of-life assessments in zoo animals: Not just for the aged and charismatic. Animals 2023, 13, 3394. [Google Scholar] [CrossRef]
- Ferreira, A.; Santos, S.; Silva, G.; Baylina, N. Deep dive into noninvasive biometrics: A pilot journey using stereo-video in a public aquarium. Zoo Biol. 2024, 44, 92–97. [Google Scholar] [CrossRef]
- McMurrer, J.; McElhiney, A.; McNally, K.; Innis, C.J. Observations on the use of passive integrated transponder (PIT) tags in teleosts and elasmobranchs at a public aquarium: 728 cases, 2007–2020. Zoo Biol. 2022, 41, 576–581. [Google Scholar] [CrossRef]
- Nuijten, R.J.M.; Prins, E.F.; Lammers, J.; Mager, C.; Nolet, B.A. Calibrating tri-axial accelerometers for remote behavioural observations in Bewick’s swans. J. Zoo Aquar. Res. 2020, 8, 2020. [Google Scholar] [CrossRef]
- Douglas, J.M.; Paul-Murphy, J.; Stelow, E.; Guzman, D.S.-M.; Udaltsova, I. Personality characteristics predictive of social pairing outcome in orange-winged Amazon parrots (Amazona amazonica). J. Appl. Anim. Welf. Sci. 2024, 27, 386–407. [Google Scholar] [CrossRef] [PubMed]
- Plácido, M.; Tallo-Parra, O.; Salas, M. Cinereous vulture (Aegypius monachus) welfare monitoring in a breeding center during the breeding season. J. Appl. Anim. Welf. Sci. 2025, 28, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Seyrling, I.; Clauss, M.; Dierkes, P.W.; Burger-Schulz, A.L. Breaking the spell: Changes in the behavior of two zoo-kept tigers (Panthera tigris) after exposure to a distinct feast-and-fast feeding regime. Zoo Biol. 2024, 43, 340–353. [Google Scholar] [CrossRef]
- Heintz, M.R.; Fuller, G.; Allard, S. Exploratory investigation of infrared thermography for measuring gorilla emotional responses to interactions with familiar humans. Animals 2019, 9, 604. [Google Scholar] [CrossRef]
- Maśko, M.; Zdrojkowski, Ł.; Wierzbicka, M.; Domino, M. Association between the area of the highest flank temperature and concentrations of reproductive hormones during pregnancy in Polish Konik horses—A preliminary study. Animals 2021, 11, 1517. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, Y.; Yu, J.; Wu, S.; Li, S.; Wang, Q.; Min, Y.; Sun, R. Reproductive behavior of the captive Sunda pangolin (Manis javanica Desmarest, 1822). Zoo Biol. 2020, 39, 65–72. [Google Scholar] [CrossRef]
- Schubert, C.-L.; Ryckewaert, B.; Pereira, C.; Matsuzawa, T. Garrano horses perceive letters of the alphabet on a touchscreen system: A pilot study. Animals 2022, 12, 3514. [Google Scholar] [CrossRef]
- Vonk, J.; McGuire, M.; Leete, J. Testing for the “blues”: Using the modified emotional Stroop task to assess the emotional response of gorillas. Animals 2022, 12, 1188. [Google Scholar] [CrossRef]
- Piitulainen, R.; Hirskyj-Douglas, I. Music for monkeys: Building methods to design with white-faced sakis for animal-driven audio enrichment devices. Animals 2020, 10, 1768. [Google Scholar] [CrossRef]
- Schneider, S.; Goettlich, S.; Diercks, C.; Dierkes, P.W. Discrimination of acoustic stimuli and maintenance of graded alarm call structure in captive meerkats. Animals 2021, 11, 3064. [Google Scholar] [CrossRef]
- Wong, C.-H.; Tsai, M.-A.; Ko, F.-C.; Wang, J.-H.; Xue, Y.-J.; Yang, W.-C. Skin cortisol and acoustic activity: Potential tools to evaluate stress and welfare in captive cetaceans. Animals 2023, 13, 1521. [Google Scholar] [CrossRef] [PubMed]
- Glaeser, S.S.; Shepherdson, D.; Lewis, K.; Prado, N.; Brown, J.L.; Lee, B.; Wielebnowski, N. Supporting zoo Asian elephant (Elephas maximus) welfare and herd dynamics with a more complex and expanded habitat. Animals 2021, 11, 2566. [Google Scholar] [CrossRef] [PubMed]
- Kalafut, K.L.; Kinley, R. Using radio frequency identification for behavioral monitoring in little blue penguins. J. Appl. Anim. Welf. Sci. 2020, 23, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Nekaris, K.A.-I.; Campera, M.; Chimienti, M.; Murray, C.; Balestri, M.; Showell, Z. Training in the dark: Using target training for non-invasive application and validation of accelerometer devices for an endangered primate (Nycticebus bengalensis). Animals 2022, 12, 411. [Google Scholar] [CrossRef]
- Fuller, G.; Heintz, M.R.; Allard, S. Validation and welfare assessment of flipper-mounted time-depth recorders for monitoring penguins in zoos and aquariums. Appl. Anim. Behav. Sci. 2019, 212, 114–122. [Google Scholar] [CrossRef]
Year | Animals | JAAWS | JZAR | Zoo Biol. | AABS | Totals |
---|---|---|---|---|---|---|
2014 | 0.00% | 0.00% | 4.55% | 2.17% | 0.00% | 6.72% |
2015 | 0.00% | 0.00% | 3.85% | 1.23% | 0.00% | 5.08% |
2016 | 0.00% | 0.00% | 3.70% | 9.20% | 0.00% | 12.90% |
2017 | 0.00% | 0.00% | 14.81% | 3.64% | 0.00% | 18.45% |
2018 | 0.81% | 0.00% | 0.00% | 13.85% | 0.00% | 14.66% |
2019 | 0.33% | 0.00% | 3.45% | 7.35% | 0.00% | 11.13% |
2020 | 0.29% | 1.30% | 9.30% | 1.59% | 0.00% | 12.47% |
2021 | 0.25% | 0.00% | 5.41% | 3.49% | 0.00% | 9.14% |
2022 | 0.44% | 0.00% | 3.33% | 5.10% | 0.00% | 8.87% |
2023 | 0.26% | 1.16% | 7.41% | 5.15% | 0.00% | 13.98% |
2024 | 0.17% | 2.41% | 14.81% | 5.71% | 0.00% | 23.11% |
Totals | 2.53% | 4.87% | 70.62% | 58.49% | 0.00% | N/A |
Technology Type | Strengths | Weaknesses | Example Studies |
---|---|---|---|
Cameras/Video Monitoring | Non-invasive for animals; widely accessible and applicable [25]. | Reduced effectiveness depending on visibility; cannot assess internal physiological states [25]. | [91,92,93] |
Infrared Thermography | Non-invasive measurement of body temperature and stress-related thermoregulation [77]. | Limited to surface temperature; individuals can have different temperature baselines [77]. | [94,95,96] |
Touchscreen Systems | Allows for cognitive enrichment and voluntary interaction [32]. | Typically limited to primates; requires training and infrastructure [6,32]. | [31,97,98] |
Audio Playback/Recording | Captures vocalizations and supports cognitive engagement for auditory species [21]. | Limitations in human understanding of animal communication [19]. | [99,100,101] |
Wearables/Biologgers/RFID | Tracks fine-scale movement, activity, social interactions; integrates with other sensors [26]. | Requires animal habituation or training; invasive if poorly fitted [28]. | [102,103,104] |
AI/Deep Learning * | Reduces manual coding, captures subtle behaviors, and is scalable for long-term studies [12]. | Primarily applied to mammals; requires large datasets for training [12]. | [42,43,44,45,46,47] |
Multimodal * (e.g., audio-equipped cameras, cameras + RFID, etc) | Combines behavioral, physiological, and environmental data for a broader welfare perspective. | May involve higher costs, complex data management, and reduced accessibility. | [52,53,54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassinger, L.; Nippert-Eng, C. Beyond the Camera Trap: A Systematic Review of Computing Technology Used to Monitor and Interact with (More) Varied Taxa in Zoos and Aquariums. Animals 2025, 15, 1721. https://doi.org/10.3390/ani15121721
Hassinger L, Nippert-Eng C. Beyond the Camera Trap: A Systematic Review of Computing Technology Used to Monitor and Interact with (More) Varied Taxa in Zoos and Aquariums. Animals. 2025; 15(12):1721. https://doi.org/10.3390/ani15121721
Chicago/Turabian StyleHassinger, Lilliana, and Christena Nippert-Eng. 2025. "Beyond the Camera Trap: A Systematic Review of Computing Technology Used to Monitor and Interact with (More) Varied Taxa in Zoos and Aquariums" Animals 15, no. 12: 1721. https://doi.org/10.3390/ani15121721
APA StyleHassinger, L., & Nippert-Eng, C. (2025). Beyond the Camera Trap: A Systematic Review of Computing Technology Used to Monitor and Interact with (More) Varied Taxa in Zoos and Aquariums. Animals, 15(12), 1721. https://doi.org/10.3390/ani15121721