Influence of Heat Stress on Milk Production, Milk Quality, and Somatic Cell Count in Galicia (NW Spain)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Population, Study Animals, and Climate Data
2.2. Statistical Analysis
3. Results
3.1. Estimation of Heat Stress Effect
3.2. Accumulation of Stressful Days
4. Discussion
4.1. Effect of HS on MY, Protein, Fat, ECM, and LS
4.2. Duration of HS Event
4.3. Effect of Lactation Number
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohmanova, J.; Misztal, I.; Cole, J.B. Temperature-humidity indices as indicators of milk production losses due to heat stress. J. Dairy Sci. 2007, 90, 1947–1956. [Google Scholar] [CrossRef]
- Thom, E.C. The discomfort index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Cook, N.B.; Mentink, R.L.; Bennett, T.B.; Burgi, K. The Effect of Heat Stress and Lameness on Time Budgets of Lactating Dairy Cows. J. Dairy Sci. 2007, 90, 1674–1682. [Google Scholar] [CrossRef] [PubMed]
- Tresoldi, G.; Schütz, K.E.; Tucker, C.B. Assessing heat load in drylot dairy cattle: Refining on-farm sampling methodology. J. Dairy Sci. 2016, 99, 8970–8980. [Google Scholar] [CrossRef]
- Bouraoui, R.; Lahmar, M.; Majdoub, A.; Djemali, M.; Belyea, R. The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res. 2002, 51, 479–491. [Google Scholar] [CrossRef]
- Wheelock, J.B.; Rhoads, R.P.; VanBaale, M.J.; Sanders, S.R.; Baumgard, L.H. Effects of heat stress on energetic metabolism in lactating Holstein cows. J. Dairy Sci. 2010, 93, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Fundación Juana de Vega. Informe Sobre a Produción de Leite de Vaca nas Rexións NUTS-2 da UE-27 (10; Informe Sectorial). Available online: https://juanadevega.org/wp-content/uploads/2024/02/INFORME-SOBRE-A-PRODUCION-DE-LEITE-DE-VACA-NAS-REXIONS-NUTS-2-DA-UE-27.pdf (accessed on 9 April 2024).
- CEGACOL. Available online: https://cegcol.xunta.gal/ (accessed on 11 April 2024).
- MeteoGalicia. Available online: https://www.meteogalicia.gal/web/home (accessed on 2 July 2024).
- Reincke, K.; Saha, A.; Wyrzykowski, Ł. The Global Dairy World 2017/18. Results of the IFCN Dairy Report 2018. Available online: https://ifcndairy.org/wp-content/uploads/2018/10/Dairy-Report-Article-2018.pdf (accessed on 14 May 2024).
- National Research Council. A Guide to Environmental Research on Animals, 1st ed.; The National Academies Press: Washington, DC, USA, 1971; pp. 54–55. [Google Scholar]
- Ravagnolo, O.; Misztal, I. Genetic component of heat stress in dairy cattle, parameter estimation. J. Dairy Sci. 2000, 83, 2126–2130. [Google Scholar] [CrossRef]
- Ouellet, V.; Bellavance, A.L.; Fournel, S.; Charbonneau, É. Short communication: Summer on-farm environmental condition assessments in Québec tiestall farms and adaptation of temperature- humidity index calculated with local meteorological data. J. Dairy Sci. 2019, 102, 7503–7508. [Google Scholar] [CrossRef]
- Bernabucci, U.; Biffani, S.; Buggiotti, L.; Vitali, A.; Lacetera, N.; Nardone, A. The effects of heat stress in Italian Holstein dairy cattle. J. Dairy Sci. 2014, 97, 471–486. [Google Scholar] [CrossRef]
- Maggiolino, A.; Dahl, G.E.; Bartolomeo, N.; Bernabucci, U.; Vitali, A.; Serio, G.; Cassandro, M.; Centoducati, G.; Santus, E.; De Palo, P. Estimation of maximum thermo-hygrometric index thresholds affecting milk production in Italian Brown Swiss cattle. J. Dairy Sci. 2020, 103, 8541–8553. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 15 May 2024).
- Muggeo, V.M.R. Estimating regression models with unknown break-points. Stat. Med. 2003, 22, 3055–3071. [Google Scholar] [PubMed]
- AEMET; IPMA. AEMETIberian Climate Atlas. Air Temperature and Precipitation (1971–2000), 1st ed.; Agencia Estatal de Meteorología and Instituto de Meteorologia de Portugal: Madrid, Spain, 2011; pp. 16–18. [Google Scholar]
- Armstrong, D.V. Heat stress interaction with shade and cooling. J. Dairy Sci. 1994, 77, 2044–2050. [Google Scholar] [PubMed]
- Moore, S.S.; Costa, A.; Penasa, M.; De Marchi, M. Effects of different temperature-humidity indexes on milk traits of Holstein cows: A 10-yr retrospective study. J. Dairy Sci. 2024, 107, 3669–3687. [Google Scholar]
- Carabaño, M.J.; Bachagha, K.; Ramón, M.; Díaz, C. Modeling heat stress effect on Holstein cows under hot and dry conditions: Selection tools. J. Dairy Sci. 2014, 97, 7889–7904. [Google Scholar] [CrossRef]
- Campos, I.L.; Schud, T.C.; Oliveira, H.R.; Baes, C.F.; Cánovas, A.; Schenkel, F.S. Using publicly available weather station data to investigate the effects of heat stress on milk production traits in Canadian Holstein cattle. Can. J. Anim. Sci. 2022, 102, 368–381. [Google Scholar]
- Bertocchi, L.; Vitali, A.; Lacetera, N.; Nardone, A.; Varisco, G.; Bernabucci, U. Seasonal variations in the composition of Holstein cow’s milk and temperature–humidity index relationship. Animal 2014, 8, 667–674. [Google Scholar]
- Becker, C.A.; Collier, R.J.; Stone, A.E. Invited review: Physiological and behavioral effects of heat stress in dairy cows. J. Dairy Sci. 2020, 103, 6751–6770. [Google Scholar] [CrossRef]
- Hammami, H.; Bormann, J.; M’hamdi, N.; Montaldo, H.H.; Gengler, N. Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment. J. Dairy Sci. 2013, 96, 1844–1855. [Google Scholar]
- Ekine-Dzivenu, C.C.; Mrode, R.; Oyieng, E.; Komwihangilo, D.; Lyatuu, E.; Msuta, G.; Ojango, J.M.K.; Okeyo, A.M. Evaluating the impact of heat stress as measured by temperature-humidity index (THI) on test-day milk yield of small holder dairy cattle in a sub-Sahara African climate. Livest. Sci. 2020, 242, 104314. [Google Scholar] [CrossRef]
- Brügemann, K.; Gernand, E.; von Borstel, U.K.; König, S. Defining and evaluating heat stress thresholds in different dairy cow production systems. Arch. Tierz. 2012, 55, 13–24. [Google Scholar]
- Gorniak, T.; Meyer, U.; Südekum, K.H.; Dänicke, S. Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate. Arch. Anim. Nutr. 2014, 68, 358–369. [Google Scholar] [PubMed]
- Ravagnolo, O.; Misztal, I.; Hoogenboom, G. Genetic component of heat stress in dairy cattle, development of heat index function. J. Dairy Sci. 2000, 83, 2120–2125. [Google Scholar] [PubMed]
- Carabaño, M.J.; Logar, B.; Bormann, J.; Minet, J.; Vanrobays, M.L.; Díaz, C.; Tychon, B.; Gengler, N.; Hammami, H. Modeling heat stress under different environmental conditions. J. Dairy Sci. 2016, 99, 3798–3814. [Google Scholar]
- Chang-Fung-Martel, J.; Harrison, M.T.; Brown, J.N.; Rawnsley, R.; Smith, A.P.; Meinke, H. Negative relationship between dry matter intake and the temperature-humidity index with increasing heat stress in cattle: A global meta-analysis. Int. J. Biometeorol. 2021, 65, 2099–2109. [Google Scholar]
- Sammad, A.; Wang, Y.J.; Umer, S.; Lirong, H.; Khan, I.; Khan, A.; Ahmad, B.; Wang, Y. Nutritional physiology and biochemistry of dairy cattle under the influence of heat stress: Consequences and opportunities. Animals 2020, 10, 793. [Google Scholar] [CrossRef]
- Baumgard, L.H.; Rhoads, R. Ruminant Production and Metabolic Responses to Heat Stress. J. Anim. Sci. 2012, 90, 1855–1865. [Google Scholar]
- Lambertz, C.; Sanker, C.; Gauly, M. Climatic effects on milk production traits and somatic cell score in lactating Holstein-Friesian cows in different housing systems. J. Dairy Sci. 2014, 97, 319–329. [Google Scholar]
- Hagiya, K.; Bamba, I.; Osawa, T.; Atagi, Y.; Takusari, N.; Itoh, F.; Yamazaki, T. Length of lags in responses of milk yield and somatic cell score on test day to heat stress in Holsteins. Anim. Sci. J. 2019, 90, 613–618. [Google Scholar]
- Souza, V.C.; Moraes, L.E.; Santos, J.E.P.; Mueller, N.D.; Kebreab, E. Modeling feed intake and milk yield depression in dairy cows under heat stress. Anim. Sci. Proc. 2022, 13, 520–521. [Google Scholar]
- Lee, D.; Yoo, D.; Kim, H.; Seo, J. Negative association between high temperature-humidity index and milk performance and quality in Korean dairy system: Big data analysis. J. Anim. Sci. Technol. 2023, 65, 588–595. [Google Scholar] [PubMed]
- Chen, L.; Thorup, V.M.; Kudahl, A.B.; Østergaard, S. Effects of heat stress on feed intake, milk yield, milk composition, and feed efficiency in dairy cows: A meta-analysis. J. Dairy Sci. 2024, 107, 3207–3218. [Google Scholar] [PubMed]
- Holter, J.B.; West, J.W.; McGilliard, M.L.; Pell, A.N. Predicting ad libitum dry matter intake and yields of Jersey cows. J. Dairy Sci. 1996, 79, 912–921. [Google Scholar] [PubMed]
- Manica, E.; Pereira Coltri, P.; Madeira Pacheco, V.; Silva Martello, L. Changes in the pattern of heat waves and the impacts on Holstein cows in a subtropical region. Int. J. Biometeorol. 2022, 66, 2477–2488. [Google Scholar]
- Ouellet, V.; Cabrera, V.E.; Fadul-Pacheco, L.; Charbonneau, É. The relationship between the number of consecutive days with heat stress and milk production of Holstein dairy cows raised in a humid continental climate. J. Dairy Sci. 2019, 102, 8537–8545. [Google Scholar]
- Heinicke, J.; Ibscher, S.; Belik, V.; Amon, T. Cow individual activity response to the accumulation of heat load duration. J. Therm. Biol. 2019, 82, 23–32. [Google Scholar]
- Burhans, W.S. Invited review: Lethal heat stress: The putative pathophysiology of a deadly disorder in dairy cattle. J. Dairy Sci. 2022, 105, 3716–3735. [Google Scholar]
- Hou, Y.; Zhang, L.; Dong, R.Y.; Liang, M.Y.; Lu, Y.; Sun, X.Q.; Zhao, X. Comparing responses of dairy cows to short-term and long-term heat stress in climate-controlled chambers. J. Dairy Sci. 2021, 104, 2346–2356. [Google Scholar]
- Nanas, I.; Barbagianni, M.; Dadouli, K.; Dovolou, E.; Amiridis, G.S. Ultrasonographic findings of the corpus luteum and the gravid uterus during heat stress in dairy cattle. Reprod. Domest. Anim. 2021, 53, 1329–1341. [Google Scholar]
- Schüller, L.K.; Burfeind, O.; Heuwiesr, W. Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature-humidity index thresholds, periods relative to breeding, and heat load indices. Theriogenology 2014, 81, 1050–1057. [Google Scholar]
- Lovarelli, D.; Minozzi, G.; Arazi, A.; Guarino, M.; Tiezzi, F. Effect of extended heat stress in dairy cows on productive and behavioral traits. Animal 2024, 18, 101089. [Google Scholar] [PubMed]
- Könyves, T.; Zlatković, N.; Memiši, N.; Lukač, D.; Puvača, N.; Stojšin, M.; Halász, A.; Miščević, B. Relationship of temperature-humidity index with milk production and feed intake of holstein-frisian cows in different year seasons. Thai J. Vet. Med. 2017, 47, 15–23. [Google Scholar]
- Giannone, C.; Bovo, M.; Ceccarelli, M.; Torreggiani, D.; Tassinari, P. Review of the heat stress-induced responses in dairy cattle. Animals 2023, 13, 3451. [Google Scholar] [CrossRef] [PubMed]
Min | Q1 | Mean | Median | Q3 | Max | |
---|---|---|---|---|---|---|
MY (kg/d) | 4.00 | 29.20 | 35.69 | 35.00 | 41.90 | 90.80 |
ECM (kg/d) | 2.97 | 28.73 | 34.96 | 34.21 | 40.44 | 103.58 |
Protein (%) | 2.00 | 3.80 | 3.32 | 3.30 | 3.54 | 5.00 |
Protein (kg/d) | 0.11 | 0.98 | 1.17 | 1.16 | 1.36 | 3.19 |
Fat (%) | 1.50 | 3.32 | 3.90 | 3.85 | 4.43 | 7.00 |
Fat (kg/d) | 0.08 | 1.07 | 1.37 | 1.31 | 1.60 | 5.38 |
LS (units) | 0.10 | 0.90 | 2.47 | 2.10 | 3.60 | 9.60 |
Mean | No Data | Min | Max | |
---|---|---|---|---|
Mean Temp. (°C) | 12.5 | 5.24 | −3.5 | 30.0 |
Max Temp. (°C) | 17.6 | 6.52 | −1.9 | 41.7 |
Mean Humidity (%) | 83 | 11.3 | 13 | 100 |
Min Humidity (%) | 62 | 18.2 | 2 | 100 |
THI | 61 | 8.7 | 32 | 88 |
Days Prior | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Weighted THI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Milk yield (kg/d) | BP | 73 | 73 | 70 | 73 | 67 | 70 | 78 | 72 | |||||
a | −0.016 * | |||||||||||||
b | −0.056 ** | −0.156 **** | −0.097 **** | −0.125 *** | −0.068 **** | −0.063 **** | −0.249 **** | |||||||
R2 | 0.277 | 0.648 | 0.878 | 0.802 | 0.635 | 0.668 | 0.759 | |||||||
Energy corrected milk (kg/d) | BP | 59 | 72 | 68 | 73 | 60 | 70 | 59 | 77 | 68 | ||||
a | −0.023 **** | −0.017 *** | −0.011 *** | |||||||||||
b | −0.028 **** | −0.161 **** | −0.107 **** | −0.157 **** | −0.049 **** | −0.088 **** | −0.031 **** | −0.094 *** | ||||||
R2 | 0.416 | 0.773 | 0.906 | 0.901 | 0.817 | 0.919 | 0.648 | 0.669 | ||||||
Protein (%) | BP | 69 | 75 | 65 | 67 | 61 | 57 | 60 | 57 | 57 | 60 | 79 | 64 | 64 |
a | −0.001 **** | −0.002 **** | −0.001 ** | −0.001 * | −0.000 * | |||||||||
b | −0.005 **** | −0.008 **** | −0.003 *** | −0.003 *** | −0.002 **** | −0.002 **** | −0.002 **** | −0.001 **** | −0.001 **** | −0.001 **** | −0.010 ** | −0.001 ** | ||
R2 | 0.941 | 0.928 | 0.937 | 0.879 | 0.915 | 0.907 | 0.909 | 0.463 | 0.416 | 0.815 | 0.441 | 0.337 | ||
Protein (kg/d) | BP | 73 | 74 | 70 | 73 | 63 | 63 | 77 | 71 | |||||
a | −0.001 * | −0.001 ** | −0.001 ** | −0.001 *** | −0.001 **** | |||||||||
b | −0.004 *** | −0.008 **** | −0.004 **** | −0.006 **** | −0.002 **** | −0.002 **** | −0.005 *** | |||||||
R2 | 0.768 | 0.875 | 0.937 | 0.882 | 0.736 | 0.716 | 0.780 | |||||||
Fat (%) | BP | 61 | 61 | 58 | 77 | 58 | 64 | 63 | ||||||
a | −0.002 **** | |||||||||||||
b | −0.002 **** | −0.002 **** | −0.002 **** | −0.011 * | −0.004 **** | −0.002 ** | ||||||||
R2 | 0.477 | 0,341 | 0.606 | 0.740 | 0.819 | 0.226 | ||||||||
Fat (kg/d) | BP | 58 | 73 | 68 | 72 | 60 | 72 | 76 | 54 | 59 | 57 | 69 | ||
a | −0.001 * | −0.001 ** | −0.001 **** | −0.001 **** | ||||||||||
b | −0.001 **** | −0.006 *** | −0.004 **** | −0.006 **** | −0.002 **** | −0.005 **** | −0.006 * | −0.001 **** | −0.001 *** | −0.001 *** | ||||
R2 | 0.724 | 0.748 | 0.861 | 0.876 | 0.793 | 0.923 | 0.792 | 0.632 | 0.390 | 0.337 | ||||
LS (units) | BP | 81 | 80 | 78 | 76 | 80 | 73 | 78 | 73 | 81 | 78 | |||
a | ||||||||||||||
b | 0.033 * | 0.136 **** | 0.017 *** | 0.016 **** | 0.092 **** | 0.008 ** | 0.072 **** | 0.010 **** | 0.058 ** | |||||
R2 | 0.082 | 0.650 | 0.238 | 0.415 | 0.795 | 0.173 | 0.836 | 0.360 | 0.193 |
Number of Consecutive Days with Heat Stress | ||||||
---|---|---|---|---|---|---|
0 | 1 | 2–3 | 4–5 | 6–7 | 8–12 | |
Milk yield (kg/d) THI > 72 | 336,846 (74%) | 34,585 (8%) | 44,551 (10%) | 25,587 (6%) | 15,596 (3%) | |
Energy corrected milk (kg/d) THI > 68 | 261,428 (57%) | 33,193 (7%) | 54,086 (12%) | 42,094 (9%) | 38,142 (8%) | 28,222 (6%) |
Protein (%) THI > 64 | 189,584 (41%) | 29,841 (7%) | 42,552 (9%) | 39,581 (9%) | 34,693 (8%) | 120,914 (18%) |
Protein (kg/d) THI > 71 | 319,282 (70%) | 34,690 (8%) | 49,722 (11%) | 30,794 (7%) | 22,677 (5%) | |
Fat (%) THI > 64 | 217,635 (48%) | 39,175 (9%) | 70,538 (15%) | 129,817 (28%) | ||
Fat (kg/d) THI > 68 | 268,576 (59%) | 34,238 (7%) | 56,371 (12%) | 44,887 (10%) | 53,093 (12%) | |
Linear Score (units) THI > 78 | 436,747 (96%) | 11,438 (3%) | 7379 (2%) | 1555 (0%) | 46 (0%) |
CONSEC HS | Milk Yield (kg/d) | ECM (kg/d) | Protein (%) | Protein (kg/d) | Fat (%) | Fat (kg/d) | LS (units) | |
---|---|---|---|---|---|---|---|---|
LN = 1 | 0 | 33.67 a | 32.15 a | 3.30 a | 1.11 a | 3.67 a | 1.22 a | 1.89 a |
1 | 33.52 ab | 32.11 ab | 3.30 a | 1.11 a | 3.67 a | 1.22 a | 1.93 ab | |
2–3 | 33.56 ab | 32.00 ab | 3.30 a | 1.10 a | 3.68 a | 1.22 a | 1.99 b | |
4–5 | 33.41 b | 31.95 b | 3.30 a | 1.09 b | 3.64 b | 1.21 a | 1.99 ab | |
6–7 | 33.08 c | 31.66 c | 3.29 a | 1.09 b | 1.20 b | 2.16 ab | ||
8+ | 31.61 c | 3.28 b | ||||||
LN = 2 | 0 | 39.10 a | 37.40 a | 3.30 a | 1.28 a | 3.71 a | 1.43 a | 2.24 a |
1 | 39.23 a | 37.36 ab | 3.29 b | 1.27 b | 3.68 ab | 1.43 a | 2.27 a | |
2–3 | 39.03 ab | 37.36 a | 3.29 b | 1.27 b | 3.68 b | 1.43 a | 2.30 a | |
4–5 | 38.86 b | 37.13 b | 3.28 bc | 1.25 c | 3.67 c | 1.41 b | 2.21 a | |
6–7 | 38.24 c | 36.69 c | 3.28 c | 1.25 c | 1.39 c | 2.10 a | ||
8+ | 36.57 c | 3.25 d | ||||||
LN = 3 | 0 | 40.64 a | 38.79 a | 3.27 a | 1.32 a | 3.70 a | 1.49 a | 2.74 a |
1 | 40.72 a | 38.82 a | 3.26 b | 1.31 a | 3.67 b | 1.50 a | 2.76 a | |
2–3 | 40.49 ab | 38.63 a | 3.26 b | 1.30 b | 3.67 b | 1.48 b | 2.78 a | |
4–5 | 40.26 b | 38.34 b | 3.25 bc | 1.29 c | 3.66 b | 1.46 c | 2.71 a | |
6–7 | 39.70 c | 38.01 c | 3.24 c | 1.27 d | 1.44 d | 2.09 a | ||
8+ | 37.71 d | 3.22 d | ||||||
LN = 4–5 | 0 | 40.34 a | 38.45 a | 3.25 a | 1.30 a | 3.70 a | 1.48 a | 3.21 a |
1 | 40.31 ab | 38.40 a | 3.25 a | 1.29 b | 3.67 bc | 1.47 ab | 3.19 a | |
2–3 | 40.05 bc | 38.04 b | 3.23 b | 1.28 b | 3.68 b | 1.46 b | 3.33 b | |
4–5 | 39.84 c | 37.95 b | 3.23 bc | 1.26 c | 3.65 c | 1.45 c | 3.34 ab | |
6–7 | 39.33 d | 37.53 c | 3.22 c | 1.26 c | 1.43 d | 3.45 ab | ||
8+ | 37.25 c | 3.20 d | ||||||
LN = 6–8 | 0 | 38.36 a | 36.69 a | 3.23 a | 1.23 a | 3.75 a | 1.42 a | 3.72 a |
1 | 38.19 ab | 36.69 ab | 3.22 ab | 1.22 ab | 3.76 a | 1.40 abc | 3.88 a | |
2–3 | 37.99 ab | 36.31 ab | 3.22 ab | 1.21 b | 3.68 b | 1.40 ab | 3.43 b | |
4–5 | 37.50 b | 36.17 bc | 3.21 ab | 1.19 c | 3.69 b | 1.38 bc | 3.54 ab | |
6–7 | 37.36 b | 35.64 c | 3.20 b | 1.18 c | 1.37 c | - | ||
8+ | 35.47 c | 3.18 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Besteiro, R.; Fouz, R.; Diéguez, F.J. Influence of Heat Stress on Milk Production, Milk Quality, and Somatic Cell Count in Galicia (NW Spain). Animals 2025, 15, 945. https://doi.org/10.3390/ani15070945
Besteiro R, Fouz R, Diéguez FJ. Influence of Heat Stress on Milk Production, Milk Quality, and Somatic Cell Count in Galicia (NW Spain). Animals. 2025; 15(7):945. https://doi.org/10.3390/ani15070945
Chicago/Turabian StyleBesteiro, Roberto, Ramiro Fouz, and Francisco Javier Diéguez. 2025. "Influence of Heat Stress on Milk Production, Milk Quality, and Somatic Cell Count in Galicia (NW Spain)" Animals 15, no. 7: 945. https://doi.org/10.3390/ani15070945
APA StyleBesteiro, R., Fouz, R., & Diéguez, F. J. (2025). Influence of Heat Stress on Milk Production, Milk Quality, and Somatic Cell Count in Galicia (NW Spain). Animals, 15(7), 945. https://doi.org/10.3390/ani15070945