The Relation between Plasma Nesfatin-1 Levels and Aggressive Behavior in Pit Bull Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Grouping of Animals by Aggression
2.2. Experimental Protocols
2.3. Determination of Plasma Nesfatin-1, Serotonin, Dopamine, and Oxytocin Levels
2.4. Data and Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Odendaal, J.S.J. A Diagnostic Classification of Problem Behavior in Dogs and Cats. Vet. Clin. North Am. 1997, 27, 427–442. [Google Scholar] [CrossRef]
- Siddiq, A.B. Tarih Öncesi Toplumlarda Insan-Hayvan Ilişkisi ve Orta Anadolu Çanak Çömleksiz Neolitik Dönem Faunası, 1st ed.; Çizgi Kitabevi: Konya, Turkey, 2019. [Google Scholar]
- Dodurka, H.T. Köpek Psikolojisi, 1st ed.; Teknik Yayınları: İstanbul, Turkey, 1999; Volume 12, p. 201. [Google Scholar]
- Dodurka, H.T. Köpeklerde Görülen Davranış Sorunları ve Bunlara Etki Etmesi; Teknik Yayınları: İstanbul, Turkey, 2001. [Google Scholar]
- Overall, K.L. Pharmacologic treatments for behavior problems. Vet. Clin. North Am. 1997, 27, 637–665. [Google Scholar] [CrossRef] [PubMed]
- Houpt, K.A.; Reisner, I.R. Veterinary Internal Medicine: Behavioral Disoders, 4th ed.; Etine, S.J., Feldman, E.C., Eds.; Pro-ed: Dallas, TX, USA, 1995. [Google Scholar]
- Horwitz, D.F. Differences and similarities between behavioral and internal medicine. JAVMA 2000, 217, 1372–1376. [Google Scholar] [CrossRef]
- Chapman, B.L.; Voith, V.L. Behavioral problems in old dogs 26 cases (1984–1987). JAVMA 1990, 196, 944–946. [Google Scholar] [CrossRef] [PubMed]
- Landsberg, G.M. Diagnosing dominance aggression. Can. Vet. J. 1990, 31, 45–46. [Google Scholar] [PubMed]
- Dodman, H.D.; Donnelly, R.; Shuster, L.; Mertens, P.; Rand, W.; Miczek, K. Use of fluoxetine to treat dominance aggression in dogs. JAVMA 1996, 209, 1585–1587. [Google Scholar] [CrossRef] [PubMed]
- Zapata, I.; Serpell, J.A.; Alvarez, C.E. Genetic mapping of canine fear and aggression. BMC Genom. 2016, 17, 572. [Google Scholar] [CrossRef] [PubMed]
- Askew, H.R. Treatment of Behavior Problems in Dogs and Cats; Blackwell Science: Oxford, UK, 1996. [Google Scholar]
- Feddersen-Petersen, D. Behavior of dogs. Dtsch. Tierarztl. Wochenschr. 1990, 97, 231–236. [Google Scholar]
- Jagoe, J.A. Behaviour Problems in the Domestic Dog: A Retrospective and Prospective Study to Identify Factors Influencing Their Development. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 1994. [Google Scholar] [CrossRef]
- Noyan, A. Yaşamda ve Hekimlikte Fizyoloji; Palme Yayınları: Ankara, Turkey, 2007. [Google Scholar]
- O’farrell, V. Manual of Canine Behviour, 2nd ed.; Cheltenhan Glos British Small Animal Veterinary Assoiation: Gloucester, UK, 1992; Volume 12, p. 132. [Google Scholar]
- Serpell, J.A.; Hsu, Y.A. Effects of breed, sex, and neuter status on trainability in dogs. Anthrozoös 2005, 18, 196–207. [Google Scholar] [CrossRef]
- MacNeil-Allcock, A.; Clarke, N.M.; Ledger, R.A.; Fraser, D. Aggression, behaviour, and animal care among pit bulls and other dogs adopted from an animal shelter. Anim. Welf. 2011, 20, 463–468. [Google Scholar] [CrossRef]
- Blacksaw, J.K. An overwiew of types of aggressive behaviour in dogs and methods of treatment. Appl. Anim. Behav. Sci. 1991, 30, 351–361. [Google Scholar] [CrossRef]
- Uchida, Y.; Dodman, N.; Denapoli, J.; Aronson, L. Characterization and treatment of 20 canine dominance aggression cases. J. Vet. Med. Sci. 1997, 59, 397–399. [Google Scholar] [CrossRef]
- Duffy, D.L.; Hsu, Y.; Serpell, J.A. Breed differences in canine aggression. Appl. Anim. Behav. Sci. 2008, 114, 441–460. [Google Scholar] [CrossRef]
- Stepherd, R.C. Pit Bull: Journal; Independently Published: New York, NY, USA, 2018; ISBN 1720108668. [Google Scholar]
- Batmaz, T. Toplumsal Cinsiyet Bağlamında Evcil Hayvan Besleme Davranışı Olarak Pitbull Tercihi, 9th ed.; Türkiye Lisansüstü Çalışmalar Kongresi Bildiriler Kitabı—IV: Kutahya, Turkey, 2021; pp. 325–347. [Google Scholar]
- Levine, R.; Poray-Wybranowska, J. American Bully: Fear, Paradox, and the New Family Dog. Otherness Essays Stud. 2016, 5, 1–50. [Google Scholar]
- Gunter, L.M.; Barber, R.T.; Wynne, C.D.L. What’s in a Name? Effect of Breed Perceptions & Labeling on Attractiveness, Adoptions & Length of Stay for Pit-Bull-Type Dogs. PLoS ONE 2016, 11, e0146857. [Google Scholar]
- Kogan, L.R.; Schoenfeld-Tacher, R.M.; Hellyer, P.W.; Oxley, J.A.; Rishniw, M. Small Animal Veterinarians’ Perceptions, Experiences, and Views of Common Dog Breeds, Dog Aggression, and Breed-Specific Laws in the United States. Int. J. Environ. Res. Public Health 2019, 16, 4081. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Gray, J.A.; Roth, B.L. The expanded biology of serotonin. Annu. Rev. Med. 2009, 60, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Hansen, N.; Manahan-Vaughan, D. Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cereb. Cortex 2012, 24, 845–858. [Google Scholar] [CrossRef]
- Rosell, D.R.; Siever, L.J. The neurobiology of aggression and violence. CNS Spectr. 2015, 20, 254–279. [Google Scholar] [CrossRef]
- O-Klein, M.; Battagello, D.S.; Cardoso, A.R.; Hauser, D.N.; Bittencourt, J.C.; Correa, R.G. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell. Mol. Neurobiol. 2019, 39, 31–59. [Google Scholar] [CrossRef]
- Pourhamzeh, M.; Moravej, F.G.; Arabi, M.; Shahriari, E.; Mehrabi, S.; Ward, R.; Ahadi, R.; Joghataei, M.T. The Roles of Serotonin in Neuropsychiatric Disorders. Cell. Mol. Neurobiol. 2022, 42, 1671–1692. [Google Scholar] [CrossRef]
- Reisner, I.R.; Mann, J.J.; Stanley, M.; Huang, Y.; Houpt, K.A. Comparison of cerebrospinal fluid monoamine metabolite levels in dominant-aggressive and non-aggressive dogs. Brain Res. 1996, 714, 57–64. [Google Scholar] [CrossRef]
- Ferrari, P.F.; Palanzai, P.; Parmigiani, S.; de Almeida, R.M.; Miczek, K.A. Serotonin and aggressive behavior in rodents and nonhuman primates: Predispositions and plasticity. Eur. J. Pharmacol. 2005, 526, 259–273. [Google Scholar] [CrossRef]
- Çakıroğlu, D.; Meral, Y.; Sancak, A.; Çiftçi, G. Relationship between the serum concentrations of serotonin and lipids and aggression in dogs. Vet. Rec. 2007, 161, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Wright, H.F.; Mills, D.S.; Pollux, P.M.J. Behavioural and physiological correlates of impulsivity in the domestic dog (Canis familiaris). Physiol. Behav. 2012, 105, 676–682. [Google Scholar] [CrossRef] [PubMed]
- da Cunha-Bang, S.; Knudsen, G.M. The Modulatory Role of Serotonin on Human Impulsive Aggression. Biol. Psychiatry 2021, 90, 447–457. [Google Scholar] [CrossRef]
- Esler, M.; Lambert, E.; Alvarenga, M.; Socratous, F.; Richards, J.; Barton, D.; Pier, C.; Brenchley, C.; Dawood, T.Y.E.; Hastings, J. Increased brain serotonin turnover in panic disorder patients in the absence of a panic attack: Reduction by a selective serotonin reuptake inhibitor. Stress 2007, 10, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Riva, J.; Bondiolotti, G.; Michelazzi, M.; Verga, M.; Carenzi, C. Anxiety related behavioural disorders and neurotransmitters in dogs. Appl. Anim. Behav. Sci. 2008, 114, 168–181. [Google Scholar] [CrossRef]
- Ursinus, W.W.; Bolhuis, J.E.; Zonderland, J.J.; Rodenburg, T.B.; de Souza, A.S.; Koopmanschap, R.E.; Kemp, B.; Korte-bouws, G.A.H.; Korte, S.M.; Reenen, C.G. Van Relations between peripheral and brain serotonin measures and behavioural responses in a novelty test in pigs. Physiol. Behav. 2013, 118, 88–96. [Google Scholar] [CrossRef]
- Hejjas, K.; Vas, J.; Topal, J.; Szantai, E.; Ronai, Z.; Szekely, A.; Kubinyi, E.; Horvath, Z.; Sasvari-Szekely, M.; Miklosi, A. Association of polymorphisms in the dopamine D4 receptor gene and the activity-impulsivity endophenotype in dogs. Anim. Genet. 2007, 38, 629–633. [Google Scholar] [CrossRef]
- Munafo, M.R.; Yalcin, B.; Willis-Owen, S.A.; Flint, J. Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: Meta-analysis and new data. Biol. Psychiatry 2008, 63, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Churchland, P.S.; Winkielman, P. Modulating social behavior with oxytocin: How does it work? What does it mean? Horm. Behav. 2012, 61, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Ishak, W.W.; Kahloon, M.; Fakhry, H. Oxytocin role in enhancing well-being: A literature review. J. Affect. Disord. 2011, 130, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Petersson, M.; Uvnäs-Moberg, K.; Nilsson, A.; Gustafson, L.L.; Hydbring-Sandberg, E.; Handlin, L. Oxytocin and Cortisol Levels in Dog Owners and Their Dogs Are Associated with Behavioral Patterns: An Exploratory Study. Front. Psychol. 2017, 8, 1796. [Google Scholar] [CrossRef] [PubMed]
- Marshall-Pescini, S.; Schaebs, F.S.; Gaugg, A.; Meinert, A.; Deschner, T.; Range, F. The Role of Oxytocin in the Dog-Owner Relationship. Animals 2019, 9, 792. [Google Scholar] [CrossRef] [PubMed]
- Goebel-Stengel, M.; Wang, L. Central and peripheral expression and distribution of NUCB2/nesfatin-1. Curr. Pharm. Des. 2013, 19, 6935–6940. [Google Scholar] [CrossRef] [PubMed]
- Dore, R.; Krotenko, R.; Reising, J.P.; Murru, L.; Sundaram, S.M.; di Spiezio, A.; Müller-Fielitz, H.; Schwaninger, M.; Jöhren, O.; Mittag, J.; et al. Nesfatin-1 decreases the motivational and rewarding value of food. Neuropsychopharmacology 2020, 45, 1645–1655. [Google Scholar] [CrossRef]
- Brailoiu, G.C.; Dun, S.L.; Brailoiu, E.; Inan, S.; Yang, J.; Chang, J.K.; Dun, N.J. Nesfatin-1: Distribution and interaction with a G protein-coupled receptor in the rat brain. Endocrinology 2007, 148, 5088–5094. [Google Scholar] [CrossRef]
- Fort, P.; Salvert, D.; Hanriot, L.; Jego, S.; Shimizu, H.; Hashimoto, K.; Mori, M.; Luppi, P.H. The satiety molecule nesfatin-1 is co-expressed with melanin concentrating hormone in tuberal hypothalamic neurons of the rat. Neuroscience 2008, 155, 174–181. [Google Scholar] [CrossRef]
- Goebel, M.; Stengel, A.; Wang, L.; Taché, Y. Restraint stress activates nesfatin-1-immunoreactive brain nuclei in rats. Brain Res. 2009, 1300, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Maejima, Y.; Sedbazar, U.; Ando, A.; Kurita, H.; Damdindorj, B.; Takano, E.; Gantulga, D.; Iwasaki, Y.; Kurashina, T.; et al. Stressor-responsive central nesfatin-1 activates corticotropin-releasing hormone, noradrenaline and serotonin neurons and evokes hypothalamic-pituitary-adrenal axis. Aging 2010, 2, 775–784. [Google Scholar] [CrossRef]
- Goebel-Stengel, M.; Wang, L.; Stengel, A.; Taché, Y. Localization of nesfatin-1 neurons in the mouse brain and functional implication. Brain Res. 2011, 1396, 20–34. [Google Scholar] [CrossRef]
- Dore, R.; Levata, L.; Lehnert, H.; Schulz, C. Nesfatin-1: Functions and physiology of a novel regulatory peptide. J. Endocrinol. 2017, 232, R45–R65. [Google Scholar] [CrossRef]
- C-BARQ (Canine Behavioral Assessment and Research Questionnaire). Available online: https://vetapps.vet.upenn.edu/cbarq/ (accessed on 23 December 2023).
- Hintze, J.; NCSS and PASS Number Cruncher Statistical Systems. Kaysville, Utah. 2001. Available online: www.ncss.com (accessed on 24 January 2024).
- IBM Corp. IBM SPSS Statistics for Windows, Version 25.0; IBM Corp: Armonk, NY, USA, 2017. [Google Scholar]
- Oh-I, S.; Shimizu, H.; Satoh, T.; Okada, S.; Adachi, S.; Inoue, K.; Eguchi, H.; Yamamoto, M.; Imaki, T.; Hashimoto, H.; et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 2006, 443, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Stengel, A.; Taché, Y. Nesfatin-1 role as possible new potent regulator of food intake. Regul. Pept. 2010, 163, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Schalla, M.A.; Stengel, A. Current Understanding of the Role of Nesfatin-1. J. Endocr. Soc. 2018, 2, 1188–1206. [Google Scholar] [CrossRef]
- Hofmann, T.; Ahnis, A.; Elbelt, U.; Rose, M.; Klapp, B.F.; Stengel, A. NUCB2/nesfatin-1 is associated with elevated levels of anxiety in anorexia nervosa. PLoS ONE 2015, 10, e0132058. [Google Scholar] [CrossRef] [PubMed]
- Umut, G.; Evren, C.; Cansız, A.; Akkuş, M.; Karamustafalıoğlu, N. Serum NUCB2/nesfatin-1 levels in different stages of alcohol dependence: Is there a relationship with craving? Indian J. Psychiatry 2017, 59, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.M.; Li, J.B.; Jiang, L.L.; Shao, H.; Wang, B.L. Plasma nesfatin-1 level is associated with severity of depression in Chinese depressive patients. BMC Psychiatry 2018, 18, 88. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.A.; Touroo, R.; Spain, C.V.; Jones, K.; Reid, P.; Lockwood, R. Relationship between Scarring and Dog Aggression in Pit Bull-Type Dogs Involved in Organized Dogfighting. Animals 2016, 6, 72. [Google Scholar] [CrossRef]
- Dodman, N.H.; Reisner, I.; Shuster, L.; Rand, W.; Luescher, U.A.; Robinson, I.; Houpt, K.A. Effect of dietary protein content on behavior in dogs. JAVMA 1996, 208, 376–379. [Google Scholar] [CrossRef]
- Odore, R.; Rendini, D.; Badino, P.; Gardini, G.; Cagnotti, G.; Meucci, V.; Intorre, L.; Bellino, C.; D’Angelo, A. Behavioral Therapy and Fluoxetine Treatment in Aggressive Dogs: A Case Study. Animals 2020, 10, 832. [Google Scholar] [CrossRef]
- Hsu, Y.; Serpell, J.A. Development and validation of a questionnaire for measuring behavior and temperament traits in pet dogs. JAVMA 2003, 223, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Liinamo, A.; van den Berg, L.; Leegwater, P.A.J.; Schilder, M.B.H.; van Arendonk, J.A.M.; van Oost, B.A. Genetic variation in aggression-related traits in golden retriever dogs. Appl. Anim. Behav. Sci. 2007, 104, 95–106. [Google Scholar] [CrossRef]
- Algul, S.; Özçelik, O. Evaluating the levels of nesfatin-1 and ghrelin hormones in patients with moderate and severe major depressive disorders. Psychiatry Investig. 2018, 15, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Y.; Ge, J.F.; Liang, J.; Cao, Y.; Shan, F.; Liu, Y.; Yan, C.Y.; Xia, Q.R. Nesfatin-1 and cortisol: Potential novel diagnostic biomarkers in moderate and severe depressive disorder. Psychol. Res. Behav. Manag. 2018, 11, 495–502. [Google Scholar] [CrossRef]
- Weibert, E.; Hofmann, T.; Stengel, A. Role of nesfatin-1 in anxiety, depression and the response to stress. Psychoneuroendocrinology 2019, 100, 58–66. [Google Scholar] [CrossRef]
- Hofmann, T.; Stengel, A.; Ahnis, A.; Busse, P.; Elbelt, U.; Klapp, B.F. NUCB2/nesfatin-1 is associated with elevated scores of anxiety in female obese patients. Psychoneuroendocrinology 2013, 38, 2502–2510. [Google Scholar] [CrossRef] [PubMed]
- Emul, M.; Karamustafalıoğlu, N.; Kalelioğlu, T.; Genç, A.; Taşdemir, A.; Güngör, F.C.; Incir, S.; Seven, A. The nesfatin 1 level in male patients with manic episode and alterations of nesfatin 1 level after antipsychotic and electroconvulsive treatment. J. Affect. Disord. 2013, 151, 849–853. [Google Scholar] [CrossRef]
- Swann, A.C.; Lijffijt, M.; Lane, S.D.; Steinberg, J.L.; Moeller, F.G. Antisocial personality disorder and borderline symptoms are differentially related to impulsivity and course of illness in bipolar disorder. J. Affect. Disord. 2013, 148, 384–390. [Google Scholar] [CrossRef]
- Beck, A.; Heinz, A. Alcohol-related aggression-social and neurobiological factors. Dtsch. Arztebl. Int. 2013, 110, 711–715. [Google Scholar] [PubMed]
- Kaya, S.; Özsoy, F.; Taşcı, G.; Kalaycı, M. Nesfatin-1 Hormone Levels in Patients with Antisocial Personality Disorder and Their Relationship with Clinical Variables. Psychiatry Investig. 2020, 17, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Ayada, C.; Toru, U.; Korkut, Y. Nesfatin-1 and its effects on different systems. Hippokratia. 2015, 19, 4–10. [Google Scholar]
- Swami, V.; Hochstöger, S.; Kargl, E.; Stieger, S. Hangry in the field: An experience sampling study on the impact of hunger on anger, irritability, and affect. PLoS ONE 2022, 17, e0269629. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, N.H. Determination of serum nesfatin-1 level in healthy sheep. Med. Weter. 2021, 77, 442–445. [Google Scholar] [CrossRef]
- Hofmann, T.; Elbelt, U.; Ahnis, A.; Rose, M.; Klapp, B.F.; Stengel, A. Sex-specific regulation of NUCB2/nesfatin-1: Differential implication in anxiety in obese men and women. Psychoneuroendocrinology 2015, 60, 130–137. [Google Scholar] [CrossRef] [PubMed]
- de Jong, T.R.; Neumann, I.D. Oxytocin and Aggression. Curr. Top. Behav. Neurosci. 2018, 35, 175–192. [Google Scholar]
- Manchia, M.; Carpiniello, B.; Valtorta, F.; Comai, S. Serotonin Dysfunction, Aggressive Behavior, and Mental Illness: Exploring the Link Using a Dimensional Approach. ACS Chem. Neurosci. 2017, 8, 961–972. [Google Scholar] [CrossRef]
- Gibbons, J.L.; Barr, G.A.; Bridger, W.H.; Leibowitz, S.F. Manipulations of dietary tryptophan: Effects on mouse killing and brain serotonin in the rat. Brain Res. 1979, 169, 139–153. [Google Scholar] [CrossRef]
- Higley, J.D.; Bennett, A.J. Central nervous system serotonin and personality as variables contributing to excessive alcohol consumption in non-human primates. Alcohol Alcohol. 1999, 34, 402–418. [Google Scholar] [CrossRef]
- Fairbanks, L.A.; Melega, W.P.; Jorgensen, M.J.; Kaplan, J.R.; McGuire, M.T. Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vervet monkeys. Neuropsychopharmacology 2001, 24, 370–378. [Google Scholar] [CrossRef]
- Mehlman, P.T.; Higley, J.D.; Faucher, I.; Lilly, A.A.; Taub, D.M.; Vickers, J.; Suomi, S.J.; Linnoila, M. Low CSF 5-HIAA concentrations and severe aggression and impaired impulse control in nonhuman primates. Am. J. Psychiatry 1994, 152, 1698–1699. [Google Scholar]
- Westergaard, G.C.; Suomi, S.J.; Chavanne, T.J.; Houser, L.; Hurley, A.; Cleveland, A.; Snoy, P.J.; Higley, J.D. Physiological correlates of aggression and impulsivity in free-ranging female primates. Neuropsychopharmacology 2003, 28, 1045–1055. [Google Scholar] [CrossRef]
- Ikemoto, S.; Panksepp, J. The role of nucleus accumebs dopamine in motivated behavior: A unifying interpretation with special reference to reward-seeking. Brain Res. Rev. 1999, 31, 6–41. [Google Scholar] [CrossRef] [PubMed]
- Everitt, B.J.; Robbins, T.W. Second-order schedules of drug reinforcement in rats and monkeys: Measurement of reinforcing efficacy and drug-seeking behavior. Psychopharmacology 2000, 153, 12–30. [Google Scholar] [CrossRef] [PubMed]
- Netter, P.; Rammsayer, T. Reactivity to dopaminergic drugs and aggression related personality traits. Pers. Individ. Differ. 1991, 12, 1009–1017. [Google Scholar] [CrossRef]
- Harrison, A.A.; Everitt, B.J.; Robbins, T.W. Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: Interactions with dopaminergic mechanisms. Psychopharmacology 1997, 133, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Hadfield, M.G. Dopamine: Mesocortical versus nigrostriatal uptake in isolated fighting mice and controls. Behav. Brain Res. 1983, 7, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Miczek, K.A.; DeBold, J.F.; Van-Erp, A.M. Neuropharmacological characteristics of individual differences in alcohol effects on aggression in rodents and primates. Behav. Pharmacol. 1994, 5, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Tidey, J.W.; Miczek, K.A. Social defeat stress selectively alters mesocorticolimbic dopamine release: An in vivo microdialysis study. Brain Res. 1996, 721, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.; Patrick, C.J.; Kennealy, P.J. Role of Serotonin and Dopamine System Interactions in the Neurobiology of Impulsive Aggression and its Comorbidity with other Clinical Disorders. Aggress. Violent Behav. 2008, 13, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, H.K.; Aulino, E.A.; Freeman, A.R.; Miller, T.V.; Witchey, S.K. Oxytocin and behavior: Lessons from knockout mice. Dev. Neurobiol. 2017, 77, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Olff, M.; Frijling, J.L.; Kubzansky, L.D.; Bradley, B.; Ellenbogen, M.A.; Cardoso, C.; Bartz, J.A.; Yee, J.R.; van Zuiden, M. The role of oxytocin in social bonding, stress regulation and mental health: An update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology 2013, 38, 1883–1894. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Ferris, C.; Van de Kar, L.D.; Coccaro, E.F. Cerebrospinal fluid oxytocin, life history of aggression, personality disorder. Psychoneuroendocrinology 2009, 34, 1567–1573. [Google Scholar] [CrossRef]
- Dhakar, M.B.; Rich, M.E.; Reno, E.L.; Lee, H.J.; Caldwell, H.K. Heightened aggressive behavior in mice with lifelong versus postweaning knockout of the oxytocin receptor. Horm. Behav. 2012, 62, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Stengel, A. Nesfatin-1—More than a food intake regulatory peptide. Peptides 2015, 72, 175–183. [Google Scholar] [CrossRef]
- Nonogaki, K.; Ohba, Y.; Sumii, M.; Oka, Y. Serotonin systems upregulate the expression of hypothalamic NUCB2 via 5-HT2C receptors and induce anorexia via a leptin-independent pathway in mice. Biochem. Biophys. Res. Commun. 2008, 372, 186–190. [Google Scholar] [CrossRef]
- Price, C.J.; Hoyda, T.D.; Samson, W.K.; Ferguson, A.V. Nesfatin-1 influences the excitability of paraventricular nucleus neurones. J. Neuroendocrinol. 2008, 20, 245–250. [Google Scholar] [CrossRef]
- Yosten, G.L.; Samson, W.K. The anorexigenic and hypertensive effects of nesfatin-1 are reversed by pretreatment with an oxytocin receptor antagonist. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R1642–R1647. [Google Scholar] [CrossRef]
- Chen, X.; Shu, X.; Cong, Z.K.; Jiang, Z.Y.; Jiang, H. Nesfatin-1 acts on the dopaminergic reward pathway to inhibit food intake. Neuropeptides 2015, 53, 45–50. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guvenc-Bayram, G.; Semen, Z.; Polat-Dincer, P.F.; Sertkaya, Z.T.; Ustundag, Y.; Ates, C.; Aktas, B.; Yalcin, M. The Relation between Plasma Nesfatin-1 Levels and Aggressive Behavior in Pit Bull Dogs. Animals 2024, 14, 632. https://doi.org/10.3390/ani14040632
Guvenc-Bayram G, Semen Z, Polat-Dincer PF, Sertkaya ZT, Ustundag Y, Ates C, Aktas B, Yalcin M. The Relation between Plasma Nesfatin-1 Levels and Aggressive Behavior in Pit Bull Dogs. Animals. 2024; 14(4):632. https://doi.org/10.3390/ani14040632
Chicago/Turabian StyleGuvenc-Bayram, Gokcen, Zeynep Semen, Pelin Fatos Polat-Dincer, Zeynep Tugce Sertkaya, Yasemin Ustundag, Can Ates, Bugra Aktas, and Murat Yalcin. 2024. "The Relation between Plasma Nesfatin-1 Levels and Aggressive Behavior in Pit Bull Dogs" Animals 14, no. 4: 632. https://doi.org/10.3390/ani14040632
APA StyleGuvenc-Bayram, G., Semen, Z., Polat-Dincer, P. F., Sertkaya, Z. T., Ustundag, Y., Ates, C., Aktas, B., & Yalcin, M. (2024). The Relation between Plasma Nesfatin-1 Levels and Aggressive Behavior in Pit Bull Dogs. Animals, 14(4), 632. https://doi.org/10.3390/ani14040632