Medium-Chain Fatty Acids Extracted from Black Soldier Fly (Hermetia illucens) Larvae Prevents High-Fat Diet-Induced Obesity In Vivo in C57BL/6J Mice
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Rearing BSFL
2.2. Extraction of Crude Oil from BSFL and MCFA Preparation
2.3. Animal Experiments
2.4. Animal Diet
2.5. Measurement of Blood Lipid Levels
2.6. Analysis of Liver Injury Indicators in the Blood
2.7. Analysis of Kidney Function Indicators in the Blood
2.8. Evaluation of Glucose and Leptin Concentrations in the Blood
2.9. Quantitative Real-Time Polymerase Chain Reaction (PCR)
2.10. Statistical Analysis
3. Results
3.1. Fatty Acid Compositon of BSFL Crude Lipids
3.2. Effect of MCFAs on Weight Gain of Mice Fed HFD
3.3. Effect of MCFAs on Blood Lipid Parameters
3.4. Effect of MCFAs on Liver Injury and Kidney Function
3.5. Effect of MCFAs on Blood Glucose and Leptin Levels
3.6. Effect of MCFAs on the Expression of ER Stress Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCFAs | Medium-chain fatty acids |
BSFL | Black soldier fly larvae |
HFD | High-fat diet |
ER | Endoplasmic reticulum |
ND | Normal diet |
FER | Food efficiency |
AI | Atherogenic index |
CRF | Cardiac risk factor |
References
- Romieu, I.; Dossus, L.; Barquera, S.; Blottière, H.M.; Franks, P.W.; Gunter, M.; Hwalla, N.; Hursting, S.D.; Leitzmann, M.; Margetts, B. Energy balance and obesity: What are the main drivers? Cancer Causes Control 2017, 28, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Phelps, N.H.; Singleton, R.K.; Zhou, B.; Heap, R.A.; Mishra, A.; Bennett, J.E.; Paciorek, C.J.; Lhoste, V.P.; Carrillo-Larco, R.M.; Stevens, G.A. Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef] [PubMed]
- Bray, G.A. Obesity: The disease. J. Med. Chem. 2006, 49, 4001–4007. [Google Scholar] [CrossRef]
- Sullivan, P.W.; Ghushchyan, V.H.; Ben-Joseph, R. The impact of obesity on diabetes, hyperlipidemia and hypertension in the United States. Qual. Life Res. 2008, 17, 1063–1071. [Google Scholar] [CrossRef]
- Ortega, F.B.; Lavie, C.J.; Blair, S.N. Obesity and cardiovascular disease. Circ. Res. 2016, 118, 1752–1770. [Google Scholar] [CrossRef]
- Wolin, K.Y.; Carson, K.; Colditz, G.A. Obesity and cancer. Oncologist 2010, 15, 556–565. [Google Scholar] [CrossRef]
- Fortunato, L.M.; Kruk, T.; Júnior, E.L. Relationship between obesity and musculoskeletal disorders: Systematic review and meta-analysis. Res. Soc. Dev. 2021, 10, e119101320212. [Google Scholar] [CrossRef]
- Xing, W.; Li, S. Fat Metabolism-related lncRNA and Target Regulation and Application Studies in Chickens. Pak. Vet. J. 2023, 43, 579–584. [Google Scholar]
- Baker, J.; Supriya, R.; Dutheil, F.; Gao, Y. Obesity: Treatments, conceptualizations, and future directions for a growing problem. Biology 2022, 11, 160. [Google Scholar] [CrossRef]
- Tucker, S.; Bramante, C.; Conroy, M.; Fitch, A.; Gilden, A.; Wittleder, S.; Jay, M. The most undertreated chronic disease: Addressing obesity in primary care settings. Curr. Obes. Rep. 2021, 10, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.K.; Heilbronn, L.K.; De Jonge, L.; DeLany, J.P.; Volaufova, J.; Anton, S.D.; Redman, L.M.; Smith, S.R.; Ravussin, E. Effect of calorie restriction on resting metabolic rate and spontaneous physical activity. Obesity 2007, 15, 2964–2973. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Rosen, C.J. New insights into calorie restriction induced bone loss. Endocrinol. Metab. 2023, 38, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Abedelmalek, S.; Chtourou, H.; Souissi, N.; Tabka, Z. Caloric restriction effect on proinflammatory cytokines, growth hormone, and steroid hormone concentrations during exercise in judokas. Oxid. Med. Cell. Longev. 2015, 2015, 809492. [Google Scholar] [CrossRef]
- DuVall, M.A.; Coulter, C.E.; Gosey, J.L.; Herrera, M.J.; Hill, C.M.; Jariwala, R.R.; Maisano, L.E.; Moldovan, L.A.; Morrison, C.D.; Nwabueze, N.V. Leptin treatment prevents impaired hypoglycemic counterregulation induced by exposure to severe caloric restriction or exposure to recurrent hypoglycemia. Auton. Neurosci. 2021, 235, 102853. [Google Scholar] [CrossRef]
- Blundell, J.E.; Stubbs, J. Diet composition and the control of food intake in humans. In Handbook of Obesity; CRC Press: Boca Raton, FL, USA, 2003; pp. 443–476. [Google Scholar]
- Koliaki, C.; Spinos, T.; Spinou, Μ.; Brinia, Μ.-E.; Mitsopoulou, D.; Katsilambros, N. Defining the optimal dietary approach for safe, effective and sustainable weight loss in overweight and obese adults. Healthcare 2018, 6, 73. [Google Scholar] [CrossRef]
- Nimbkar, S.; Leena, M.M.; Moses, J.; Anandharamakrishnan, C. Medium chain triglycerides (MCT): State-of-the-art on chemistry, synthesis, health benefits and applications in food industry. Compr. Rev. Food Sci. Food Saf. 2022, 21, 843–867. [Google Scholar] [CrossRef]
- Watanabe, S.; Tsujino, S. Applications of medium-chain triglycerides in foods. Front. Nutr. 2022, 9, 802805. [Google Scholar] [CrossRef]
- Rasheed, M.; Zaman, M.A.; Zafar, A.; Khan, M.A.; Anjum, S.; Ali, H.M.; Hussain, S.; Zafar, M.; Yasin, J.; Hussain, R. Prophylactic Effects of Methylene Blue, Coconut and Olive Oils Supplements on Hemato-Biochemical and Histo-pathological Parameters against p-Phenylenediamine Toxicity in Male Albino Rats. Pak. Vet. J. 2024, 44, 840–846. [Google Scholar]
- Ndiaye, E.M.; El Idrissi, Y.; Sow, A.; Ayessou, N.C.; El Moudden, H.; Harhar, H.; Cisse, M.; Tabyaoui, M. Influence of the extraction process on the chemical composition and oxidation state of baobab (Adansonia digitata L.) seed oil. J. Glob. Innov. Agric. Sci. 2024, 12, 45–52. [Google Scholar] [CrossRef]
- Rial, S.A.; Jutras-Carignan, A.; Bergeron, K.-F.; Mounier, C. A high-fat diet enriched in medium chain triglycerides triggers hepatic thermogenesis and improves metabolic health in lean and obese mice. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2020, 1865, 158582. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Ross, R.; Parsons, W.D.; Jones, P.J. Medium-chain triglycerides increase energy expenditure and decrease adiposity in overweight men. Obes. Res. 2003, 11, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Wein, S.; Wolffram, S.; Schrezenmeir, J.; Gašperiková, D.; Klimeš, I.; Šeböková, E. Medium-chain fatty acids ameliorate insulin resistance caused by high-fat diets in rats. Diabetes Metab. Res. Rev. 2009, 25, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Alexandrou, E.; Herzberg, G.R.; White, M.D. High-level medium-chain triglyceride feeding and energy expenditure in normal-weight women. Can. J. Physiol. Pharmacol. 2007, 85, 507–513. [Google Scholar] [CrossRef]
- Takeuchi, H.; Noguchi, O.; Sekine, S.; Kobayashi, A.; Aoyama, T. Lower weight gain and higher expression and blood levels of adiponectin in rats fed medium-chain TAG compared with long-chain TAG. Lipids 2006, 41, 207–212. [Google Scholar] [CrossRef]
- Jia, M.; Yue, H.; Wang, X.; Zong, A.; Xu, T.; Xu, Y.-J.; Liu, Y. Medium-chain triglyceride attenuates obesity by activating brown adipose tissue via upregulating the AMPK signaling pathway. J. Nutr. Biochem. 2025, 141, 109914. [Google Scholar] [CrossRef]
- Gupta, R.; Pierdzioch, C. Climate risk and the volatility of agricultural commodity price fluctuations: A prediction experiment. In Behavioral Finance and Asset Prices: The Influence of Investor’s Emotions; Springer: Berlin/Heidelberg, Germany, 2022; pp. 23–44. [Google Scholar]
- Umar, Z.; Gubareva, M.; Naeem, M.; Akhter, A. Return and volatility transmission between oil price shocks and agricultural commodities. PLoS ONE 2021, 16, e0246886. [Google Scholar] [CrossRef]
- Nguyen, H.; Randall, M.; Lewis, A. Factors affecting crop prices in the context of climate change—A review. Agriculture 2024, 14, 135. [Google Scholar] [CrossRef]
- Dossa, L.I.K.-T.; Bashir, M.K.; Hassan, S.; Mushtaq, K. Impact of climate change on agricultural production in Burkina Faso, West Africa. J. Glob. Innov. Agric. Sci. 2023, 11, 319–332. [Google Scholar] [CrossRef]
- Kioko, M.; Ndirangu, S.; Nyarindo, W. Evaluating effect of climate smart agricultural practices adoption on productivity of drought-tolerant pulses: Insights from dryland areas of Makueni County, Kenya. J. Glob. Innov. Agric. Sci. 2024, 12, 803–813. [Google Scholar] [CrossRef]
- Mun, S.-K.; Jang, C.J.; Jo, S.; Park, S.-H.; Sim, H.B.; Ramos, S.C.; Kim, H.; Choi, Y.-J.; Park, D.-H.; Park, K.-W. Anti-obesity and immunomodulatory effects of oil and fermented extract dried from Tenebrio molitor larvae on aged obese mice. Anim. Cells Syst. 2024, 28, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Marschall, M.J.; Grundmann, S.M.; Seel, W.; Simon, M.-C.; Schuchardt, S.; Most, E.; Gessner, D.K.; Wen, G.; Ringseis, R.; Eder, K. Fat from Hermetia illucens alters the cecal gut microbiome and lowers hepatic triglyceride concentration in comparison to palm oil in obese zucker rats. J. Nutr. 2024, 154, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Boakye-Yiadom, K.A.; Ilari, A.; Duca, D. Greenhouse gas emissions and life cycle assessment on the black soldier fly (Hermetia illucens L.). Sustainability 2022, 14, 10456. [Google Scholar] [CrossRef]
- Lee, K.-S.; Yun, E.-Y.; Goo, T.-W. Antimicrobial activity of an extract of Hermetia illucens larvae immunized with Lactobacillus casei against Salmonella species. Insects 2020, 11, 704. [Google Scholar] [CrossRef]
- Xia, J.; Ge, C.; Yao, H. Antimicrobial peptides from black soldier fly (Hermetia illucens) as potential antimicrobial factors representing an alternative to antibiotics in livestock farming. Animals 2021, 11, 1937. [Google Scholar] [CrossRef]
- Franco, A.; Scieuzo, C.; Salvia, R.; Pucciarelli, V.; Borrelli, L.; Addeo, N.F.; Bovera, F.; Laginestra, A.; Schmitt, E.; Falabella, P. Antimicrobial activity of lipids extracted from Hermetia illucens reared on different substrates. Appl. Microbiol. Biotechnol. 2024, 108, 167. [Google Scholar] [CrossRef]
- Dayrit, F.M. The properties of lauric acid and their significance in coconut oil. J. Am. Oil Chem. Soc. 2015, 92, 1–15. [Google Scholar] [CrossRef]
- Ibrahim, N.A. Characteristics of Malaysian palm kernel and its products. J. Oil Palm Res. 2013, 25, 245–252. [Google Scholar]
- Suryati, T.; Julaeha, E.; Farabi, K.; Ambarsari, H.; Hidayat, A.T. Lauric acid from the black soldier fly (Hermetia illucens) and its potential applications. Sustainability 2023, 15, 10383. [Google Scholar] [CrossRef]
- Yoon, J.S. Effects of Black Soldier Fly (Hermetia illucens) Larvae Oil and Meal on Growth Performance, Cecal Microflora, and Meat Quality in Broiler. Ph.D. Thesis, Seoul National University Graduate School, Seoul, Republic of Korea, 2021. [Google Scholar]
- Koutsos, E.; Modica, B.; Freel, T. Immunomodulatory potential of black soldier fly larvae: Applications beyond nutrition in animal feeding programs. Transl. Anim. Sci. 2022, 6, txac084. [Google Scholar] [CrossRef]
- Eickleberry, C. Impacts of Black Soldier Fly (Hermetia Illucens) Larvae Oil on Sow Reproductive Efficiency, Nursery Pig Performance, and Hematological Criteria; North Carolina State University: Raleigh, NC, USA, 2023. [Google Scholar]
- Lee, K.-S.; Yun, E.-Y.; Goo, T.-W. Optimization of feed components to improve Hermetia illucens growth and development of oil extractor to produce biodiesel. Animals 2021, 11, 2573. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Lee, Y.; Kim, J.; Park, S.Y.; Lee, K.; Hwang, K.T. Physicochemical characteristics and anti-oxidant activities of farm-cultivated and mountain-cultivated ginseng seeds. Food Sci. Biotechnol. 2018, 27, 1257–1264. [Google Scholar] [CrossRef]
- Chen, Y.; She, Y.; Lei, J.; Wang, D.; Wu, S.; Men, K. Medium chain fatty acids: Extraction, isolation, purification, bioactive properties and application. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 705, p. 012013. [Google Scholar]
- Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Fossati, P.; Prencipe, L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin. Chem. 1982, 28, 2077–2080. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Olamoyegun, M.A.; Oluyombo, R.; Asaolu, S.O. Evaluation of dyslipidemia, lipid ratios, and atherogenic index as cardiovascular risk factors among semi-urban dwellers in Nigeria. Ann. Afr. Med. 2016, 15, 194–199. [Google Scholar] [CrossRef]
- Talke, H.; Schubert, G. Enzymatic urea determination in the blood and serum in the Warburg optical test. Klin. Wochenschr. 1965, 43, 174–175. [Google Scholar] [CrossRef]
- Toora, B.; Rajagopal, G. Measurement of creatinine by Jaffe’s reaction-determination of concentration of sodium hydroxide required for maximum color development in standard, urine and protein free filtrate of serum. Indian J. Exp. Biol. 2002, 40, 352–354. [Google Scholar]
- Kim, J.; Yun, E.-Y.; Park, S.-W.; Goo, T.-W.; Seo, M. Allomyrina dichotoma larvae regulate food intake and body weight in high fat diet-induced obese mice through mTOR and Mapk signaling pathways. Nutrients 2016, 8, 100. [Google Scholar] [CrossRef]
- Sun, Y.; Ge, X.; Li, X.; He, J.; Wei, X.; Du, J.; Sun, J.; Li, X.; Xun, Z.; Liu, W. High-fat diet promotes renal injury by inducing oxidative stress and mitochondrial dysfunction. Cell Death Dis. 2020, 11, 914. [Google Scholar] [CrossRef]
- Kume, S.; Uzu, T.; Araki, S.-i.; Sugimoto, T.; Isshiki, K.; Chin-Kanasaki, M.; Sakaguchi, M.; Kubota, N.; Terauchi, Y.; Kadowaki, T. Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet. J. Am. Soc. Nephrol. 2007, 18, 2715–2723. [Google Scholar] [CrossRef] [PubMed]
- Declèves, A.-E.; Zolkipli, Z.; Satriano, J.; Wang, L.; Nakayama, T.; Rogac, M.; Le, T.P.; Nortier, J.L.; Farquhar, M.G.; Naviaux, R.K. Regulation of lipid accumulation by AMK-activated kinase in high fat diet–induced kidney injury. Kidney Int. 2014, 85, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, J.; Li, S.; Guo, F.; Li, A.; Wu, H.; Chen, J.; Pan, Q.; Liao, S.; Liu, H.-f. High-fat diet-induced renal proximal tubular inflammatory injury: Emerging risk factor of chronic kidney disease. Front. Physiol. 2021, 12, 786599. [Google Scholar] [CrossRef]
- Zhou, Y.; Ding, Y.-L.; Zhang, J.-L.; Zhang, P.; Wang, J.-Q.; Li, Z.-H. Alpinetin improved high fat diet-induced non-alcoholic fatty liver disease (NAFLD) through improving oxidative stress, inflammatory response and lipid metabolism. Biomed. Pharmacother. 2018, 97, 1397–1408. [Google Scholar] [CrossRef]
- Ha, S.-K.; Chae, C. Inducible nitric oxide distribution in the fatty liver of a mouse with high fat diet-induced obesity. Exp. Anim. 2010, 59, 595–604. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Schwab, U.S. Relationship of dietary fat to glucose metabolism. Atherosclerosis 2000, 150, 227–243. [Google Scholar] [CrossRef]
- McAllan, L.; Skuse, P.; Cotter, P.D.; Connor, P.O.; Cryan, J.F.; Ross, R.P.; Fitzgerald, G.; Roche, H.M.; Nilaweera, K.N. Protein quality and the protein to carbohydrate ratio within a high fat diet influences energy balance and the gut microbiota in C57BL/6J mice. PLoS ONE 2014, 9, e88904. [Google Scholar] [CrossRef]
- Li, W.-C.; Hsiao, K.-Y.; Chen, I.-C.; Chang, Y.-C.; Wang, S.-H.; Wu, K.-H. Serum leptin is associated with cardiometabolic risk and predicts metabolic syndrome in Taiwanese adults. Cardiovasc. Diabetol. 2011, 10, 36. [Google Scholar] [CrossRef]
- Phipps, P.; Starritt, E.; Caterson, I.; Grunstein, R. Association of serum leptin with hypoventilation in human obesity. Thorax 2002, 57, 75–76. [Google Scholar] [CrossRef]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.; Gojobori, T.; Isenovic, E. Leptin and obesity: Role and clinical implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Liu, G.; Guo, J.; Su, Z. Hypothalamic endoplasmic reticulum stress as a key mediator of obesity-induced leptin resistance. Obes. Rev. 2018, 19, 770–785. [Google Scholar] [CrossRef] [PubMed]
- Contreras, C.; González-García, I.; Seoane-Collazo, P.; Martínez-Sánchez, N.; Liñares-Pose, L.; Rial-Pensado, E.; Fernø, J.; Tena-Sempere, M.; Casals, N.; Diéguez, C. Reduction of hypothalamic endoplasmic reticulum stress activates browning of white fat and ameliorates obesity. Diabetes 2017, 66, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Çakir, I.; Cyr, N.E.; Perello, M.; Litvinov, B.P.; Romero, A.; Stuart, R.C.; Nillni, E.A. Obesity induces hypothalamic endoplasmic reticulum stress and impairs proopiomelanocortin (POMC) post-translational processing. J. Biol. Chem. 2013, 288, 17675–17688. [Google Scholar] [CrossRef] [PubMed]
- Ajoolabady, A.; Liu, S.; Klionsky, D.J.; Lip, G.Y.; Tuomilehto, J.; Kavalakatt, S.; Pereira, D.M.; Samali, A.; Ren, J. ER stress in obesity pathogenesis and management. Trends Pharmacol. Sci. 2022, 43, 97–109. [Google Scholar] [CrossRef]
- Williams, L.M. Hypothalamic dysfunction in obesity. Proc. Nutr. Soc. 2012, 71, 521–533. [Google Scholar] [CrossRef]
- Ramírez, S.; Claret, M. Hypothalamic ER stress: A bridge between leptin resistance and obesity. FEBS Lett. 2015, 589, 1678–1687. [Google Scholar] [CrossRef]
- Ozcan, L.; Ergin, A.S.; Lu, A.; Chung, J.; Sarkar, S.; Nie, D.; Myers, M.G.; Ozcan, U. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009, 9, 35–51. [Google Scholar] [CrossRef]
- Li, S.; Ji, H.; Zhang, B.; Tian, J.; Zhou, J.; Yu, H. Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 2016, 465, 43–52. [Google Scholar] [CrossRef]
- Ewald, N.; Vidakovic, A.; Langeland, M.; Kiessling, A.; Sampels, S.; Lalander, C. Fatty acid composition of black soldier fly larvae (Hermetia illucens)–Possibilities and limitations for modification through diet. Waste Manag. 2020, 102, 40–47. [Google Scholar] [CrossRef]
- Kim, C.-H.; Ryu, J.; Lee, J.; Ko, K.; Lee, J.-y.; Park, K.Y.; Chung, H. Use of black soldier fly larvae for food waste treatment and energy production in Asian countries: A review. Processes 2021, 9, 161. [Google Scholar] [CrossRef]
- Liland, N.S.; Biancarosa, I.; Araujo, P.; Biemans, D.; Bruckner, C.G.; Waagbø, R.; Torstensen, B.E.; Lock, E.-J. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS ONE 2017, 12, e0183188. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Bueno, R.P.; González-Fernández, M.J.; Sánchez-Muros-Lozano, M.J.; García-Barroso, F.; Guil-Guerrero, J.L. Fatty acid profiles and cholesterol content of seven insect species assessed by several extraction systems. Eur. Food Res. Technol. 2016, 242, 1471–1477. [Google Scholar] [CrossRef]
- Surendra, K.; Olivier, R.; Tomberlin, J.K.; Jha, R.; Khanal, S.K. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energy 2016, 98, 197–202. [Google Scholar] [CrossRef]
- Saraswathi, V.; Kumar, N.; Gopal, T.; Bhatt, S.; Ai, W.; Ma, C.; Talmon, G.A.; Desouza, C. Lauric acid versus palmitic acid: Effects on adipose tissue inflammation, insulin resistance, and non-alcoholic fatty liver disease in obesity. Biology 2020, 9, 346. [Google Scholar] [CrossRef]
- Xia, J.; Yu, P.; Zeng, Z.; Ma, M.; Zhang, G.; Wan, D.; Gong, D.; Deng, S.; Wang, J. Lauric triglyceride ameliorates high-fat-diet-induced obesity in rats by reducing lipogenesis and increasing lipolysis and β-oxidation. J. Agric. Food Chem. 2021, 69, 9157–9166. [Google Scholar] [CrossRef]
- Sedik, A.A.; Elgohary, R.; Khalifa, E.; Khalil, W.K.; Shafey, H.I.; Shalaby, M.B.; Gouida, M.S.O.; Tag, Y.M. Lauric acid attenuates hepato-metabolic complications and molecular alterations in high-fat diet-induced nonalcoholic fatty liver disease in rats. Toxicol. Mech. Methods 2024, 34, 454–467. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, J.; Liu, T.; Wang, J.; Cai, H.; Zhang, X.; Xia, D.Q.H.; Feng, F.; Tang, J. Differential modulations of lauric acid and its glycerides on high fat diet-induced metabolic disorders and gut microbiota dysbiosis. Food Res. Int. 2022, 157, 111437. [Google Scholar] [CrossRef]
- Tham, Y.Y.; Choo, Q.C.; Muhammad, T.S.T.; Chew, C.H. Lauric acid alleviates insulin resistance by improving mitochondrial biogenesis in THP-1 macrophages. Mol. Biol. Rep. 2020, 47, 9595–9607. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Han, X.; Zhou, F.; Guo, J.; Huang, W.; Zhan, J.; You, Y. Coconut oil and medium-chain fatty acids attenuate high-fat diet-induced obesity in mice through increased thermogenesis by activating brown adipose tissue. Front. Nutr. 2022, 9, 896021. [Google Scholar] [CrossRef]
- Shinohara, H.; Ogawa, A.; Kasai, M.; Aoyama, T. Effect of randomly interesterified triacylglycerols containing medium-and long-chain fatty acids on energy expenditure and hepatic fatty acid metabolism in rats. Biosci. Biotechnol. Biochem. 2005, 69, 1811–1818. [Google Scholar] [CrossRef]
- Han, T.S.; Lean, M.E. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc. Dis. 2016, 5, 2048004016633371. [Google Scholar] [CrossRef] [PubMed]
- Buettner, R.; Schölmerich, J.; Bollheimer, L.C. High-fat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity 2007, 15, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Nagao, K.; Yanagita, T. Medium-chain fatty acids: Functional lipids for the prevention and treatment of the metabolic syndrome. Pharmacol. Res. 2010, 61, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Swift, L.L.; Hill, J.O.; Peters, J.C.; Greene, H.L. Plasma lipids and lipoproteins during 6 d of maintenance feeding with long-chain, medium-chain, and mixed-chain triglycerides. Am. J. Clin. Nutr. 1992, 56, 881–886. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhang, X.; Xu, Q.; Yang, X.; Xue, C. Medium-chain fatty acids reduce serum cholesterol by regulating the metabolism of bile acid in C57BL/6J mice. Food Funct. 2017, 8, 291–298. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Zhang, X.; Xu, Q.; Zhang, Y.; Xue, C.; Guo, C. Medium-chain fatty acids decrease serum cholesterol via reduction of intestinal bile acid reabsorption in C57BL/6J mice. Nutr. Metab. 2018, 15, 37. [Google Scholar] [CrossRef]
- Xu, Q.; Xue, C.; Zhang, Y.; Liu, Y.; Wang, J.; Yu, X.; Zhang, X.; Zhang, R.; Yang, X.; Guo, C. Medium-chain fatty acids enhanced the excretion of fecal cholesterol and cholic acid in C57BL/6J mice fed a cholesterol-rich diet. Biosci. Biotechnol. Biochem. 2013, 77, 1390–1396. [Google Scholar] [CrossRef]
- He, H.; Liu, K.; Liu, M.; Yang, A.-J.; Cheng, K.-W.; Lu, L.W.; Liu, B.; Chen, J.-H. The Impact of Medium-Chain Triglycerides on Weight Loss and Metabolic Health in Individuals with Overweight or Obesity: A Systematic Review and Meta-Analysis. Clin. Nutr. 2024, 43, 1755–1768. [Google Scholar] [CrossRef]
- Sánchez-Navarro, A.; Martínez-Rojas, M.Á.; Caldiño-Bohn, R.I.; Pérez-Villalva, R.; Zambrano, E.; Castro-Rodríguez, D.C.; Bobadilla, N.A. Early triggers of moderately high-fat diet-induced kidney damage. Physiol. Rep. 2021, 9, e14937. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, H.; Liu, H.; Jia, W.; Yan, J.; Ding, W.; Zhang, Y.; Xiao, Z.; Zhu, Z. Protective effects of ferroptosis inhibition on high fat diet-induced liver and renal injury in mice. Int. J. Clin. Exp. Pathol. 2020, 13, 2041. [Google Scholar]
- Nghiem, T.-H.T.; Nguyen, K.A.; Kusuma, F.; Park, S.; Park, J.; Joe, Y.; Han, J.; Chung, H.T. The PERK-eIF2α-ATF4 Axis Is Involved in Mediating ER-Stress-Induced Ferroptosis via DDIT4-mTORC1 Inhibition and Acetaminophen-Induced Hepatotoxicity. Antioxidants 2025, 14, 307. [Google Scholar] [CrossRef] [PubMed]
- Walter, N.S.; Gorki, V.; Bhardwaj, R.; Punnakkal, P. Endoplasmic Reticulum Stress: Implications in Diseases. Protein J. 2025, 44, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Ajoolabady, A.; Lebeaupin, C.; Wu, N.N.; Kaufman, R.J.; Ren, J. ER stress and inflammation crosstalk in obesity. Med. Res. Rev. 2023, 43, 5–30. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, U.; Cao, Q.; Yilmaz, E.; Lee, A.-H.; Iwakoshi, N.N.; Ozdelen, E.; Tuncman, G.r.; Görgün, C.; Glimcher, L.H.; Hotamisligil, G.k.S. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004, 306, 457–461. [Google Scholar] [CrossRef]
- Hosoi, T.; Sasaki, M.; Miyahara, T.; Hashimoto, C.; Matsuo, S.; Yoshii, M.; Ozawa, K. Endoplasmic reticulum stress induces leptin resistance. Mol. Pharmacol. 2008, 74, 1610–1619. [Google Scholar] [CrossRef]
- Kim, O.-K.; Jun, W.; Lee, J. Mechanism of ER stress and inflammation for hepatic insulin resistance in obesity. Ann. Nutr. Metab. 2015, 67, 218–227. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Li, Z.; Guo, B. ER stress-induced inflammasome activation contributes to hepatic inflammation and steatosis. J. Clin. Cell. Immunol. 2016, 7, 457. [Google Scholar] [CrossRef]
- Liu, H.; Du, T.; Li, C.; Yang, G. STAT3 phosphorylation in central leptin resistance. Nutr. Metab. 2021, 18, 39. [Google Scholar] [CrossRef]
- Engin, A. The mechanism of leptin resistance in obesity and therapeutic perspective. In Obesity and Lipotoxicity; Advances in Experimental Medicine and Biology; Engin, A.B., Engin, A., Eds.; Springer: Cham, Switzerland, 2024; Volume 1460, pp. 463–487. [Google Scholar]
- Yuan, Z.; Xiao-Wei, L.; Juan, W.; Xiu-Juan, L.; Nian-Yun, Z.; Lei, S. HIIT and MICT attenuate high-fat diet-induced hepatic lipid accumulation and ER stress via the PERK-ATF4-CHOP signaling pathway. J. Physiol. Biochem. 2022, 78, 641–652. [Google Scholar] [CrossRef]
- Amen, O.M.; Sarker, S.D.; Ghildyal, R.; Arya, A. Endoplasmic reticulum stress activates unfolded protein response signaling and mediates inflammation, obesity, and cardiac dysfunction: Therapeutic and molecular approach. Front. Pharmacol. 2019, 10, 977. [Google Scholar] [CrossRef]
Ingredients | Diet | |||||
---|---|---|---|---|---|---|
ND | Calorie (kcal) | HFD (g) | Calorie (kcal) | HFD_MCFA (g) | Calorie (kcal) | |
Casein, 30 Mesh | 200 | 800 | 200 | 800 | 200 | 800 |
L-Cystine | 3 | 12 | 3 | 12 | 3 | 12 |
Maltodextrin 10 | 35 | 140 | 125 | 500 | 125 | 500 |
Sucrose | 350 | 1379 | 68.8 | 275 | 68.8 | 275 |
Starch | 315 | 1200 | - | - | - | - |
Cellulose, BW 200 | 50 | 0 | 50 | 0 | 50 | 0 |
Soybean oil | 25 | 225 | 25 | 225 | 25 | 225 |
Lard | 20 | 180 | 245 | 2205 | - | 2205 |
BSF-MCFAs | - | - | - | - | 245 | 2205 |
Mineral Mix (S10026B) | 50 | 0 | 10 | 0 | 10 | 0 |
Dicalcium phosphate | 13 | 0 | 13 | 0 | 13 | 0 |
Calcium carbonate | 5.5 | 0 | 5.5 | 0 | 5.5 | 0 |
Potassium citrate, 1H2O | 16.5 | 0 | 16.5 | 0 | 16.5 | 0 |
Vitamin Mix (V10001C) | 10 | 40 | 10 | 40 | 10 | 40 |
Choline bitartrate | 2 | 0 | 2 | 0 | 2 | 0 |
FD&C Blue Dye #1 | - | - | 0.05 | 0 | 0.05 | 0 |
Dye, Yellow FD&C#5 | 0.05 | 0 | - | - | - | - |
Total | 1095.05 | 3976 | 773.85 | 4057 | 773.85 | 4057 |
Name | Sequences/Tm | Amplicon Size (bp) | |
---|---|---|---|
Chop | Forward | 5′-CCACCACACCTGAAAGCAGAA-3′/61 °C | 67 |
Reverse | 5′-AGGTGAAAGGCAGGGACTCA-3′/61 °C | ||
Grp78 | Forward | 5′-GGCCTGCTCCGAGTCTGCTTC-3′/65 °C | 243 |
Reverse | 5′-CCGTGCCCACATCCTCCTTCT-3′/64 °C | ||
Erdj4 | Forward | 5′-CCCCAGTGTCAAACTGTACCAG-3′/61 °C | 117 |
Reverse | 5′-AGCGTTTCCAATTTTCCATAAATT-3′/56 °C | ||
Xbp-1 | Forward | 5′-GAACCAGGAGTTAAGAACACG-3′/57 °C | 179 |
Reverse | 5′-AGGCAACAGTGTCAGAGTCC-3′/60 °C | ||
Atf4 | Forward | 5′-GCAAGGAGGATGCCTTTTC-3′/57 °C | 100 |
Reverse | 5′-GTTTCCAGGTCATCCATTCG-3′/57 °C | ||
GAPDH | Forward | 5′-CTTCAACAGCAACTCCCACTCTTCC-3′/64 °C | 171 |
Reverse | 5′-GGGTGGTCCAGGGTTTCTTACTCCTT-3′/66 °C |
Fatty Acid | Common Name | Content (%) |
---|---|---|
C8:0 | Caprylic acid | 0.0 |
C10:0 | Capric acid | 2.1 |
C12:0 | Lauric acid | 51.1 |
C14:0 | Myristic acid | 6.4 |
C16:0 | Palmitic acid | 12.1 |
C16:1 | Palmitoleic acid | 1.9 |
C18:0 | Stearic acid | 12.8 |
C18:1 | Oleic acid | 11.1 |
C18:2 | Linoleic acid | 1.4 |
C18:3 | Linolenic acid | 0.0 |
C20:0 | Arachidic acid | 0.1 |
C22:0 | Behenic acid | 1.0 |
Saturated | 85.6 | |
Unsaturated | 14.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.-S.; Lee, M.-G.; Jeong, K.; Yun, E.-Y.; Goo, T.-W. Medium-Chain Fatty Acids Extracted from Black Soldier Fly (Hermetia illucens) Larvae Prevents High-Fat Diet-Induced Obesity In Vivo in C57BL/6J Mice. Animals 2025, 15, 1384. https://doi.org/10.3390/ani15101384
Lee K-S, Lee M-G, Jeong K, Yun E-Y, Goo T-W. Medium-Chain Fatty Acids Extracted from Black Soldier Fly (Hermetia illucens) Larvae Prevents High-Fat Diet-Induced Obesity In Vivo in C57BL/6J Mice. Animals. 2025; 15(10):1384. https://doi.org/10.3390/ani15101384
Chicago/Turabian StyleLee, Kyu-Shik, Min-Gu Lee, Kyuho Jeong, Eun-Young Yun, and Tae-Won Goo. 2025. "Medium-Chain Fatty Acids Extracted from Black Soldier Fly (Hermetia illucens) Larvae Prevents High-Fat Diet-Induced Obesity In Vivo in C57BL/6J Mice" Animals 15, no. 10: 1384. https://doi.org/10.3390/ani15101384
APA StyleLee, K.-S., Lee, M.-G., Jeong, K., Yun, E.-Y., & Goo, T.-W. (2025). Medium-Chain Fatty Acids Extracted from Black Soldier Fly (Hermetia illucens) Larvae Prevents High-Fat Diet-Induced Obesity In Vivo in C57BL/6J Mice. Animals, 15(10), 1384. https://doi.org/10.3390/ani15101384