Evolving FATE: A New Lens on the Pathogenesis and Management of Feline Cardiogenic Arterial Thromboembolism
Simple Summary
Abstract
1. Introduction
2. A Review of FATE Pathophysiology: Current Evidence and Knowledge Gap
2.1. Platelet Activation
2.2. Systemic Hypercoagulability
2.3. Alterations in Fibrinolysis
2.4. Immunothrombosis
2.5. Blood Stasis
2.6. Endothelial Injury
3. Knowledge Gap and Future Research Directions in FATE Pathogenesis
3.1. Procoagulant Platelets
3.2. Knowledge Gaps in Immunothrombosis
3.3. Congestive Heart Failure and Fibrinolysis
3.4. Blood Flow Stasis and Endothelial Injury
4. Current Risk Factors of FATE
4.1. Echocardiography
4.2. Cardiac Biomarkers
5. Knowledge Gaps and Future Directions in Identifying Risk Factors
5.1. Platelet Heterogeneity as a Risk Factor of FATE
5.2. Hematological Variables as Risk Factors of FATE
5.3. NETs as Biomarkers of FATE
5.4. Other Biomarkers of FATE
6. Current Recommendations of Primary and Secondary FATE Prevention
7. Knowledge Gap and Future Directions in Optimizing Prevention Strategies
7.1. Genetic Testing
7.2. Platelet Function Testing in Clinical Practice
7.3. Monitoring of Anticoagulants
7.4. Viscoelastic Testing to Monitor Antithrombotic Therapies
8. Novel Antithrombotic Therapies
8.1. Rapamycin
8.2. Non-Anticoagulated Heparins
8.3. Thrombolytic Therapy
8.4. Interventional and Surgical Thrombectomy
8.5. Histone Deacetylase Inhibitors and Scavenging
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, S.A.; Tobias, A.H. Feline arterial thromboembolism: An update. Vet. Clin. Small Anim. Pract. 2004, 34, 1245–1271. [Google Scholar] [CrossRef]
- Rush, J.E.; Freeman, L.M.; Fenollosa, N.K.; Brown, D.J. Population and survival characteristics of cats with hypertrophic cardiomyopathy: 260 cases (1990–1999). J. Am. Vet. Med. Assoc. 2002, 220, 202–207. [Google Scholar] [CrossRef]
- Schoeman, J.P. Feline Distal Aortic Thromboembolism: A Review of 44 Cases (1990–1998). J. Feline Med. Surg. 1999, 1, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.; Tobias, A.H.; Jacob, K.A.; Fine, D.M.; Grumbles, P.L. Arterial Thromboembolism in Cats: Acute Crisis in 127 Cases (1992–2001) and Long-Term Management with Low-Dose Aspirin in 24 Cases. J. Vet. Intern. Med. 2003, 17, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.T.; Walker, A.L.; Georges, C.J.; Li, R.H.; Stern, J.A. Dual therapy with clopidogrel and rivaroxaban in cats with thromboembolic disease. J. Feline Med. Surg. 2022, 24, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Hogan, D.F.; Fox, P.R.; Jacob, K.; Keene, B.; Laste, N.J.; Rosenthal, S.; Sederquist, K.; Weng, H.-Y. Secondary prevention of cardiogenic arterial thromboembolism in the cat: The double-blind, randomized, positive-controlled feline arterial thromboembolism; clopidogrel vs. aspirin trial (FAT CAT). J. Vet. Cardiol. 2015, 17, S306–S317. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.R.; Keene, B.W.; Lamb, K.; Schober, K.A.; Chetboul, V.; Luis Fuentes, V.; Wess, G.; Payne, J.R.; Hogan, D.F.; Motsinger-Reif, A.; et al. International collaborative study to assess cardiovascular risk and evaluate long-term health in cats with preclinical hypertrophic cardiomyopathy and apparently healthy cats: The REVEAL Study. J. Vet. Intern. Med. 2018, 32, 930–943. [Google Scholar] [CrossRef]
- Shaverdian, M.; Li, R.H.L. Preventing Cardiogenic Thromboembolism in Cats: Literature Gaps, Rational Recommendations, and Future Therapies. Vet. Clin. N. Am. Small Anim. Pract. 2023, 53, 1309–1323. [Google Scholar] [CrossRef]
- Scharf, R.E. Platelet Signaling in Primary Haemostasis and Arterial Thrombus Formation: Part 1. Hämostaseologie 2018, 38, 203–210. [Google Scholar] [CrossRef]
- Gale, A.J. Continuing Education Course #2: Current Understanding of Hemostasis. Toxicol. Pathol. 2011, 39, 273–280. [Google Scholar] [CrossRef]
- Tablin, F.; Schumacher, T.; Pombo, M.; Marion, C.T.; Huang, K.; Norris, J.W.; Jandrey, K.E.; Kittleson, M.D. Platelet Activation in Cats with Hypertrophic Cardiomyopathy. J. Vet. Intern. Med. 2014, 28, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Li, R.H.L.; Stern, J.A.; Ho, V.; Tablin, F.; Harris, S.P. Platelet Activation and Clopidogrel Effects on ADP-Induced Platelet Activation in Cats with or without the A31P Mutation in MYBPC3. J. Vet. Intern. Med. 2016, 30, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- Helenski, C.A.; Ross, J.N. Platelet Aggregation in Feline Cardiomyopathy. J. Vet. Intern. Med. 1987, 1, 24–28. [Google Scholar] [CrossRef]
- Tan, A.W.K.; Li, R.H.L.; Ueda, Y.; Stern, J.A.; Hussain, M.; Haginoya, S.; Sharpe, A.N.; Gunther-Harrington, C.T.; Epstein, S.E.; Nguyen, N. Platelet Priming and Activation in Naturally Occurring Thermal Burn Injuries and Wildfire Smoke Exposure Is Associated With Intracardiac Thrombosis and Spontaneous Echocardiographic Contrast in Feline Survivors. Front. Vet. Sci. 2022, 9, 892377. [Google Scholar] [CrossRef]
- Bédard, C.; Lanevschi-Pietersma, A.; Dunn, M. Evaluation of coagulation markers in the plasma of healthy cats and cats with asymptomatic hypertrophic cardiomyopathy. Vet. Clin. Pathol. 2007, 36, 167–172. [Google Scholar] [CrossRef]
- Wells, M.; Sheffield, W.; Blajchman, M. The Clearance of Thrombin-antithrombin and Related Serpin-enzyme Complexes from the Circulation: Role of Various Hepatocyte Receptors. Thromb. Haemost. 1999, 81, 325–337. [Google Scholar] [CrossRef]
- Smith, S.A. The cell-based model of coagulation. J. Vet. Emerg. Crit. Care 2009, 19, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.J.; Rozanski, E.A.; De Laforcade, A.M.; Davila, C.; Rush, J.E.; Guillaumin, J. Viscoelastic coagulation monitoring parameters in cats with acute arterial thromboembolism. J. Vet. Intern. Med. 2024, 38, 2045–2051. [Google Scholar] [CrossRef]
- Moses, I.A.; Hallowell, T.C.; Johnson, J.A. Feline aortic thromboembolism with and without congestive heart failure did not exhibit hypercoagulability using a novel viscoelastic coagulation monitor. Am. J. Veter Res. 2024, 85, ajvr.24.03.0065. [Google Scholar] [CrossRef]
- Rosati, T.; Jandrey, K.E.; Stern, J.A.; Nguyen, N.; Li, R.H.L. Evaluation of clopidogrel response in healthy cats using a novel viscoelastic test and thromboelastography. Front. Vet. Sci. 2024, 11, 1371781. [Google Scholar] [CrossRef]
- Hennink, I.; Peters, L.; van Geest, G.; Adamik, K.-N. Evaluation of a Viscoelastic Coagulation Monitoring System (VCM Vet®) and Its Correlation with Thromboelastometry (ROTEM®) in Diseased and Healthy Dogs. Animals 2023, 13, 405. [Google Scholar] [CrossRef]
- Buriko, Y.; Chalifoux, N.V.; Clarkin-Breslin, R.; Silverstein, D.C. Comparison of a viscoelastic point-of-care coagulation monitor with thromboelastography in sick dogs with hemostatic abnormalities. Vet. Clin. Pathol. 2023, 52, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Kane, K.K. Fibrinolysis—A review. Ann. Clin. Lab. Sci. 1984, 14, 443–449. [Google Scholar] [PubMed]
- Busato, F.; Drigo, M.; Zoia, A. Reduced risk of arterial thromboembolism in cats with pleural effusion due to congestive heart failure. J. Feline Med. Surg. 2022, 24, e142–e152. [Google Scholar] [CrossRef] [PubMed]
- Li, R.H.L.; Tablin, F. A Comparative Review of Neutrophil Extracellular Traps in Sepsis. Front. Vet. Sci. 2018, 5, 291. [Google Scholar] [CrossRef]
- Ryan, T.A.J.; O’Neill, L.A.J. Innate immune signaling and immunothrombosis: New insights and therapeutic opportunities. Eur. J. Immunol. 2022, 52, 1024–1034. [Google Scholar] [CrossRef]
- Clark, S.R.; Ma, A.C.; Tavener, S.A.; McDonald, B.; Goodarzi, Z.; Kelly, M.M.; Patel, K.D.; Chakrabarti, S.; McAvoy, E.; Sinclair, G.D.; et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 2007, 13, 463–469. [Google Scholar] [CrossRef]
- Li, P.; Li, M.; Lindberg, M.R.; Kennett, M.J.; Xiong, N.; Wang, Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 2010, 207, 1853–1862. [Google Scholar] [CrossRef]
- McDonald, B.; Davis, R.P.; Kim, S.-J.; Tse, M.; Esmon, C.T.; Kolaczkowska, E.; Jenne, C.N. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017, 129, 1357–1367. [Google Scholar] [CrossRef]
- Pilsczek, F.H.; Salina, D.; Poon, K.K.H.; Fahey, C.; Yipp, B.G.; Sibley, C.D.; Robbins, S.M.; Green, F.H.Y.; Surette, M.G.; Sugai, M.; et al. A Novel Mechanism of Rapid Nuclear Neutrophil Extracellular Trap Formation in Response to Staphylococcus aureus. J. Immunol. 2010, 185, 7413–7425. [Google Scholar] [CrossRef]
- Nicolai, L.; Leunig, A.; Brambs, S.; Kaiser, R.; Weinberger, T.; Weigand, M.; Muenchhoff, M.; Hellmuth, J.C.; Ledderose, S.; Schulz, H.; et al. Immunothrombotic Dysregulation in COVID-19 Pneumonia Is Associated with Respiratory Failure and Coagulopathy. Circulation 2020, 142, 1176–1189. [Google Scholar] [CrossRef] [PubMed]
- Stark, K.; Massberg, S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol. 2021, 18, 666–682. [Google Scholar] [CrossRef]
- Mesa, M.A.; Vasquez, G. NETosis. Autoimmune Dis. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Schulz, C.; Massberg, S. Demystifying the prothrombotic role of NETs. Blood 2017, 129, 925–926. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Yu, M.; Zhao, X.; Du, J.; Li, Y.; Jing, H.; Dong, Z.; Kou, J.; Bi, Y.; et al. Neutrophil extracellular traps induced by activated platelets contribute to procoagulant activity in patients with colorectal cancer. Thromb. Res. 2019, 180, 87–97. [Google Scholar] [CrossRef]
- Zhou, P.; Li, T.; Jin, J.; Liu, Y.; Li, B.; Sun, Q.; Tian, J.; Zhao, H.; Liu, Z.; Ma, S.; et al. Interactions between neutrophil extracellular traps and activated platelets enhance procoagulant activity in acute stroke patients with ICA occlusion. EBiomedicine 2020, 53, 102671. [Google Scholar] [CrossRef]
- Li, R.H.L.; Fabella, A.; Nguyen, N.; Kaplan, J.L.; Ontiveros, E.; Stern, J.A. Circulating neutrophil extracellular traps in cats with hypertrophic cardiomyopathy and cardiogenic arterial thromboembolism. Vet. Intern. Med. 2023, 37, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.A.; Bhandari, A.A.; Wagner, D.D. Histones induce rapid and profound thrombocytopenia in mice. Blood 2011, 118, 3708–3714. [Google Scholar] [CrossRef]
- Semeraro, F.; Ammollo, C.T.; Morrissey, J.H.; Dale, G.L.; Friese, P.; Esmon, N.L.; Esmon, C.T. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: Involvement of platelet TLR2 and TLR4. Blood 2011, 118, 1952–1961. [Google Scholar] [CrossRef]
- Schober, K.E.; Maerz, I. Assessment of Left Atrial Appendage Flow Velocity and its Relation to Spontaneous Echocardiographic Contrast in 89 Cats with Myocardial Disease. Vet. Intern. Med. 2006, 20, 120–130. [Google Scholar] [CrossRef]
- Neubauer, K.; Zieger, B. Endothelial cells and coagulation. Cell Tissue Res. 2022, 387, 391–398. [Google Scholar] [CrossRef] [PubMed]
- De Wouwer, M.V.; Collen, D.; Conway, E.M. Thrombomodulin-Protein C-EPCR System: Integrated to Regulate Coagulation and Inflammation. ATVB 2004, 24, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Ciaramella, P.; Piantedosi, D.; Lindquist, E.; Loria, A.D.; Cortese, L.; Skeels, M.; Persechino, A. Plasma Thrombomodulin (TM) Concentration in Cats with Cardiomyopathies. Vet. Res. Commun. 2006, 30, 289–291. [Google Scholar] [CrossRef]
- Oliver, J.J.; Webb, D.J.; Newby, D.E. Stimulated Tissue Plasminogen Activator Release as a Marker of Endothelial Function in Humans. Arter. Thromb. Vasc. Biol. 2005, 25, 2470–2479. [Google Scholar] [CrossRef] [PubMed]
- Cambronero, F.; Vilchez, J.A.; García-Honrubia, A.; Ruiz-Espejo, F.; Moreno, V.; Hernández-Romero, D.; Bonacasa, B.; González-Conejero, R.; De La Morena, G.; Martínez, P.; et al. Plasma levels of Von Willebrand factor are increased in patients with hypertrophic cardiomyopathy. Thromb. Res. 2010, 126, e46–e50. [Google Scholar] [CrossRef]
- Stokol, T.; Brooks, M.; Rush, J.E.; Rishniw, M.; Erb, H.; Rozanski, E.; Kraus, M.S.; Gelzer, A.L. Hypercoagulability in Cats with Cardiomyopathy. Vet. Intern. Med. 2008, 22, 546–552. [Google Scholar] [CrossRef]
- Cheng, W.-C.; Wilkie, L.; Kurosawa, T.A.; Dobromylskyj, M.; Priestnall, S.L.; Luis Fuentes, V.; Connolly, D.J. Immunohistological Evaluation of Von Willebrand Factor in the Left Atrial Endocardium and Atrial Thrombi from Cats with Cardiomyopathy. Animals 2021, 11, 1240. [Google Scholar] [CrossRef]
- Agbani, E.O.; Poole, A.W. Procoagulant platelets: Generation, function, and therapeutic targeting in thrombosis. Blood 2017, 130, 2171–2179. [Google Scholar] [CrossRef]
- Nechipurenko, D.Y.; Receveur, N.; Yakimenko, A.O.; Shepelyuk, T.O.; Yakusheva, A.A.; Kerimov, R.R.; Obydennyy, S.I.; Eckly, A.; Léon, C.; Gachet, C.; et al. Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 37–47. [Google Scholar] [CrossRef]
- Prodan, C.I.; Stoner, J.A.; Dale, G.L. Lower Coated-Platelet Levels Are Associated with Increased Mortality After Spontaneous Intracerebral Hemorrhage. Stroke 2015, 46, 1819–1825. [Google Scholar] [CrossRef]
- Prodan, C.I.; Vincent, A.S.; Dale, G.L. Coated-platelet levels are elevated in patients with transient ischemic attack. Transl. Res. 2011, 158, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Pasalic, L.; Wing-Lun, E.; Lau, J.K.; Campbell, H.; Pennings, G.J.; Lau, E.; Connor, D.; Liang, H.P.; Muller, D.; Kritharides, L.; et al. Novel assay demonstrates that coronary artery disease patients have heightened procoagulant platelet response. J. Thromb. Haemost. 2018, 16, 1198–1210. [Google Scholar] [CrossRef]
- Shaverdian, M.; Nguyen, N.; Li, R.H.L. A novel technique to characterize procoagulant platelet formation and evaluate platelet procoagulant tendency in cats by flow cytometry. Front. Vet. Sci. 2024, 11, 1480756. [Google Scholar] [CrossRef] [PubMed]
- Li, R.H.; Nguyen, N.; Stern, J.A.; Duler, L.M. Neutrophil extracellular traps in feline cardiogenic arterial thrombi: A pilot study. J. Feline Med. Surg. 2022, 24, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Sreeramkumar, V.; Adrover, J.M.; Ballesteros, I.; Cuartero, M.I.; Rossaint, J.; Bilbao, I.; Nácher, M.; Pitaval, C.; Radovanovic, I.; Fukui, Y.; et al. Neutrophils scan for activated platelets to initiate inflammation. Science 2014, 346, 1234–1238. [Google Scholar] [CrossRef]
- Etulain, J.; Martinod, K.; Wong, S.L.; Cifuni, S.M.; Schattner, M.; Wagner, D.D. P-selectin promotes neutrophil extracellular trap formation in mice. Blood 2015, 126, 242–246. [Google Scholar] [CrossRef]
- Carestia, A.; Kaufman, T.; Rivadeneyra, L.; Landoni, V.I.; Pozner, R.G.; Negrotto, S.; D’Atri, L.P.; Gómez, R.M.; Schattner, M. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J. Leukoc. Biol. 2016, 99, 153–162. [Google Scholar] [CrossRef]
- Welles, E.G.; Boudreaux, M.K.; Crager, C.S.; Tyler, J.W. Platelet function and antithrombin, plasminogen, and fibrinolytic activities in cats with heart disease. Am. J. Vet. Res. 1994, 55, 619–627. [Google Scholar] [CrossRef]
- Siostrzonek, P.; Koppensteiner, R.; Gössinger, H.; Zangeneh, M.; Heinz, G.; Kreiner, G.; Stümpflen, A.; Buxbaum, P.; Ehringer, H.; Mösslacher, H. Hemodynamic and hemorheologic determinants of left atrial spontaneous echo contrast and thrombus formation in patients with idiopathic dilated cardiomyopathy. Am. Heart J. 1993, 125, 430–434. [Google Scholar] [CrossRef]
- Kirby, R.; Linklater, A. Monitoring and Intervention for the Critically Ill Small Animal: The Rule of 20; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 978-1-118-90083-3. [Google Scholar]
- Moresco, R.N.; Júnior, R.H.; Vargas, L.C.R.; Silla, L.M.D.R. Association between plasma levels of D-dimer and fibrinogen/fibrin degradation products (FDP) for exclusion of thromboembolic disorders. J. Thromb. Thrombolysis 2006, 21, 199–202. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Han, S.-H.; Choi, R.; Hyun, C. Evaluation of Plasma D-dimer Concentration in Cats with Hypertrophic Cardiomyopathy. J. Vet. Clin. 2014, 31, 85–89. [Google Scholar] [CrossRef]
- Reed, G.; Houng, A.; Singh, S.; Wang, D. α2-Antiplasmin: New Insights and Opportunities for Ischemic Stroke. Semin. Thromb. Hemost. 2016, 43, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Saleem, S.; Reed, G.L. Alpha2-Antiplasmin: The Devil You Don’t Know in Cerebrovascular and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 608899. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Houng, A.K.; Reed, G.L. Venous stasis-induced fibrinolysis prevents thrombosis in mice: Role of α2-antiplasmin. Blood 2019, 134, 970–978. [Google Scholar] [CrossRef]
- Meltzer, M.E.; Doggen, C.J.M.; de Groot, P.G.; Rosendaal, F.R.; Lisman, T. Plasma levels of fibrinolytic proteins and the risk of myocardial infarction in men. Blood 2010, 116, 529–536. [Google Scholar] [CrossRef]
- Merino, A.; Hauptman, P.; Badimon, L.; Badimon, J.J.; Cohen, M.; Fuster, V.; Goldman, M. Echocardiographic “smoke” is produced by an interaction of erythrocytes and plasma proteins modulated by shear forces. J. Am. Coll. Cardiol. 1992, 20, 1661–1668. [Google Scholar] [CrossRef]
- Rastegar, R.; Harnick, D.J.; Weidemann, P.; Fuster, V.; Coller, B.; Badimon, J.J.; Chesebro, J.; Goldman, M.E. Spontaneous echo contrast videodensity isflow-related and is dependent on the relative concentrations of fibrinogen and red blood cells. J. Am. Coll. Cardiol. 2003, 41, 603–610. [Google Scholar] [CrossRef]
- Zotz, R.J.; Müller, M.; Genth-Zotz, S.; Darius, H. Spontaneous Echo Contrast Caused by Platelet and Leukocyte Aggregates? Stroke 2001, 32, 1127–1133. [Google Scholar] [CrossRef]
- Le Tourneau, T.; Susen, S.; Caron, C.; Millaire, A.; Maréchaux, S.; Polge, A.-S.; Vincentelli, A.; Mouquet, F.; Ennezat, P.-V.; Lamblin, N.; et al. Functional Impairment of Von Willebrand Factor in Hypertrophic Cardiomyopathy. Circulation 2008, 118, 1550–1557. [Google Scholar] [CrossRef]
- Ammash, N.; Konik, E.A.; McBane, R.D.; Chen, D.; Tange, J.I.; Grill, D.E.; Herges, R.M.; McLeod, T.G.; Friedman, P.A.; Wysokinski, W.E. Left Atrial Blood Stasis and Von Willebrand Factor–ADAMTS13 Homeostasis in Atrial Fibrillation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2760–2766. [Google Scholar] [CrossRef]
- Payne, J.R.; Borgeat, K.; Connolly, D.J.; Boswood, A.; Dennis, S.; Wagner, T.; Menaut, P.; Maerz, I.; Evans, D.; Simons, V.E.; et al. Prognostic Indicators in Cats with Hypertrophic Cardiomyopathy. Vet. Intern. Med. 2013, 27, 1427–1436. [Google Scholar] [CrossRef]
- Payne, J.R.; Borgeat, K.; Brodbelt, D.C.; Connolly, D.J.; Luis Fuentes, V. Risk factors associated with sudden death vs. congestive heart failure or arterial thromboembolism in cats with hypertrophic cardiomyopathy. J. Vet. Cardiol. 2015, 17, S318–S328. [Google Scholar] [CrossRef]
- Hsu, A.; Kittleson, M.D.; Paling, A. Investigation into the use of plasma NT-proBNP concentration to screen for feline hypertrophic cardiomyopathy. J. Vet. Cardiol. 2009, 11, S63–S70. [Google Scholar] [CrossRef] [PubMed]
- Bakirel, U.; Ulgen Saka, S.; Yildiz, K. Feline Arteriyel Tromboembolizm Tanısı ve Prognozunda Kardiyak Biyobelirteçlerin Rolü ve Önemi. Kafkas Univ. Vet. Fak. Derg. 2021, 27, 409–415. [Google Scholar] [CrossRef]
- Harris, A.N.; Beatty, S.S.; Estrada, A.H.; Winter, B.; Bohannon, M.; Sosa, I.; Hanscom, J.; Mainville, C.A.; Gallagher, A.E. Investigation of an N-Terminal Prohormone of Brain Natriuretic Peptide Point-of-Care ELISA in Clinically Normal Cats and Cats with Cardiac Disease. Vet. Intern. Med. 2017, 31, 994–999. [Google Scholar] [CrossRef]
- Lu, T.; Côté, E.; Kuo, Y.; Wu, H.; Wang, W.; Hung, Y. Point-of-care N-terminal pro B-type natriuretic peptide assay to screen apparently healthy cats for cardiac disease in general practice. Vet. Intern. Med. 2021, 35, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- Hertzsch, S.; Roos, A.; Wess, G. Evaluation of a sensitive cardiac troponin I assay as a screening test for the diagnosis of hypertrophic cardiomyopathy in cats. Vet. Intern. Med. 2019, 33, 1242–1250. [Google Scholar] [CrossRef]
- Hori, Y.; Iguchi, M.; Heishima, Y.; Yamashita, Y.; Nakamura, K.; Hirakawa, A.; Kitade, A.; Ibaragi, T.; Katagi, M.; Sawada, T.; et al. Diagnostic utility of cardiac troponin I in cats with hypertrophic cardiomyopathy. J. Vet. Intern. Med. 2018, 32, 922–929. [Google Scholar] [CrossRef]
- Hemdon, W.E.; Kittleson, M.D.; Sanderson, K.; Drobatz, K.J.; Clifford, C.A.; Gelzer, A.; Summerfield, N.J.; Linde, A.; Sleeper, M.M. Cardiac Troponin I in Feline Hypertrophic Cardiomyopathy. J. Vet. Intern. Med. 2002, 16, 558–564. [Google Scholar] [CrossRef]
- Park, Y.; Schoene, N.; Harris, W. Mean platelet volume as an indicator of platelet activation: Methodological issues. Platelets 2002, 13, 301–306. [Google Scholar] [CrossRef]
- Fries, R.C.; Kadotani, S.; Stack, J.P.; Kruckman, L.; Wallace, G. Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Cats with Hypertrophic Cardiomyopathy. Front. Vet. Sci. 2022, 9, 813524. [Google Scholar] [CrossRef] [PubMed]
- Naito, E.; Yuki, M.; Hirano, T.; Kainuma, D.; Aoyama, R. Prognostic utility of preoperative neutrophil–lymphocyte ratio in cats with malignant mammary tumors. Res. Vet. Sci. 2021, 135, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Neumann, S. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios in dogs and cats with acute pancreatitis. Vet. Clin. Pathol. 2021, 50, 45–51. [Google Scholar] [CrossRef]
- Joshua, J.; Caswell, J.L.; Monné Rodriguez, J.M.; Kipar, A.; O’Sullivan, M.L.; Wood, G.; Fonfara, S. MicroRNA profiling of the feline left heart identifies chamber-specific expression signatures in health and in advanced hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. Plus 2023, 4, 100037. [Google Scholar] [CrossRef]
- Sucharov, C.C.; Neltner, B.; Pietra, A.E.; Karimpour-Fard, A. Circulating MicroRNAs Identify Early Phenotypic Changes in Sarcomeric Hypertrophic Cardiomyopathy. Circulation 2023, 16, e010291. [Google Scholar] [CrossRef]
- Goggs, R.; Bacek, L.; Bianco, D.; Koenigshof, A.; Li, R.H.L. Consensus on the Rational Use of Antithrombotics in Veterinary Critical Care (CURATIVE): Domain 2—Defining rational therapeutic usage. J. Vet. Emerg. Crit. Care 2019, 29, 49–59. [Google Scholar] [CrossRef]
- Brainard, B.M.; Coleman, A.E.; Kurosawa, A.; Rush, J.E.; Hogan, D.F.; Brooks, M.B.; Kraus, M.S. Therapy with clopidogrel or rivaroxaban has equivalent impacts on recurrence of thromboembolism and survival in cats following cardiogenic thromboembolism: The SUPERCAT study. J. Am. Vet. Med. Assoc. 2024, 263, 1–10. [Google Scholar] [CrossRef]
- Lo, S.T.; Li, R.H.L.; Georges, C.J.; Nguyen, N.; Chen, C.K.; Stuhlmann, C.; Oldach, M.S.; Rivas, V.N.; Fousse, S.; Harris, S.P.; et al. Synergistic inhibitory effects of clopidogrel and rivaroxaban on platelet function and platelet-dependent thrombin generation in cats. J. Vet. Intern. Med. 2023, 37, 1390–1400. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulou, A.; Hassdenteufel, E.; Lin, J.; Bauer, N.; Wurtinger, G.; Vollmar, C.; Henrich, E.; Hildebrandt, N.; Schneider, M. Retrospective Evaluation of Intravenous Enoxaparin Administration in Feline Arterial Thromboembolism. Animals 2022, 12, 1977. [Google Scholar] [CrossRef]
- Luis Fuentes, V.; Abbott, J.; Chetboul, V.; Côté, E.; Fox, P.R.; Häggström, J.; Kittleson, M.D.; Schober, K.; Stern, J.A. ACVIM consensus statement guidelines for the classification, diagnosis, and management of cardiomyopathies in cats. Vet. Intern. Med. 2020, 34, 1062–1077. [Google Scholar] [CrossRef]
- Ueda, Y.; Li, R.H.L.; Nguyen, N.; Ontiveros, E.S.; Kovacs, S.L.; Oldach, M.S.; Vernau, K.M.; Court, M.H.; Stern, J.A. A genetic polymorphism in P2RY1 impacts response to clopidogrel in cats with hypertrophic cardiomyopathy. Sci. Rep. 2021, 11, 12522. [Google Scholar] [CrossRef]
- Weber, K.; Rostert, N.; Bauersachs, S.; Wess, G. Serum microRNA profiles in cats with hypertrophic cardiomyopathy. Mol. Cell Biochem. 2015, 402, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, C.E.; Brainard, B.M. Point of Care Assessment of Coagulation. Top. Companion Anim. Med. 2016, 31, 11–17. [Google Scholar] [CrossRef]
- Kornya, M.R.; Abrams-Ogg, A.C.G.; Blois, S.L.; Wood, R.D. Platelet function analyzer-200 closure curve analysis and assessment of flow-obstructed samples. Vet. Clin. Pathol. 2023, 52, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Jandrey, K.E. Assessment of platelet function. J. Vet. Emerg. Crit. Care 2012, 22, 81–98. [Google Scholar] [CrossRef]
- Teuber, M.; Mischke, R. Influence of a low dosage of clopidogrel on platelet function in cats as measured by the platelet function analyser PFA-100 and the multiplate analyser. Res. Vet. Sci. 2016, 109, 149–156. [Google Scholar] [CrossRef]
- Den Toom, M.L.; Van Leeuwen, M.W.; Szatmári, V.; Teske, E. Effects of clopidogrel therapy on whole blood platelet aggregation, the Plateletworks® assay and coagulation parameters in cats with asymptomatic hypertrophic cardiomyopathy: A pilot study. Vet. Q. 2017, 37, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.K.; Abrams-Ogg, A.C.; Wood, R.D.; O’Sullivan, M.L.; Kirby, G.M.; Blois, S.L. Assessment of platelet function in healthy cats in response to commonly prescribed antiplatelet drugs using three point-of-care platelet function tests. J. Feline Med. Surg. 2017, 19, 638–647. [Google Scholar] [CrossRef]
- Gouin-Thibault, I.; Pautas, E.; Siguret, V. Safety Profile of Different Low-Molecular Weight Heparins Used at Therapeutic Dose. Drug-Saf. 2005, 28, 333–349. [Google Scholar] [CrossRef]
- Dixon-Jimenez, A.C.; Brainard, B.M.; Brooks, M.B.; Nie, B.; Arnold, R.D.; Loper, D.; Abrams, J.C.; Rapoport, G.S. Pharmacokinetic and pharmacodynamic evaluation of oral rivaroxaban in healthy adult cats. J. Vet. Emerg. Crit. Care 2016, 26, 619–629. [Google Scholar] [CrossRef]
- Alwood, A.J.; Downend, A.B.; Brooks, M.B.; Slensky, K.A.; Fox, J.A.; Simpson, S.A.; Waddell, L.S.; Baumgardner, J.E.; Otto, C.M. Anticoagulant Effects of Low-Molecular-Weight Heparins in Healthy Cats. J. Vet. Intern. Med. 2007, 21, 378–387. [Google Scholar] [CrossRef] [PubMed]
- McMichael, M.A.; Smith, S.A. Viscoelastic coagulation testing: Technology, applications, and limitations. Vet. Clin. Pathol. 2011, 40, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Bowbrick, V.A.; Mikhailidis, D.P.; Stansby, G. Influence of platelet count and activity on thromboelastography parameters. Platelets 2003, 14, 219. [Google Scholar] [CrossRef]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef]
- Kaplan, J.L.; Rivas, V.N.; Walker, A.L.; Grubb, L.; Farrell, A.; Fitzgerald, S.; Kennedy, S.; Jauregui, C.E.; Crofton, A.E.; McLaughlin, C.; et al. Delayed-release rapamycin halts progression of left ventricular hypertrophy in subclinical feline hypertrophic cardiomyopathy: Results of the RAPACAT trial. J. Am. Vet. Med. Assoc. 2023, 261, 1628–1637. [Google Scholar] [CrossRef]
- Rivas, V.N.; Kaplan, J.L.; Kennedy, S.A.; Fitzgerald, S.; Crofton, A.E.; Farrell, A.; Grubb, L.; Jauregui, C.E.; Grigorean, G.; Choi, E.; et al. Multi-Omic, Histopathologic, and Clinicopathologic Effects of Once-Weekly Oral Rapamycin in a Naturally Occurring Feline Model of Hypertrophic Cardiomyopathy: A Pilot Study. Animals 2023, 13, 3184. [Google Scholar] [CrossRef] [PubMed]
- Śledź, K.M.; Moore, S.F.; Durrant, T.N.; Blair, T.A.; Hunter, R.W.; Hers, I. Rapamycin restrains platelet procoagulant responses via FKBP-mediated protection of mitochondrial integrity. Biochem. Pharmacol. 2020, 177, 113975. [Google Scholar] [CrossRef]
- Aslan, J.E.; Tormoen, G.W.; Loren, C.P.; Pang, J.; McCarty, O.J.T. S6K1 and mTOR regulate Rac1-driven platelet activation and aggregation. Blood 2011, 118, 3129–3136. [Google Scholar] [CrossRef]
- Babinska, A.; Markell, M.S.; Salifu, M.O.; Akoad, M.; Ehrlich, Y.H.; Kornecki, E. Enhancement of human platelet aggregation and secretion induced by rapamycin. Nephrol. Dial. Transpl. 1998, 13, 3153–3159. [Google Scholar] [CrossRef]
- Li, R.H.L.; Shaverdian, M.S.; Nguyen, N.N.; Fitzgerald, S.F.; Rivas, V.R.; Stern, J.A. Ex vivo effects of rapamycin on platelet activation and procoagulant platelet phenotypes in cats. Abstracts from the International Veterinary Emergency and Critical Care Symposium and the European Veterinary Emergency and Critical Care Annual Congress 2024. J. Vet. Emerg. Crit. Care 2024, 34, S2–S47. [Google Scholar] [CrossRef]
- Huang, X.; Han, S.; Liu, X.; Wang, T.; Xu, H.; Xia, B.; Kong, G.; Li, J.; Zhu, W.; Hu, H.; et al. Both UFH and NAH alleviate shedding of endothelial glycocalyx and coagulopathy in LPS-induced sepsis. Exp. Ther. Med. 2020, 19, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Alberts, M.J. tPA in acute ischemic stroke: United States experience and issues for the future. Neurology 1998, 51, S53–S55. [Google Scholar] [CrossRef] [PubMed]
- Dewar, B.; Shamy, M. tPA for Acute Ischemic Stroke and Its Controversies: A Review. Neurohospitalist 2020, 10, 5–10. [Google Scholar] [CrossRef]
- Li, S.; Gu, H.-Q.; Li, H.; Wang, X.; Jin, A.; Guo, S.; Lu, G.; Che, F.; Wang, W.; Wei, Y.; et al. Reteplase versus Alteplase for Acute Ischemic Stroke. N. Engl. J. Med. 2024, 390, 2264–2273. [Google Scholar] [CrossRef]
- Guillaumin, J.; DeFrancesco, T.C.; Scansen, B.A.; Quinn, R.; Whelan, M.; Hanel, R.; Goy-Thollot, I.; Bublot, I.; Robertson, J.B.; Bonagura, J.D. Bilateral lysis of aortic saddle thrombus with early tissue plasminogen activator (BLASTT): A prospective, randomized, placebo-controlled study in feline acute aortic thromboembolism. J. Feline Med. Surg. 2022, 24, e535–e545. [Google Scholar] [CrossRef]
- Sharp, C.R.; Blais, M.-C.; Boyd, C.J.; Brainard, B.M.; Chan, D.L.; de Laforcade, A.; Goggs, R.; Guillaumin, J.; Lynch, A.; Mays, E.; et al. 2022 Update of the Consensus on the Rational Use of Antithrombotics and Thrombolytics in Veterinary Critical Care (CURATIVE) Domain 6: Defining rational use of thrombolytics. J. Vet. Emerg. Crit. Care 2022, 32, 446–470. [Google Scholar] [CrossRef]
- Moore, K.E.; Morris, N.; Dhupa, N.; Murtaugh, R.J.; Rush, J.E. Retrospective Study of Streptokinase Administration in 46 Cats with Arterial Thromboembolism. J. Vet. Emerg. Crit. Care 2000, 10, 245–257. [Google Scholar] [CrossRef]
- Ramsey, C.C.; Riepe, R.D.; Macintire, D.K.; Burney, D.P. Streptokinase a practical clot buster. In Proceedings of the 5th International Veterinary Emergency and Critical Care Symposium, San Antonio, TX, USA, 15–18 September 1996; pp. 225–228. [Google Scholar]
- Hunt, D.; Varigos, J.; Dienstl, F.; Lechleitner, P.; Debacker, G.; Kornitzer, M.; Cairns, J.; Turpie, A.; Fritzhansen, P.; Skagen, K.; et al. ISIS-3: A randomised comparison of streptokinase vs tissue plasminogen activator vs anistreplase and of aspirin plus heparin vs aspirin alone among 41,299 cases of suspected acute myocardial infarction. Lancet 1992, 339, 753–770. [Google Scholar] [CrossRef]
- The GUSTO Investigators. An International Randomized Trial Comparing Four Thrombolytic Strategies for Acute Myocardial Infarction. N. Engl. J. Med. 1993, 329, 673–682. [Google Scholar] [CrossRef]
- Whelan, M.F.; O’Toole, T.E.; Chan, D.L.; Rush, J.E. Retrospective Evaluation of Urokinase Use in Cats with Arterial Thromboembolism; Abstract from the 11th IVECCS. J. Vet. Emerg. Crit. Care 2005, 15, S8. [Google Scholar]
- Hassdenteufel, E.; Mitropoulou, A.; Vollmar, C.; Henrich, E.; Neu, H.J.; Lehmann, H.; Wurtinger, G.; Hildebrandt, N.; Schneider, M. Thrombolytic therapy with Reteplase in Cats with Arterial Thromboembolism. Abstracts from the European Veterinary Emergency and Critical Care Annual Congress 2022. J. Vet. Emerg. Crit. Care 2022, 32, S2–S37. [Google Scholar] [CrossRef]
- The RAISE Investigators. Reteplase versus Alteplase for Acute Ischemic Stroke. N. Engl. J. Med. 2024, 390, 2264–2273. [Google Scholar] [CrossRef] [PubMed]
- Vezzosi, T.; Buralli, C.; Briganti, A.; Vannozzi, I.; Giacomelli, E.; Talamanca, G.F.; Sansoni, A.; Domenech, O.; Tognetti, R. Surgical embolectomy in a cat with cardiogenic aortic thromboembolism. J. Vet. Cardiol. 2020, 28, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Thrombectomy and Thrombolysis—the Interventional Radiology Approach—2011.pdf. Available online: https://drive.google.com/file/d/1-k5wf0vhwhDdlK7_SRvnVzobBeauov8G/view?usp=drive_open&usp=embed_facebook (accessed on 16 May 2025).
- Reimer, S.B.; Kittleson, M.D.; Kyles, A.E. Use of Rheolytic Thrombectomy in the Treatment of Feline Distal Aortic Thromboembolism. J. Vet. Intern. Med. 2006, 20, 290–296. [Google Scholar] [CrossRef]
- Lu, J.; Qian, S.; Sun, Z. Targeting histone deacetylase in cardiac diseases. Front. Physiol. 2024, 15, 1405569. [Google Scholar] [CrossRef]
- Kulthinee, S.; Yano, N.; Zhuang, S.; Wang, L.; Zhao, T.C. Critical Functions of Histone Deacetylases (HDACs) in Modulating Inflammation Associated with Cardiovascular Diseases. Pathophysiology 2022, 29, 471–485. [Google Scholar] [CrossRef]
- Kisseberth, W.C.; Murahari, S.; London, C.A.; Kulp, S.K.; Chen, C.-S. Evaluation of the effects of histone deacetylase inhibitors on cells from canine cancer cell lines. Am. J. Vet. Res. 2008, 69, 938–945. Available online: https://avmajournals.avma.org/view/journals/ajvr/69/7/ajvr.69.7.938.xml (accessed on 17 May 2025).
- Dias, J.N.R.; Aguiar, S.I.; Pereira, D.M.; André, A.S.; Gano, L.; Correia, J.D.G.; Carrapiço, B.; Rütgen, B.; Malhó, R.; Peleteiro, C.; et al. The histone deacetylase inhibitor panobinostat is a potent antitumor agent in canine diffuse large B-cell lymphoma. Oncotarget 2018, 9, 28586–28598. [Google Scholar] [CrossRef]
- Augusto, J.-F.; Beauvillain, C.; Poli, C.; Paolini, L.; Tournier, I.; Pignon, P.; Blanchard, S.; Preisser, L.; Soleti, R.; Delépine, C.; et al. Clusterin Neutralizes the Inflammatory and Cytotoxic Properties of Extracellular Histones in Sepsis. Am. J. Respir. Crit. Care Med. 2023, 208, 176–187. [Google Scholar] [CrossRef]
History/Clinical Assessment | Male |
Breed disposition (Ragdolls, Maine Coon) with mutation of myosin binding protein C gene (MYBPC3) | |
Previous thrombotic event(s) | |
Heart murmur | |
Gallop rhythm | |
Biomarkers | Elevated troponin (>0.06 ng/mL) * |
Elevated NT-proBNP (>99 pmol/L) or POC positive (>200 pmol/L) * | |
Thoracic Radiographs | Cardiomegaly (VHS > 8) |
LA enlargement | |
Echocardiogram | LV systolic dysfunction (LV fractional shortening and emptying fraction) |
LA systolic dysfunction (Low LAA velocity, Low LA fractional shortening) | |
Spontaneous echocardiographic contrast and/or intracardiac thrombus | |
LA enlargement (LA:Ao > 1.6) | |
Electrocardiogram | Arrhythmias: atrial fibrillation, ventricular arrhythmias |
Viscoelastic Test | Results Interpretation | Pros | Cons | Sample Required |
---|---|---|---|---|
TEG |
|
|
| Citrated or fresh whole blood |
ROTEM |
|
|
| Citrated whole blood |
VCM | Hypercoagulable
|
|
| Fresh whole blood |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, N.S.; Shaverdian, M.; Li, R.H.L. Evolving FATE: A New Lens on the Pathogenesis and Management of Feline Cardiogenic Arterial Thromboembolism. Animals 2025, 15, 1630. https://doi.org/10.3390/ani15111630
Yeh NS, Shaverdian M, Li RHL. Evolving FATE: A New Lens on the Pathogenesis and Management of Feline Cardiogenic Arterial Thromboembolism. Animals. 2025; 15(11):1630. https://doi.org/10.3390/ani15111630
Chicago/Turabian StyleYeh, Natasha S., Meg Shaverdian, and Ronald H. L. Li. 2025. "Evolving FATE: A New Lens on the Pathogenesis and Management of Feline Cardiogenic Arterial Thromboembolism" Animals 15, no. 11: 1630. https://doi.org/10.3390/ani15111630
APA StyleYeh, N. S., Shaverdian, M., & Li, R. H. L. (2025). Evolving FATE: A New Lens on the Pathogenesis and Management of Feline Cardiogenic Arterial Thromboembolism. Animals, 15(11), 1630. https://doi.org/10.3390/ani15111630