Do Cockatiels Choose Their Favourite Tunes? Use of Touchscreen for Animal Welfare Enhancement and Insights into Musical Preferences
Simple Summary
Abstract
1. Introduction
1.1. Musicality in Non-Humans
1.2. The Vocal Learning Hypothesis
1.3. The Current Study
- Cockatiels would be able to learn how to use a touchscreen to display their preferred music.
- Regarding consonance and dissonance, birds would prefer consonance. Indeed, Bowling and Purves [40] suggest that a preference for consonance over dissonance would have evolved as the harmonic series characterising the vocalisations of conspecifics are consonant. Consonant intervals are usually described as smooth or pleasant, whereas dissonant intervals sound rough or unpleasant [41]. Preference for consonance appears very early in humans [41], and even limited vocal learners like chicks [42] and an infant chimpanzee [24] have displayed preferences for consonance over dissonance in previous studies. Additionally, in a previous study (not published yet), we observed that cockatiels behaved differently (i.e., were less aggressive toward conspecifics) when listening to consonant music compared to dissonant music, suggesting that they can discriminate both.
2. Materials and Methods
2.1. Subjects and Housing Conditions
2.1.1. Study 1
2.1.2. Study 2
- (1)
- identity of the bird touching the screen
- (2)
- touched shape (with the location and the music associated with it)
2.2. Statistical Analysis
3. Results
3.1. Study 1
3.1.1. Preferences
3.1.2. Cockatiels Progress Across Sessions in the First Study
3.2. Study 2
3.2.1. Preferences
3.2.2. Cockatiels Progresses Across Sessions in the Second Study
4. Discussion
4.1. Use of the TouchScreen
4.2. Musical Preferences
4.3. No Preference for Consonance
4.4. Welfare Implications
4.5. Limitations and Prospects for Further Research
4.6. Vocal Learning Could Be a Continuum
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dutton, D. A Naturalist Definition of Art. J. Aesth. Art. Crit. 2006, 64, 367–377. [Google Scholar] [CrossRef]
- D’Azevedo, W.L. A Structural Approach to Esthetics: Toward a Definition of Art in Anthropology. Am. Anthropol. 1958, 60, 702–714. [Google Scholar] [CrossRef]
- Godt, I. Music: A practical definition. Music. Times 2005, 146, 83. [Google Scholar] [CrossRef]
- Darwin, C.; Griffith, T. The Descent of Man; Prometheus Books: New York, NY, USA, 1974; Volume 4. [Google Scholar]
- Earp, S.E.; Maney, D.L. Birdsong: Is it music to their ears? Front. Evol. Neurosci. 2012, 4, Article 14. [Google Scholar] [CrossRef]
- Hoeschele, M.; Merchant, H.; Kikuchi, Y.; Hattori, Y.; ten Cate, C. Searching for the origins of musicality across species. Philos. Trans. R. Soc. B 2015, 370, 20140094. [Google Scholar] [CrossRef]
- Reinert, J. Akustische Dressurversuche an einem indischen Elefanten. Z. Tierpsychol. 1957, 14, 100–126. [Google Scholar] [CrossRef]
- Otsuka, Y.; Yanagi, J.; Watanabe, S. Discriminative and reinforcing stimulus properties of music for rats. Behav. Process 2009, 80, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Kuczaj, S. Animal aestetics from the perspective of comparative cognition. In Emotions of Animals and Humans. Comparative Perspective; Springer: Berlin/Heidelberg, Germany, 2013; pp. 129–162. [Google Scholar]
- Poli, M.; Previde, E.P. Discrimination of musical stimuli by rats (Rattus norvegicus). Int. J. Comp. Psychol. 1991, 5, 7–18. [Google Scholar]
- Izumi, A. Japanese monkeys perceive sensory consonance of chords. J. Acoust. Soc. Am. 2000, 108, 3073–3078. [Google Scholar] [CrossRef]
- Reinert, J. Takt-und rhythmusunterscheidung bei dohlen. Z. Tierpsychol. 1965, 22, 623–671. [Google Scholar] [CrossRef]
- Porter, D.; Neuringer, A. Music discriminations by pigeons. J. Exp. Psychol. Anim. B 1984, 10, 138–148. [Google Scholar] [CrossRef]
- Hulse, S.; Humpal, J.; Cynx, J. Discrimination and generalization of rhythmic and arrhythmic sound patterns by European starlings (Sturnus vulgaris). Music. Percept. 1984, 1, 442–464. [Google Scholar] [CrossRef]
- Watanabe, S.; Nemoto, M. Reinforcing property of music in Java sparrows (Padda oryzivora). Behav. Process 1998, 43, 211–218. [Google Scholar] [CrossRef]
- Ten Cate, C.; Spierings, M.; Hubert, J.; Honing, H. Can birds perceive rhythmic patterns? A review and experiments on a songbird and a parrot species. Front. Psychol. 2016, 7, 730. [Google Scholar] [CrossRef] [PubMed]
- Shinozuka, K.; Ono, H.; Watanabe, S. Reinforcing and discriminative stimulus properties of music in goldfish. Behav. Process 2013, 99, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Chase, A.R. Music discriminations by carp (Cyprinus carpio). Anim. Learn. Behav. 2001, 29, 336–353. [Google Scholar] [CrossRef]
- McAdie, T.M.; Foster, T.M.; Temple, W.; Mattews, L.R. A method for measuring the aversiveness of sounds to domestic hens. Appl. Anim. Behav. Sci. 1993, 2, 223–238. [Google Scholar] [CrossRef]
- Watanabe, S.; Suzuki, T.; Yamazaki, Y. Reinforcing property of music for non-human animals: Analysis with pigeons. Philosophy 2009, 121, 1–21. [Google Scholar]
- Crespo-Bojorque, P.; Toro, J.M. The use of interval ratios in consonance perception by rats (Rattus norvegicus) and humans (Homo sapiens). J. Comp. Psychol. 2015, 129, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Janik, V.; Slater, P.J.B. Vocal learning in mammals. Adv. Stud. Behav. 1997, 26, 59–99. [Google Scholar]
- Mingle, M.E.; Eppley, T.M.; Campbell, M.W.; Hall, K.; Horner, V.; de Waal, F.B.M. Chimpanzees prefer African and Indian music over silence. J. Exp. Psychol.-Anim. Learn. Cogn. 2014, 40, 502–505. [Google Scholar] [CrossRef]
- Sugimoto, T.; Kobayashi, H.; Nobuyoshi, N.; Kiriyama, Y.; Takeshita, H.; Nakamura, T.; Hashiya, K. Preference for consonant music over dissonant music by an infant chimpanzee. Primates 2010, 51, 7–12. [Google Scholar] [CrossRef]
- McDermott, J.; Hauser, M. Nonhuman primates prefer slow tempos but dislike music overall. Cognition 2007, 104, 654–668. [Google Scholar] [CrossRef] [PubMed]
- Ritvo, S.E.; MacDonald, S.E. Music as enrichment for Sumatran orangutans (Pongo abelii). J. Zoo Aquar. Res. 2016, 4, 156–163. [Google Scholar]
- Kleinberger, R.; Harrington, A.H.K.; Yu, L.; van Troyer, A.; Su, D.; Baker, J.M.; Miller, G. Interspecies interactions mediated by technology: An avian case study at the zoo. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ‘20), Honolulu, HI, USA, 25–30 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–12. [Google Scholar] [CrossRef]
- Péron, F.; Hoummady, S.; Mauny, N.; Bovet, D. Touch screen device and music as enrichments to captive housing conditions of African grey parrots. J. Vet. Behav.-Clin. Appl. Res. 2012, 7, e13. [Google Scholar] [CrossRef]
- Schusterman, R.J. Vocal learning in mammals with special emphasis on pinnipeds. In The Evolution of Communicative Flexibility: Complexity, Creativity and Adaptability in Human and Animal Communication; Oller, D.K., Gribel, U., Eds.; MIT Press: Cambridge, MA, USA, 2008; pp. 41–70. [Google Scholar]
- Bottoni, L.; Massa, R.; Lenti Boero, D. The grey parrot (Psittacus erithacus) as a musician: An experiment with a temperate scale. Ethol. Ecol. Evol. 2003, 15, 133–141. [Google Scholar] [CrossRef]
- Hasegawa, A.; Okanoya, K.; Hasegawa, T.; Seki, Y. Rhythmic synchronization tapping to an audio–visual metronome in budgerigars. Sci. Rep. 2011, 1, 120. [Google Scholar] [CrossRef]
- Schachner, A.; Brady, T.F.; Pepperberg, I.M.; Hauser, M.D. Spontaneous motor entrainment to music in multiple vocal mimicking species. Curr. Biol. 2009, 19, 831–836. [Google Scholar] [CrossRef]
- Patel, A.D.; Iversen, J.R.; Bregman, M.R.; Schulz, I. Avian and human movement to music Two further parallels. Commun. Integr. Biol. 2009, 2, 485–488. [Google Scholar] [CrossRef]
- Keehn, R.J.; Iversen, J.R.; Schulz, I.; Patel, A.D. Spontaneity and diversity of movement to music are not uniquely human. Curr. Biol. 2019, 29, 621–622. [Google Scholar] [CrossRef] [PubMed]
- Wood, G.A. Tool use by the palm cockatoo Probosciger aterrimus during display. Corella 1984, 8, 94–95. [Google Scholar]
- Heinsohn, R.; Zdenek, C.N.; Cunningham, R.B.; Endler, J.A.; Langmore, N.E. Tool-assisted rhythmic drumming in palm cockatoos shares key elements of human instrumental music. Sci. Adv. 2017, 3, e1602399. [Google Scholar] [CrossRef]
- McPhee, E.M.; Carlstead, K. The Importance of Maintaining Natural Behaviors in Captive Mammals. In Wild Mammals in Captivity: Principles and Techniques for Zoo Management, 2nd ed.; Kleiman, D.G., Thompson, K.V., Kirk Bar, C., Eds.; University of Chicago Press: Chicago, IL, USA, 2010; pp. 303–313. [Google Scholar]
- Okanoya, K.; Dooling, R.J. Hearing in passerine and psittacine birds: A comparative study of absolute and masked auditory thresholds. J. Comp. Psychol. 1987, 101, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Heffner, H.E.; Heffner, R.S. Hearing Ranges of Laboratory Animals. J. Am. Assoc. Lab. Anim. 2006, 46, 11–13. [Google Scholar]
- Bowling, D.L.; Purves, D. A biologicale rationale for musical consonance. Proc. Natl. Acad. Sci. USA 2015, 112, 11155–11160. [Google Scholar] [CrossRef] [PubMed]
- Trainor, L.J.; Heinmiller, B.M. The development of evaluative responses to music: Infants prefer to listen to consonance over dissonance. Infant. Behav. Dev. 1998, 21, 77–88. [Google Scholar] [CrossRef]
- Chiandetti, C.; Vallortigara, G. Chicks like consonant music. Psychol. Sci. 2011, 22, 270–1273. [Google Scholar] [CrossRef]
- Koelsch, S.; Fritz, T.; Müller, K.; Friederici, A.D. Investigating emotion with music: An fMRI study. Hum. Brain Mapp. 2006, 27, 239–250. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 9 December 2024).
- Giraudoux, P. Pgirmess: Spatial Analysis and Data Mining for Field Ecologists. In R Package Version; R Foundation for Statistical Computing: Vienna, Austria, 2018; Volume 361, p. 9. [Google Scholar]
- Good, P.I. Permutation, Parametric, and Bootstrap Tests of Hypotheses, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Wagner, B.; Bowling, D.L.; Hoeschele, M. Is consonance attractive to budgerigars? No evidence from a place preference study. Anim. Cogn. 2020, 23, 973–987. [Google Scholar] [CrossRef]
- Plantinga, J.; Trehub, S.E. Revisiting the innate preference for consonance. J. Exp. Psychol. Hum. Percept. Perform. 2014, 40, 40–49. [Google Scholar] [CrossRef] [PubMed]
- McDermott, J.; Schultz, A.F.; Undurraga, E.A.; Godoy, R.A. Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature 2016, 535, 547–601. [Google Scholar] [CrossRef] [PubMed]
- Englund, M.D.; Cronin, K.A. Choice, control, and animal welfare: Definitions and essential inquiries to advance animal welfare science. Front. Vet. Sci. 2023, 10, 1250251. [Google Scholar] [CrossRef]
- Gupfinger, R.; Kaltenbrunner, M. Sonic experiments with grey parrots: A report on testing the auditory skills and musical preferences of grey parrots in captivity. In Proceedings of the Fourth International Conference on Animal-Computer Interaction, ACM, Milton Keynes, UK, 21–23 November 2017; pp. 3–9. [Google Scholar]
- Le Covec, M.; Aimé, C.; Bovet, D. Combinatory sound object play in cockatiels: A forerunner of music? Behaviour 2019, 156, 595–617. [Google Scholar] [CrossRef]
- Arriaga, G.; Jarvis, E.D. Mouse vocal communication system: Are ultrasounds learned or innate? Brain Lang 2013, 124, 96–116. [Google Scholar] [CrossRef] [PubMed]
- Wells, D.L.; Coleman, D.; Challis, M.G. A note on the effect of auditory stimulation on the behaviour and welfare of zoo-housed gorillas. Appl. Anim. Behav. Sci. 2006, 100, 327–332. [Google Scholar] [CrossRef]
- Kogan, L.R.; Schoenfeld-Tacher, R.; Simon, A.A. Behavioral effects of auditory stimulation on kenneled dogs. J. Vet. Behav. 2012, 7, 268–275. [Google Scholar] [CrossRef]
- Wells, D.L.; Graham, L.; Hepper, P.G. The influence of auditory stimulation on the behaviour of dogs housed in a rescue shelter. Anim. Welf. 2002, 11, 385–393. [Google Scholar] [CrossRef]
- Boone, A.; Quelch, V. Effects of harp music therapy on canine patients in the veterinary hospital setting. Harp Ther. J. 2003, 8, 4–5. [Google Scholar]
- Watanabe, S.; Braun, K.; Mensch, M.; Scheich, H. Music preference in degus (Octodon degus): Analysis with Chilean folk music. Anim. Behav. Cogn. 2018, 5, 201–208. [Google Scholar] [CrossRef]
- Yang, E.J.; Lin, E.W.; Hensch, T.K. Critical period for acoustic preference in mice. Acad. Sci. 2012, 109, 17213–17220. [Google Scholar] [CrossRef] [PubMed]
Bird | Sex | Test 1 | Test 2 |
---|---|---|---|
Hermès | Male | 4 years 10 months | 5 years 11 months |
Callisto | Female | 4 years 8 months | 5 years 9 months |
Viviane | Female | 4 years 8 months | 5 years 9 months |
Nephtys | Female | 4 years 9 months | 5 years 10 months |
Seth | Male | 4 years 9 months | 5 years 10 months |
Skadi | Female | 3 years 9 months | 4 years 10 months |
Odin | Male | 3 years 9 months | 4 years 10 months |
Loki | Male | 3 years 9 months | 4 years 10 months |
Isis | Female | 1 year 4 months | 2 years 5 months |
Éole | Male | 1 year 3 months | 2 years 4 months |
Gaïa | Female | 1 year 3 months | 2 years 4 months |
Morgane | Female | 1 year 3 months | 2 years 4 months |
Condition | Shape | Location | Style |
---|---|---|---|
Study 1 | |||
1 | Red square | Left | Rock and roll |
Dark blue circle | Right | Calm | |
2 | Red square | Right | Rock and roll |
Dark blue circle | Left | Calm | |
3 | Red square | Right | Calm |
Dark blue circle | Left | Rock and roll | |
Study 2 | |||
1 | Orange heart | Left | Consonant |
Green cross | Right | Dissonant | |
2 | Orange heart | Right | Consonant |
Green cross | Left | Dissonant | |
3 | Orange heart | Right | Dissonant |
Green cross | Left | Consonant |
Study 1 | Binomial Tests | LM with Permutation Test | |||||
---|---|---|---|---|---|---|---|
Condition | Bird | Success | p-Value | Pente (β) | SE | R2 Multiple Model | p-Value |
Condition 1 | Seth | 0.212 | <0.001 | −0.012 | 0.008 | 0.121 | 0.165 |
Condition 1 | Gaïa | 0.728 | <0.001 | 0.015 | 0.005 | 0.246 | 0.011 |
Condition 1 | Nephtys | 0.811 | <0.001 | 0.010 | 0.004 | 0.333 | 0.032 |
Condition 1 | Eole | 0.296 | <0.001 | −0.012 | 0.009 | 0.102 | 0.199 |
Condition 2 | Seth | 0.222 | <0.001 | −0.031 | 0.006 | 0.613 | <0.001 |
Condition 2 | Gaïa | 0.699 | <0.001 | 0.009 | 0.005 | 0.144 | 0.066 |
Condition 2 | Nephtys | 0.766 | <0.001 | 0.023 | 0.006 | 0.456 | 0.003 |
Condition 2 | Eole | 0.137 | <0.001 | 0.002 | 0.003 | 0.025 | 0.46 |
Condition 3 | Seth | 0.245 | <0.001 | −0.009 | 0.008 | 0.073 | 0.241 |
Condition 3 | Gaïa | 0.262 | <0.001 | −0.016 | 0.007 | 0.202 | 0.028 |
Condition 3 | Nephtys | 0.402 | <0.001 | −0.031 | 0.007 | 0.461 | <0.001 |
Condition 3 | Eole | 0.675 | <0.001 | 0.013 | 0.004 | 0.295 | 0.001 |
Study 2 | Binomial tests | LM with permutation test | |||||
Condition | Bird | Success | p-value | Slope (β) | SE | R2 Multiple Model | p-value |
Condition 1 | Nephtys | 0.242 | <0.001 | −0.053 | 0.014 | 0.616 | 0.002 |
Condition 1 | Isis | 0.832 | <0.001 | 0.075 | 0.031 | 0.427 | 0.047 |
Condition 2 | Nephtys | 0.008 | <0.001 | 0.006 | 0.004 | 0.268 | 0.212 |
Condition 2 | Isis | 0.128 | <0.001 | 0.008 | 0.014 | 0.047 | 0.583 |
Condition 3 | Nephtys | 0.039 | <0.001 | −0.009 | 0.013 | 0.071 | 0.577 |
Condition 3 | Isis | 0.163 | <0.001 | −0.001 | 0.031 | 3.069 × 10−5 | 0.987 |
Condition | Bird | Red Square | Blue Circle |
---|---|---|---|
1 | Odin | 49 | 165 |
1 | Isis | 71 | 21 |
2 | Odin | 50 | 29 |
2 | Isis | 27 | 93 |
3 | Odin | 15 | 5 |
2 | Isis | 3 | 46 |
Test 1 | Binomial Tests | LM with Permutation Test | |||||
---|---|---|---|---|---|---|---|
Condition | Bird | Success | p-Value | Slope (β) | SE | R2 Multiple Model | p-Value |
Condition 1 | Odin | 0.229 | <0.001 | 0.03719 | 0.03088 | 0.1535 | 0.281 |
Condition 1 | Isis | 0.772 | <0.001 | −0.04059 | 0.04509 | 0.1684 | 0.355 |
Condition 2 | Odin | 0.633 | 0.01191 | 0.11228 | 0.04541 | 0.5501 | 0.046 |
Condition 2 | Isis | 0.225 | <0.001 | 0.01126 | 0.01415 | 0.05009 | 0.469 |
Condition 3 | Odin | 0.75 | 0.02069 | −0.16667 | 0.06706 | 0.6069 | 0.06 |
Condition 3 | Isis | 0.061 | <0.001 | −0.02857 | 0.02073 | 0.1472 | 0186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Covec, M.; Di Stasi, R.; Aimé, C.; Bouet, L.; Watanabe, S.; Bovet, D. Do Cockatiels Choose Their Favourite Tunes? Use of Touchscreen for Animal Welfare Enhancement and Insights into Musical Preferences. Animals 2024, 14, 3609. https://doi.org/10.3390/ani14243609
Le Covec M, Di Stasi R, Aimé C, Bouet L, Watanabe S, Bovet D. Do Cockatiels Choose Their Favourite Tunes? Use of Touchscreen for Animal Welfare Enhancement and Insights into Musical Preferences. Animals. 2024; 14(24):3609. https://doi.org/10.3390/ani14243609
Chicago/Turabian StyleLe Covec, Mathilde, Romain Di Stasi, Carla Aimé, Léa Bouet, Shigeru Watanabe, and Dalila Bovet. 2024. "Do Cockatiels Choose Their Favourite Tunes? Use of Touchscreen for Animal Welfare Enhancement and Insights into Musical Preferences" Animals 14, no. 24: 3609. https://doi.org/10.3390/ani14243609
APA StyleLe Covec, M., Di Stasi, R., Aimé, C., Bouet, L., Watanabe, S., & Bovet, D. (2024). Do Cockatiels Choose Their Favourite Tunes? Use of Touchscreen for Animal Welfare Enhancement and Insights into Musical Preferences. Animals, 14(24), 3609. https://doi.org/10.3390/ani14243609