Effects of Glutamine Supplementation and Early Cold Conditioning on Cold Stress Adaptability in Broilers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds, Diets, and Management
2.2. Growth Performance
2.3. Sample Collection and Biochemical Analysis
2.4. Antioxidant Status Assessments
2.5. Immune Status Assessments
2.6. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Blood Hematological and Biochemical Parameters
3.3. Oxidative Stress Response
3.4. Immune Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey, L.D.; Ens, B.J.; Both, C.; Heg, D.; Oosterbeek, K.; van de Pol, M. Habitat Selection Can Reduce Effects of Extreme Climatic Events in a Long-Lived Shorebird. J. Anim. Ecol. 2019, 88, 1474–1485. [Google Scholar] [CrossRef]
- Hansen, B.B.; Gamelon, M.; Albon, S.D.; Lee, A.M.; Stien, A.; Irvine, R.J.; Sæther, B.-E.; Loe, L.E.; Ropstad, E.; Veiberg, V. More Frequent Extreme Climate Events Stabilize Reindeer Population Dynamics. Nat. Commun. 2019, 10, 1616. [Google Scholar] [CrossRef]
- El-Hack, A.; Mohamed, E.; Alagawany, M.; Noreldin, A.E. Managerial and Nutritional Trends to Mitigate Heat Stress Risks in Poultry Farms. Sustain. Agric. Environ. Egypt Part II Soil-Water-Plant Nexus 2019, 77, 325–338. [Google Scholar]
- Bilal, R.M.; Hassan, F.-U.; Farag, M.R.; Nasir, T.A.; Ragni, M.; Mahgoub, H.A.M.; Alagawany, M. Thermal Stress and High Stocking Densities in Poultry Farms: Potential Effects and Mitigation Strategies. J. Therm. Biol. 2021, 99, 102944. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.J.; Kong, L.L.; Zhu, L.X.; Hu, X.Y.; Busye, J.; Song, Z.G. Effects of Cold Stress on Growth Performance, Serum Biochemistry, Intestinal Barrier Molecules, and Adenosine Monophosphate-Activated Protein Kinase in Broilers. Animal 2021, 15, 100138. [Google Scholar] [CrossRef] [PubMed]
- Huff, G.R.; Huff, W.E.; Rath, N.C.; de Los Santos, F.S.; Farnell, M.B.; Donoghue, A.M. Influence of Hen Age on the Response of Turkey Poults to Cold Stress, Escherichia Coli Challenge, and Treatment with a Yeast Extract Antibiotic Alternative. Poult. Sci. 2007, 86, 636–642. [Google Scholar] [CrossRef]
- Zhao, F.Q.; Zhang, Z.-W.; Yao, H.-D.; Wang, L.-L.; Liu, T.; Yu, X.-Y.; Li, S.; Xu, S.-W. Effects of Cold Stress on Mrna Expression of Immunoglobulin and Cytokine in the Small Intestine of Broilers. Res. Vet. Sci. 2013, 95, 146–155. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Lv, Z.H.; Li, J.L.; Li, S.; Xu, S.W.; Wang, X.L. Effects of Cold Stress on Nitric Oxide in Duodenum of Chicks. Poult. Sci. 2011, 90, 1555–1561. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and Hormonal Acclimation to Heat Stress in Domesticated Ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef]
- Nichelmann, M.; Tzschentke, B.; Tönhardt, H. Perinatal Development of Control Systems in Birds. Comp. Biochem. Physiol. Part A 2002, 131, 697–699. [Google Scholar] [CrossRef]
- Tzschentke, B.; Basta, D. Early Development of Neuronal Hypothalamic Thermosensitivity in Birds: Influence of Epigenetic Temperature Adaptation. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 131, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Yahav, S.; Shamai, A.; Haberfeld, A.; Horev, G.; Hurwitz, S.; Einat, M. Induction of Thermotolerance in Chickens by Temperature Conditioning: Heat Shock Protein Expression. Ann. NY Acad. Sci. 1997, 813, 628–636. [Google Scholar] [CrossRef]
- Emmans, G.C.; Kyriazakis, I. Issues Arising from Genetic Selection for Growth and Body Composition Characteristics in Poultry and Pigs. BSAP Occas. Publ. 2000, 27, 39–53. [Google Scholar] [CrossRef]
- Decuypere, E.; Tona, K.; Bruggeman, V.; Bamelis, F. The Day-Old Chick: A Crucial Hinge between Breeders and Broilers. World’s Poult. Sci. J. 2001, 57, 127–138. [Google Scholar] [CrossRef]
- Aulie, A. The Effect of Intermittent Cold Exposure on the Thermoregulatory Capacity of Bantam Chicks, Gallus domesticus. Comp. Biochem. Physiol. Part A: Physiol. 1977, 56, 545–549. [Google Scholar] [CrossRef]
- Shinder, D.; Luger, D.; Rusal, M.; Rzepakovsky, V.; Bresler, V.; Yahav, S. Early Age Cold Conditioning in Broiler Chickens (Gallus Domesticus): Thermotolerance and Growth Responses. J. Therm. Biol. 2002, 27, 517–523. [Google Scholar] [CrossRef]
- Wallace, J.L.; Track, N.S.; Cohen, M.M. Chronic Mild Restraint Protects the Rat Gastric Mucosa from Injury by Ethanol or Cold Restraint. Gastroenterology 1983, 85, 370–375. [Google Scholar] [CrossRef]
- Morabito, M.; Iannuccilli, M.; Crisci, A.; Capecchi, V.; Baldasseroni, A.; Orlandini, S.; Gensini, G.F. Air Temperature Exposure and Outdoor Occupational Injuries: A Significant Cold Effect in Central Italy. Occup. Environ. Med. 2014, 71, 713–716. [Google Scholar] [CrossRef]
- Oh, M.-H.; Sun, I.-H.; Zhao, L.; Leone, R.D.; Sun, I.-M.; Xu, W.; Collins, S.L.; Tam, A.J.; Blosser, R.L.; Patel, C.H. Targeting Glutamine Metabolism Enhances Tumor-Specific Immunity by Modulating Suppressive Myeloid Cells. J. Clin. Investig. 2020, 130, 3865–3884. [Google Scholar] [CrossRef]
- Coqueiro, A.Y.; Rogero, M.M.; Tirapegui, J. Glutamine as an Anti-Fatigue Amino Acid in Sports Nutrition. Nutrients 2019, 11, 864. [Google Scholar] [CrossRef]
- Carr, E.L.; Kelman, A.; Wu, G.S.; Gopaul, R.; Senkevitch, E.; Aghvanyan, A.; Turay, A.M.; Frauwirth, K.A. Glutamine Uptake and Metabolism Are Coordinately Regulated by Erk/Mapk During T Lymphocyte Activation. J. Immunol. 2010, 185, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Zuhl, M.; Dokladny, K.; Mermier, C.; Schneider, S.; Salgado, R.; Moseley, P. The Effects of Acute Oral Glutamine Supplementation on Exercise-Induced Gastrointestinal Permeability and Heat Shock Protein Expression in Peripheral Blood Mononuclear Cells. Cell Stress Chaperones 2015, 20, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wu, G. Nutritionally Nonessential Amino Acids: A Misnomer in Nutritional Sciences. Adv. Nutr. 2017, 8, 137–139. [Google Scholar] [CrossRef]
- Kidd, M.T. Nutritional Modulation of Immune Function in Broilers. Poult. Sci. 2004, 83, 650–657. [Google Scholar] [CrossRef]
- Klain, G.; Johnson, B.C. Metabolism of Labeled Aminoethanol, Glycine, and Arginine in the Chick. J. Biol. Chem. 1962, 237, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, K.; He, W.L.; Leyva-Jimenez, H.; Bailey, C.A.; Bazer, F.W.; Toyomizu, M.; Wu, G. Developmental Changes in the Activities of Enzymes for Polyamine Synthesis in Chickens. Poult. Sci. 2018, 97, 3–4. [Google Scholar]
- He, W.; Wu, G. Metabolism of Amino Acids in the Brain and Their Roles in Regulating Food Intake. Amino Acids Nutr. Health. Adv. Exp. Med. Biol. 2020, 1265, 167–185. [Google Scholar] [CrossRef]
- Maslami, V.; Nur, Y.S.; Marlida, Y. Effect of Glutamate Supplementation as a Feed Additive on Performance of Broiler Chickens. J. World’s Poult. Res. 2019, 9, 154–159. [Google Scholar] [CrossRef]
- Olubodun, J.O.; Zulkifli, I.; Farjam, A.S.; Hair-Bejo, M.; Kasim, A. Glutamine and Glutamic Acid Supplementation Enhances Performance of Broiler Chickens under the Hot and Humid Tropical Condition. Ital. J. Anim. Sci. 2015, 14, 3263. [Google Scholar] [CrossRef]
- Fathi, M.; Heidari, M.; Ahmadisefat, A.A.; Habibian, M.; Moeini, M.M. Influence of Dietary Glutamine Supplementation on Performance, Biochemical Indices and Enzyme Activities in Broilers with Cold-Induced Ascites. Anim. Prod. Sci. 2015, 56, 2047–2053. [Google Scholar] [CrossRef]
- Vantress, C. Cobb500 Broiler Performance and Nutrition Supplement. 2018. Available online: https://www.cobbgenetics.com/assets/Cobb-Files/2022-Cobb500-Broiler-Performance-Nutrition-Supplement.pdf (accessed on 7 May 2025).
- Council, National Research, and Subcommittee on Poultry Nutrition. Nutrient Requirements of Poultry: 1994; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Wagner, D.D.; Furrow, R.D.; Bradley, B.D. Subchronic Toxicity of Monensin in Broiler Chickens. Vet. Pathol. 1983, 20, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.C. Scanning Electron Micrograph of Blood Cells. Schalm’s Vet. Haematol. 1983, 4, 63–70. [Google Scholar]
- Weichselbaum, C.T.E. An Accurate and Rapid Method for the Determination of Proteins in Small Amounts of Blood Serum and Plasma. Am. J. Clin. Pathol. 1946, 16, 40–49. [Google Scholar] [CrossRef]
- Rifai, N.; Horvath, A.R.; Wittwer, C.T.; Park, J. Principles and Applications of Molecular Diagnostics; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Bartholomew, R.J.; Delaney, A. Spectrophotometric Studies and Analytical Application of the Protein Error of Some Ph Indicators. Proc. Aust. Assoc. Clin. Biochem. 1964, 1, 64–67. [Google Scholar]
- Doumas, B.T.; Biggs, H.O.E.G.; Arends, R.L.; Pinto, P.V. Determination of Serum Albumin. In Standard Methods of Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 1972; pp. 175–188. [Google Scholar]
- Sánchez-Carbayo, M.; Mauri, M.; Alfayate, R.; Miralles, C.; Soria, F. Analytical and Clinical Evaluation of Tsh and Thyroid Hormones by Electrochemiluminescent Immunoassays. Clin. Biochem. 1999, 32, 395–403. [Google Scholar] [CrossRef]
- Janaszewska, A.; Bartosz, G. Assay of Total Antioxidant Capacity: Comparison of Four Methods as Applied to Human Blood Plasma. Scand. J. Clin. Lab. Investig. 2002, 62, 231–236. [Google Scholar] [CrossRef]
- Kraljević, P.; Šimpraga, M.; Miljanić, S.; Vilić, M. Changes in Serum Enzyme Activity as an Indicator of Injuries in Irradiated Chickens. Period. Biol. 2008, 110, 69–72. [Google Scholar]
- Qin, J. Electrochemiluminescence Immunoassay Method. Google Patents US10024861B2, 17 July 2018. [Google Scholar]
- Chen, X.Y.; Li, R.; Wang, M.; Geng, Z.Y. Identification of Differentially Expressed Genes in Hypothalamus of Chicken During Cold Stress. Mol. Biol. Rep. 2014, 41, 2243–2248. [Google Scholar] [CrossRef]
- Borsoi, A.; Quinteiro-Filho, W.M.; Calefi, A.S.; Ferreira, A.J.P.; Astolfi-Ferreira, C.S.; Florio, J.C.; Palermo-Neto, J. Effects of Cold Stress and Salmonella Heidelberg Infection on Bacterial Load and Immunity of Chickens. Avian Pathol. 2015, 44, 490–497. [Google Scholar] [CrossRef]
- Zhang, S.-S.; Su, H.-G.; Ying, Z.; Li, X.-M.; Feng, J.-H.; Zhang, M.-H. Effects of Sustained Cold and Heat Stress on Energy Intake, Growth and Mitochondrial Function of Broiler Chickens. J. Integr. Agric. 2016, 15, 2336–2342. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Yao, R.; Hu, Y.; Liu, P.; Lian, S.; Lv, H.; Xu, B.; Li, S. Dietary Supplementary Glutamine and L-Carnitine Enhanced the Anti-Cold Stress of Arbor Acres Broilers. Arch. Anim. Breed. 2021, 64, 231–243. [Google Scholar] [CrossRef]
- Hayashi, K.; Kuroki, H.; Kamizono, T.; Ohtsuka, A. Comparison of the Effects of Thyroxine and Triiodothyronine on Heat Production and Skeletal Muscle Protein Breakdown in Chicken. J. Poult. Sci. 2009, 46, 212–216. [Google Scholar] [CrossRef]
- Debonne, M.; Baarendse, P.J.; Van Den Brand, H.; Kemp, B.; Bruggeman, V.; Decuypere, E. Involvement of the Hypothalamic-Pituitary-Thyroid Axis and Its Interaction with the Hypothalamic-Pituitary-Adrenal Axis in the Ontogeny of Avian Thermoregulation: A Review. World’s Poult. Sci. J. 2008, 64, 309–321. [Google Scholar] [CrossRef]
- Guo, H.; Xiao, S.; Lou, W.; Khan, R.U.; Wu, J.; Huang, B.; Dai, S.; Li, G. Dietary Supplementation of Glutamine Improves Metabolic Functions in 1-14 Days Old Broilers under Cold Stress. Pak. J. Zool. 2024, 56. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, C.; Lin, M.; Fu, Y.; Zhang, L.; Meng, M.; Xing, S.; Li, J.; Sun, H.; Gao, F. Regulation of Skeletal Muscle Protein Synthetic and Degradative Signaling by Alanyl-Glutamine in Piglets Challenged with Escherichia Coli Lipopolysaccharide. Nutrition 2015, 31, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Wellen, K.E.; Lu, C.; Mancuso, A.; Lemons, J.M.S.; Ryczko, M.; Dennis, J.W.; Rabinowitz, J.D.; Coller, H.A.; Thompson, C.B. The Hexosamine Biosynthetic Pathway Couples Growth Factor-Induced Glutamine Uptake to Glucose Metabolism. Genes Dev. 2010, 24, 2784–2799. [Google Scholar] [CrossRef] [PubMed]
- Shakerı, M.; Zulkıflı, İ.; Oskoueıan, E.; Shakerı, M.; Oskoueıan, A.; Ebrahımı, M. Response to Dietary Supplementation of Glutamine in Broiler Chickens Subjected to Transportation Stress. İstanbul Üniversitesi Vet. Fakültesi Derg. 2016, 42, 122–131. [Google Scholar] [CrossRef]
- Roth, E. Nonnutritive Effects of Glutamine. J. Nutr. 2008, 138, 2025S–2031S. [Google Scholar] [CrossRef]
- Lou, W.; Wu, W.; Guo, H.; Xiao, S.; Khan, R.U.; Zhang, X.; Li, G.; Dai, S. Ameliorative Effect of Dietary Glutamine on Antioxidant Capacity of Broiler Chicks During Starter Phase under Cold Stress. Pak. J. Zool. 2024, 56, 2735. [Google Scholar] [CrossRef]
- Wang, J.; Yang, G.; Zhang, K.; Ding, X.; Bai, S.; Zeng, Q. Effects of Dietary Supplementation of Dl-2-Hydroxy-4 (Methylthio) Butanoic Acid on Antioxidant Capacity and Its Related Gene Expression in Lung and Liver of Broilers Exposed to Low Temperature. Poult. Sci. 2019, 98, 341–349. [Google Scholar] [CrossRef]
- Yang, X.; Luo, Y.H.; Zeng, Q.F.; Zhang, K.Y.; Ding, X.M.; Bai, S.P.; Wang, J.P. Effects of Low Ambient Temperatures and Dietary Vitamin C Supplement on Growth Performance, Blood Parameters, and Antioxidant Capacity of 21-Day-Old Broilers. Poult. Sci. 2014, 93, 898–905. [Google Scholar] [CrossRef]
- Flees, J.; Rajaei-Sharifabadi, H.; Greene, E.; Beer, L.; Hargis, B.M.; Ellestad, L.; Porter, T.; Donoghue, A.; Bottje, W.G.; Dridi, S. Effect of Morinda Citrifolia (Noni)-Enriched Diet on Hepatic Heat Shock Protein and Lipid Metabolism-Related Genes in Heat Stressed Broiler Chickens. Front. Physiol. 2017, 8, 919. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, A.; de Thonel, A.; El Fatimy, R.; Dubreuil, V.; Mezger, V. The “Hsf Connection”: Pleiotropic Regulation and Activities of Heat Shock Factors Shape Pathophysiological Brain Development. Neurosci. Lett. 2020, 725, 134895. [Google Scholar] [CrossRef]
- Gabriel, J.E.; da Mota, A.F.; Boleli, I.C.; Macari, M.; Coutinho, L.L. Effect of Moderate and Severe Heat Stress on Avian Embryonic Hsp70 Gene Expression. Growth Dev. Aging GDA 2002, 66, 27–33. [Google Scholar] [PubMed]
- Liu, Y.; Xue, G.; Li, S.; Fu, Y.; Yin, J.; Zhang, R.; Li, J. Effect of Intermittent and Mild Cold Stimulation on the Immune Function of Bursa in Broilers. Animals 2020, 10, 1275. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.; Greene, E.; Ishola, P.; Huff, G.; Donoghue, A.; Bottje, W.; Dridi, S. Chronic Mild Cold Conditioning Modulates the Expression of Hypothalamic Neuropeptide and Intermediary Metabolic-Related Genes and Improves Growth Performances in Young Chicks. PLoS ONE 2015, 10, e0142319. [Google Scholar] [CrossRef]
- Roth, E. Immune and Cell Modulation by Amino Acids. Clin. Nutr. 2007, 26, 535–544. [Google Scholar] [CrossRef]
- Oehler, R.; Roth, E. Regulative Capacity of Glutamine. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 277–282. [Google Scholar] [CrossRef]
- Newsholme, P.; Curi, R.; Gordon, S.; Newsholme, E.A. Metabolism of Glucose, Glutamine, Long-Chain Fatty Acids and Ketone Bodies by Murine Macrophages. Biochem. J. 1986, 239, 121–125. [Google Scholar] [CrossRef]
- Hörig, H.; Spagnoli, G.C.; Filgueira, L.; Babst, R.; Gallati, H.; Harder, F.; Juretic, A.; Heberer, M. Exogenous Glutamine Requirement Is Confined to Late Events of T Cell Activation. J. Cell. Biochem. 1993, 53, 343–351. [Google Scholar] [CrossRef]
- Yang, X.; Zetian, Y.; Chengzhi, S. Enhancement of Cellular Immune Function During Cold Adaptation of Balbc Inbred Mice. Cryobiology 1992, 29, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Manning, R.O.; Wyatt, R.D. Effect of Cold Acclimation on the Broiler Chicks’ Resistance to Acute Aflatoxicosis. Poult. Sci. 1990, 69, 388–396. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, X.; Xin, H.; Li, S.; Li, J.; Zhang, R.; Li, X.; Li, J.; Bao, J. Effects of Prior Cold Stimulation on Inflammatory and Immune Regulation in Ileum of Cold-Stressed Broilers. Poult. Sci. 2018, 97, 4228–4237. [Google Scholar] [CrossRef]
- Maxwell, M.H.; Robertson, G.W.; Moseley, D. Potential Role of Serum Troponin T in Cardiomyocyte Injury in the Broiler Ascites Syndrome. Br. Poult. Sci. 1994, 35, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, M.H.; Robertson, G.W.; Moseley, D. Serum Troponin T Values in 7-Day-Old Hypoxia-and Hyperoxia-Treated, and 10-Day-Old Ascitic and Debilitated, Commercial Broiler Chicks. Avian Pathol. 1995, 24, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Vale, C.; Neves, J.S.; von Hafe, M.; Borges-Canha, M.; Leite-Moreira, A. The Role of Thyroid Hormones in Heart Failure. Cardiovasc. Drugs Ther. 2019, 33, 179–188. [Google Scholar] [CrossRef]
- Grais, I.M.; Sowers, J.R. Thyroid and the Heart. Am. J. Med. 2014, 127, 691–698. [Google Scholar] [CrossRef]
- Bahadoran, S.; Hassanpour, H.; Arab, S.; Abbasnia, S.; Kiani, A. Changes in the Expression of Cardiac Genes Responsive to Thyroid Hormones in the Chickens with Cold-Induced Pulmonary Hypertension. Poult. Sci. 2021, 100, 101263. [Google Scholar] [CrossRef]
Ingredients | Starter (0–21 d) | Grower-Finisher (22–35 d) |
---|---|---|
Yellow corn | 54.0 | 58.93 |
Soybean meal (44% CP) | 34.12 | 30.25 |
Corn gluten (60% CP) | 6.1 | 4.90 |
Soy oil | 1.0 | 1.18 |
Limestone | 1.65 | 1.60 |
Monocalcium phosphate | 1.65 | 1.65 |
Common salt | 0.45 | 0.45 |
Premix * | 0.30 | 0.30 |
DL-Methionine, 98% | 0.15 | 0.16 |
Lysine, Hcl, 78% | 0.30 | 0.30 |
NaHCO3 | 0.28 | 0.28 |
Calculated composition | ||
DM% | 89.70 | 89.70 |
ME, kcal/kg | 2900.47 | 2950.85 |
CP% | 23.02 | 21.00 |
EE% | 3.48 | 3.78 |
CF% | 3.64 | 3.47 |
Ca% | 0.99 | 0.96 |
Total P% | 0.75 | 0.73 |
Available P% | 0.45 | 0.45 |
Lysine% | 1.34 | 1.24 |
Methionine% | 0.52 | 0.50 |
Threonine% | 0.86 | 0.78 |
Diet | Temp | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Starter (0–21 d) | Grower-Finisher (22–35 d) | Overall performance (0–35 d) | ||||||||||||
Initial BW | BW, g | BWG, g | FI, g | FCR | BW, g | BWG, g | FI, g | FCR | BW, g | BWG, g | FI, g | FCR | ||
Control | STD | 44.40 | 484.4 d | 440.0 | 500.8 | 1.13 | 1595.6 d | 1111.2 c | 2382.6 | 2.14 a | 1595.6 d | 1551.2 d | 2883.4 | 1.86 a |
Cold | 44.60 | 514.8 c | 470.2 | 528.6 | 1.12 | 1778.8 c | 1264.0 b | 2402.2 | 1.90 b | 1778.8 c | 1734.2 c | 2930.8 | 1.69 b | |
0.3% Gln | STD | 44.40 | 549.8 b | 505.4 | 546.0 | 1.08 | 1907.2 b | 1357.4 a | 2480.4 | 1.82 b | 1907.2 b | 1862.8 b | 3026.4 | 1.62 b |
Cold | 44.00 | 580.4 a | 536.4 | 548.8 | 1.02 | 1972.4 a, b | 1392.0 a | 2610.2 | 1.87 b | 1972.4 a, b | 1928.4 a b | 3159.0 | 1.63 b | |
0.5% Gln | STD | 44.40 | 562.4 b | 518.0 | 549.4 | 1.06 | 1935.4 b | 1373.0 a | 2591.2 | 1.88 b | 1935.4 b | 1891.0 b | 3140.6 | 1.66 b |
Cold | 44.40 | 596.8 a | 552.4 | 563.0 | 1.01 | 2010.2 a | 1413.4 a | 2626.4 | 1.85 b | 2010.2 a | 1965.8 a | 3189.4 | 1.62 b | |
SEM | 0.372 | 5.24 | 5.23 | 5.27 | 0.004 | 34.20 | 29.53 | 5.79 | 0.048 | 34.20 | 34.25 | 10.01 | 0.032 | |
Main Effects | ||||||||||||||
Diet | ||||||||||||||
Control | 44.50 | 499.60 b | 455.10 b | 514.70 b | 1.13 a | 1687.20 b | 1187.60 b | 2392.40 b | 2.02a | 1687.20 b | 1642.70 b | 2907.10 b | 1.77a | |
0.3% Gln | 44.20 | 565.10 a | 520.90 a | 547.40 a | 1.05 b | 1939.80 a | 1374.70 a | 2545.30 a | 1.85 b | 1939.80 a | 1895.60 a | 3092.70 a | 1.63 b | |
0.5% | 44.40 | 579.60 a | 535.20 a | 556.20 a | 1.04 b | 1972.80 a | 1393.20 a | 2608.80 a | 1.87 b | 1972.80 a | 1928.40 a | 3165.00 a | 1.64 b | |
SEM | 0.400 | 2.63 | 2.75 | 4.72 | 0.007 | 23.42 | 21.78 | 2.71 | 0.042 | 23.42 | 23.76 | 6.81 | 0.026 | |
Temperature | ||||||||||||||
STD | 44.40 | 532.20 | 487.80 | 532.06 | 1.09 | 1812.73 | 1280.53 | 2484.73 | 1.95 | 1812.73 | 1768.33 | 3016.80 | 1.71 | |
Cold | 44.33 | 564.00 | 519.66 | 546.80 | 1.05 | 1920.46 | 1356.46 | 2546.26 | 1.87 | 1920.46 | 1876.13 | 3093.06 | 1.65 | |
SEM | 0.272 | 9.33 | 9.34 | 6.59 | 0.010 | 42.18 | 33.28 | 26.37 | 0.041 | 42.18 | 42.18 | 31.48 | 0.030 | |
p-values | ||||||||||||||
Diet | 0.820 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Temperature | 0.867 | 0.026 | 0.013 | 0.038 | 0.037 | 0.021 | 0.029 | 0.075 | 0.051 | 0.021 | 0.021 | 0.059 | 0.031 | |
Diet × Temp | 0.820 | 0.014 | 0.857 | 0.063 | 0.072 | 0.002 | <0.001 | 0.134 | <0.001 | 0.002 | 0.002 | 0.279 | 0.001 |
Diet | Temp | |||||||
---|---|---|---|---|---|---|---|---|
Hb, g/dL | PCV % | TP, g/dL | Albumin, g/dL | Globulin, g/dL | T3, ng/mL | T4, ng/mL | ||
Control | STD | 9.46 | 36.40 | 3.77 | 2.14 | 1.63 | 4.09 | 22.67 |
Cold | 10.66 | 37.00 | 4.46 | 2.67 | 1.79 | 4.47 | 23.96 | |
0.3% Gln | STD | 10.96 | 37.40 | 4.97 | 3.11 | 1.85 | 4.53 | 25.29 |
Cold | 10.72 | 37.80 | 5.35 | 3.49 | 1.85 | 5.06 | 26.62 | |
0.5% Gln | STD | 11.04 | 37.60 | 5.24 | 3.42 | 1.82 | 4.71 | 26.06 |
Cold | 9.46 | 38.00 | 5.43 | 3.53 | 1.89 | 5.21 | 27.06 | |
SEM | 0.137 | 0.395 | 0.178 | 0.146 | 0.082 | 0.107 | 0.346 | |
Main Effects | ||||||||
Diet | ||||||||
Control | 9.79 b | 36.70 | 4.11 b | 2.40 b | 1.71 | 4.28 b | 23.31 b | |
0.3% Gln | 10.81 a | 37.60 | 5.16 a | 3.30 a | 1.85 | 4.79 a | 25.95 a | |
0.5% | 10.88 a | 37.80 | 4.87 a | 3.48 a | 1.85 | 4.96 a | 26.56 a | |
SEM | 0.067 | 0.509 | 0.247 | 0.195 | 0.141 | 0.090 | 0.329 | |
Temperature | ||||||||
STD | 10.28 | 4.44 | 24.67 | 4.66 | 2.89 | 5.76 | 4.41 | |
Cold | 10.70 | 4.91 | 25.87 | 5.08 | 3.23 | 6.99 | 5.09 | |
SEM | 0.171 | 0.094 | 0.477 | 0.210 | 0.176 | 0.186 | 0.176 | |
p-values | ||||||||
Diet | <0.001 | 0.142 | <0.001 | <0.001 | 0.619 | <0.001 | <0.001 | |
Temperature | 0.061 | 0.003 | 0.079 | 0.125 | 0.143 | 0.007 | 0.008 | |
Diet × Temp | 0.375 | 0.981 | 0.504 | 0.513 | 0.908 | 0.817 | 0.943 |
Diet | Temp | ||||
---|---|---|---|---|---|
TAC, U/mL | CAT, U/mL | SOD, U/mL | HSP70, ng/mg | ||
Control | STD | 9.29 b | 3.71 b | 142.53 | 3.8 b |
Cold | 11.45 a | 5.60 a | 155.10 | 4.07 b | |
0.3% Gln | STD | 11.74 a | 5.73 a | 157.31 | 4.22 b |
Cold | 12.21 a | 6.20a | 158.67 | 5.56 a | |
0.5% Gln | STD | 11.97 a | 6.07 a | 158.18 | 5.13 a |
Cold | 12.32 a | 6.32 a | 159.78 | 5.65 a | |
SEM | 0.398 | 0.391 | 2.73 | 0.116 | |
Main Effects | |||||
Diet | |||||
Control | 10.37 b | 4.65 b | 148.81 b | 3.97 b | |
0.3% Gln | 11.97 a | 5.96 a | 157.99 a | 4.89 a | |
0.5% | 12.15 a | 6.20 a | 158.98 a | 5.39 a | |
SEM | 0.107 | 0.369 | 0.193 | 0.216 | |
Temperature | |||||
STD | 1.76 | 11.00 | 5.17 | 0.36 | |
Cold | 1.84 | 11.99 | 6.04 | 0.75 | |
SEM | 0.113 | 0.336 | 0.324 | 0.095 | |
p-values | |||||
Diet | <0.001 | <0.001 | 0.009 | <0.001 | |
Temperature | 0.586 | 0.014 | 0.022 | 0.019 | |
Diet × Temp | <0.001 | 0.016 | 0.132 | 0.002 |
Diet | Temp | |||||
---|---|---|---|---|---|---|
IL2, pg/mL | IL4, pg/mL | IL10, pg/mL | IFN-γ, pg/mL | Troponin, ng/mL | ||
Control | STD | 3.77 | 23.82 d | 22.66 e | 4.88 e | 0.0848 c |
Cold | 4.52 | 25.19 d | 25.38 d | 5.13 e | 0.095 c | |
0.3% Gln | STD | 5.04 | 29.26 c | 26.52 c, d | 5.94 d | 0.235 c |
Cold | 6.73 | 39.04 a | 31.77 b | 7.37 b | 1.06 a, b | |
0.5% Gln | STD | 6.19 | 32.91 b | 28.51 c | 6.46 c | 0.768 b |
Cold | 7.17 | 40.55 a | 34.74 a | 8.46 a | 1.10 a | |
SEM | 0.152 | 0.305 | 0.619 | 0.059 | 0.002 | |
Main Effects | ||||||
Diet | ||||||
Control | 4.14 b | 24.50 b | 24.02 b | 5.01 b | 0.09 b | |
0.3% Gln | 5.88 a | 34.15 a | 29.15 a | 6.65 a | 0.64 a | |
0.5% | 6.68 a | 36.73 a | 31.63 a | 7.46 a | 0.93 a | |
SEM | 0.147 | 0.342 | 0.825 | 0.047 | 0.001 | |
Temperature | ||||||
STD | 152.67 | 37.13 | 5.00 | 28.66 | 25.90 | |
Cold | 157.85 | 37.60 | 6.14 | 34.92 | 30.63 | |
SEM | 2.52 | 0.376 | 0.295 | 1.11 | 0.704 | |
p-values | ||||||
Diet | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Temperature | 0.100 | 0.344 | 0.015 | 0.008 | <0.001 | |
Diet × Temp | 0.111 | <0.001 | 0.003 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khalaifah, H.; Tolba, S.A.; Al-Nasser, A.; Gouda, A. Effects of Glutamine Supplementation and Early Cold Conditioning on Cold Stress Adaptability in Broilers. Animals 2025, 15, 1386. https://doi.org/10.3390/ani15101386
Al-Khalaifah H, Tolba SA, Al-Nasser A, Gouda A. Effects of Glutamine Supplementation and Early Cold Conditioning on Cold Stress Adaptability in Broilers. Animals. 2025; 15(10):1386. https://doi.org/10.3390/ani15101386
Chicago/Turabian StyleAl-Khalaifah, Hanan, Samar A. Tolba, Afaf Al-Nasser, and Ahmed Gouda. 2025. "Effects of Glutamine Supplementation and Early Cold Conditioning on Cold Stress Adaptability in Broilers" Animals 15, no. 10: 1386. https://doi.org/10.3390/ani15101386
APA StyleAl-Khalaifah, H., Tolba, S. A., Al-Nasser, A., & Gouda, A. (2025). Effects of Glutamine Supplementation and Early Cold Conditioning on Cold Stress Adaptability in Broilers. Animals, 15(10), 1386. https://doi.org/10.3390/ani15101386