Application of Machine Learning for Automating Behavioral Tracking of Captive Bornean Orangutans (Pongo Pygmaeus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects and Enclosure
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Using Image Classification to Recognize Individual Orangutans
3.2. Using Object Detection to Automate Behavioral Tracking
3.3. Correcting Object Detection of Locomotion
4. Discussion
4.1. Subject Recognition with Image Classification
4.2. Potential for Utilizing Label Box Dimensions to Determine Behavior
4.3. Behavior Tracking with Object Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ancrenaz, M.; Gumal, M.; Marshall, A.J.; Meijaard, E.; Wich, S.A.; Husson, S. Pongo pygmaeus, Bornean Orangutan (errata version published in 2018), The IUCN Red List of Threatened Species. 2016, p. e.T17975A123809220. Available online: https://www.researchgate.net/publication/309386559_Pongo_pygmaeus_Bornean_orangutan (accessed on 7 November 2023).
- DAZA. Etiske retningslinjer, Danish Association of Zoos and Aquaria, DAZA. 2022. Available online: https://www.daza.dk/pdf/DAZA%20etiske%20retningslinjer%20-%20godkendt%20GF%2015.06.2022-underskrevet.pdf (accessed on 9 November 2023).
- EAZA. Standards for the Accommodation and Care of Animals in Zoos and Aquaria, European Association of Zoos and Aquaria. EAZA. 2014. Available online: https://www.eaza.net/assets/Uploads/EAZA-Documents-2022/2022-04-EAZA-Standards-for-Accomodation-and-Care.pdf (accessed on 9 November 2023).
- Barongi, R.; Bonner, J.P.; Boyle, P.; Burns, S.; Byers, O.; Dick, G.; Dickie, L.; Fisken, F.A.; Gendron, S.; Gray, J.; et al. Committing to Conservation: The World Zoo and Aquarium Conservation Strategy; World Association of Zoos and Aquariums (WAZA): Gland, Switzerland, 2015. [Google Scholar]
- Wolfensohn, S.; Shotton, J.; Bowley, H.; Davies, S.; Thompson, S.; Justice, W.S.M. Assessment of Welfare in Zoo Animals: Towards Optimum Quality of Life. Animals 2018, 8, 110. [Google Scholar] [CrossRef]
- Mason, G.J. Stereotypies and suffering. Behav. Process. 1991, 25, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Lutz, C.K.; Novak, M.A. Environmental Enrichment for Nonhuman Primates: Theory and Application. ILAR J. 2005, 46, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Ting, C.Y. Orangutan Behaviour in Captivity: Activity Budgets, Enclosure Use and the Visitor Effect. Master’s Thesis, National University of Singapore, Singapore, 2011. [Google Scholar]
- Zhou, Z.-H. Application Status, in Machine Learning; Springer Nature: Singapore, 2016; pp. 15–18. [Google Scholar]
- Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object Detection With Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [PubMed]
- Zuerl, M.; Stoll, P.; Brehm, I.; Raab, R.; Zanca, D.; Kabri, S.; Happold, J.; Nille, H.; Prechtel, K.; Wuensch, S.; et al. Automated Video-Based Analysis Framework for Behavior Monitoring of Individual Animals in Zoos Using Deep Learning—A Study on Polar Bears. Animals 2022, 12, 692. [Google Scholar] [CrossRef] [PubMed]
- Congdon, J.V.; Hosseini, M.; Gading, E.F.; Masousi, M.; Franke, M.; MacDonald, S.E. The Future of Artificial Intelligence in Monitoring Animal Identification, Health, and Behaviour. Animals 2022, 12, 1711. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Povlsen, P. Wildlife Monitoring Using Drones and Artificial Intelligence. Master’s Thesis, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark, 2023. [Google Scholar]
- Sakib, F.; Burghardt, D.T. Visual Recognition of Great Ape Behaviours in the Wild. arXiv 2020, arXiv:2011.10759. [Google Scholar]
- Wang, L.; Liu, H. Behaviour Recognition Method Based on Object Detection for Power Operating Series. In Proceedings of the 2023 Chinese Intelligent Automation Conference, Nanjing, China, 2–5 October 2023; Springer Nature: Singapore, 2023; pp. 484–499. [Google Scholar]
- Bain, M.; Nagrani, A.; Schofield, D.; Berdugo, S.; Bessa, J.; Owen, J.; Hockings, K.J.; Matsuzawa, T.; Hayashi, M.; Biro, D.; et al. Automated audiovisual behavior recognition in wild primates. Sci. Adv. 2021, 7, eabi4883. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Luo, H.; Fang, D. A progressive deep learning framework for fine-grained primate behavior recognition. Appl. Anim. Behav. Sci. 2023, 269, 106099. [Google Scholar] [CrossRef]
- Marks, M.; Jin, Q.; Sturman, O.; von Ziegler, L.; Kollmorgen, S.; von der Behrens, W.; Mante, V.; Bohacek, J.; Yanik, M.F. Deep-learning-based identification, tracking, pose estimation and behaviour classification of interacting primates and mice in complex environments. Nat. Mach. Intell. 2022, 4, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.F.; Andersen, K.K.; Cuprys, J.; Fosgaard, T.B.; Jacobsen, J.H.; Krysztofiak, D.; Lund, S.M.; Nielsen, B.; Pedersen, M.E.; Pedersen, M.J.; et al. Behavioral analysis of a captive male Bornean orangutan (Pongo pygmaeus) when exposed to environmental changes. Arch. Biol. Sci. 2023, 75, 443–458. [Google Scholar] [CrossRef]
- Rubek, F. Sammendrag af Sommer 2023. Danmarks Meterologiske Institut: Copenhagen, Denmark, 2023. [Google Scholar]
- Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 2018, 21, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Wenkel, S.; Alhazmi, K.; Liiv, T.; Alrshoud, S.; Simon, M. Confidence Score: The Forgotten Dimension of Object Detection Performance Evaluation. Sensors 2021, 21, 4350. [Google Scholar] [CrossRef] [PubMed]
- Hardin, A.; Schlupp, I. Using machine learning and DeepLabCut in animal behavior. Acta Ethologica 2022, 25, 125–133. [Google Scholar] [CrossRef]
Behavior | Description |
---|---|
Locomotion | Walking, crawling, or climbing |
Inactive | Stationary, e.g., sitting, lying down, or standing still |
Covered Inactive | Stationary under cover, such as blankets |
Foraging/Feeding | Searching for food, moving with food, or ingesting food or drinking |
Out of View/Not Labeled | When it is not possible to see the orangutan because they are out of the camera’s view. Includes images that were not labeled by the object detection model |
Other | Urinating, interaction with zookeepers, etc. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gammelgård, F.; Nielsen, J.; Nielsen, E.J.; Hansen, M.G.; Alstrup, A.K.O.; Perea-García, J.O.; Jensen, T.H.; Pertoldi, C. Application of Machine Learning for Automating Behavioral Tracking of Captive Bornean Orangutans (Pongo Pygmaeus). Animals 2024, 14, 1729. https://doi.org/10.3390/ani14121729
Gammelgård F, Nielsen J, Nielsen EJ, Hansen MG, Alstrup AKO, Perea-García JO, Jensen TH, Pertoldi C. Application of Machine Learning for Automating Behavioral Tracking of Captive Bornean Orangutans (Pongo Pygmaeus). Animals. 2024; 14(12):1729. https://doi.org/10.3390/ani14121729
Chicago/Turabian StyleGammelgård, Frej, Jonas Nielsen, Emilia J. Nielsen, Malthe G. Hansen, Aage K. Olsen Alstrup, Juan O. Perea-García, Trine H. Jensen, and Cino Pertoldi. 2024. "Application of Machine Learning for Automating Behavioral Tracking of Captive Bornean Orangutans (Pongo Pygmaeus)" Animals 14, no. 12: 1729. https://doi.org/10.3390/ani14121729
APA StyleGammelgård, F., Nielsen, J., Nielsen, E. J., Hansen, M. G., Alstrup, A. K. O., Perea-García, J. O., Jensen, T. H., & Pertoldi, C. (2024). Application of Machine Learning for Automating Behavioral Tracking of Captive Bornean Orangutans (Pongo Pygmaeus). Animals, 14(12), 1729. https://doi.org/10.3390/ani14121729