Could Milkability Parameters Serve as a Reliable Tool to Predict the Morphology of Teat Structures and Their Milking-Induced Changes?
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- Yijkl—measured value of the dependent variables (milk yield—MY [kg]; milk yield during the first two minutes of milking—MY2 min [kg]; milking time—MT [min]; average milk flow—AMF [kg.min−1]; partial milk flows 30–60 s—MF30-60 [kg.min−1]; the occurrence of delayed milk flow [%]; the occurrence of bimodal milk flow [%]);
- µ—mean value of the dependent variable;
- TPi—fixed effect group of teat parameters (LENGTH variant—i ≤ 43.5 µm), n = 162; i = 43.51–52.5 µm, n = 199; i ≥ 52.51 µm, n = 195; BARREL variant—i ≤ 24.2 µm, n = 210; i = 24.21–26.5 µm, n = 211; i ≥ 26.51 µm), n = 132; CISTERN variant—i ≤ 11 µm, n = 202; i = 11.01–14.5 µm, n = 201; i ≥ 14.51 µm, n = 153; WALL variant—i ≤ 5.7 µm), n = 102; i = 5.71–7 µm, n = 207; i ≥ 7.01 µm, n = 247; APEX variant—i ≤ 21 µm, n = 210; i = 21.01–22.5 µm, n = 180; i ≥ 22.51 µm, n = 164; CANAL variant—i ≤ 11.8 µm, n = 139; i = 11.81–14 µm, n = 222; i ≥ 14.01 µm, n = 195);
- LOj—fixed effect of lactation order (j = 1, n = 164; j = 2, n = 180; j = 3 and subsequent, n = 212);
- MOk—fixed effect month of evaluation (k = 1, n = 132; k = 5, n = 84; k = 6, n = 60; k = 11, n = 104; k = 12, n = 174);
- CWl—fixed repeated effect of cows (48 cows in 4 to 16 repetitions = 4 teats x multiple measurements).
- eijklm—residual errors.
- Yijklm—measured value of the dependent variables (change in LENGTH—LENGTH%; change in BARREL—BARREL%; change in CISTERN—CISTERN%; change in WALL—WALL%; change in APEX—APEX%; change in CANAL—CANAL%;
- µ—mean value of the dependent variable;
- MAi—fixed effect group of milkability parameters (milk yield variant—i ≤ 13 kg), n = 168; i = 13.01–16 kg, n = 216; i ≥ 16.01 µm, n = 172; milk yield during the first two minutes of milking variant—i ≤ 4.5 kg, n = 180; i 4.51–6 kg, n = 188; i ≥ 6.01 kg, n = 188; milking time variant—i ≤ 5 min., n = 112; i = 5.01–7 min., n = 288; i ≥ 7.01 min., n = 156; partial milk flow 30–60 s variant—i ≤ 2.5 kg.min−1, n = 160; i = 2.51–3.5 kg.min−1, n = 260; i ≥ 3.51 kg.min−1, n = 136; delayed flow variant—i = no, n = 164; i = yes, n = 392; average milk flow variant—i ≤ 2 kg.min−1, n = 128; i = 2.01–2.7 kg.min−1, n = 268; i ≥ 2.71 kg.min−1, n = 160; bimodal milk flow variant—i = yes, n = 404; i = no, n = 152);
- LOj—lactation order fixed effect (j = 1, n = 164; j = 2, n = 180; j = 3 and subsequent, n = 212);
- MOk—fixed effect month of evaluation (k = 1, n = 132; k = 5, n = 84; k = 6, n = 60; k = 11, n = 104; k = 12, n = 174);
- CWl—fixed repeated effect of cows (48 cows in 4 to 16 repetitions = 4 teats x multiple measurements).
- eijklm—residual errors.
3. Results
3.1. Basic Statistics
3.2. Effects of Teat Morphology on Milkability
3.3. Regression Equations
- LENGTH = 56.68 + AMF × (−4.579) + MF30-60 × (−2.592) + MY2 min × (2.060)R-square 3.36%; p < 0.001
- CISTERN = 6.924 + MY × (−0.163) + MT × (0.819) + MF30-60 × (0.931)R-square 7.59%; p < 0.001
- CANAL% = 59.210 + CANAL × (−4.720) + MT × (0.90) + MY2 min × (1.247)R-square 46.03%; p < 0.001
- LENGTH% = 44.185 + LENGTH × (−0.654) + MT × (0.726)R-square 21.5%; p < 0.001
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, L.M.; Stöcker, C.; Sauerwein, H.; Büscher, W.; Müller, U. Evaluation of inner teat morphology by using high-resolution ultrasound: Changes due to milking and establishment of measurement traits of the distal teat canal. J. Dairy Sci. 2018, 101, 8417–8428. [Google Scholar] [CrossRef] [PubMed]
- Halasa, T.; Huijps, K.; Østerås, O.; Hogeveen, H. Economic effects of bovine mastitis and mastitis management: A review. Vet. Q. 2007, 29, 18–31. [Google Scholar] [CrossRef]
- Seykora, A.J.; McDaniel, B.T. Udder and teat morphology related to mastitis resistance: A review. J. Dairy Sci. 1985, 68, 2087–2093. [Google Scholar] [CrossRef] [PubMed]
- Guarín, J.F.; Ruegg, P.L. Short communication: Pre- and postmilking anatomical characteristics of teats and their associations with risk of clinical mastitis in dairy cows. J. Dairy Sci. 2016, 99, 8323–8329. [Google Scholar] [CrossRef] [PubMed]
- Svennesen, L.; Lund, T.B.; Skarbye, A.P.; Klaas, I.C.; Nielsen, S.S. Expert evaluation of different infection types in dairy cow quarters naturally infected with Staphylococcus aureus or Streptococcus agalactiae. Prev. Vet. Med. 2019, 167, 16–23. [Google Scholar] [CrossRef]
- Derakhshani, H.; Fehr, K.B.; Sepehri, S.; Francoz, D.; De Buck, J.; Barkema, H.W.; Plaizier, J.C.; Khafipour, E. Invited review: Microbiota of the bovine udder: Contributing factors and potential implications for udder health and mastitis susceptibility. J. Dairy Sci. 2018, 101, 10605–10625. [Google Scholar] [CrossRef]
- Neijenhuis, F. Mastitis therapy and control: Role of milking machines in control of mastitis. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 440–446. ISBN 978-0-12-374407-4. [Google Scholar]
- Zwertvaegher, I.; De Vliegher, S.; Verbist, B.; Van Nuffel, A.; Baert, J.; Van Weyenberg, S. Short communication: Associations between teat dimensions and milking-induced changes in teat dimensions and quarter milk somatic cell counts in dairy cows. J. Dairy Sci. 2013, 96, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Paulrud, C.; Clausen, S.; Andersen, P.; Rasmussen, M.D. Infrared thermography and ultrasonography to indirectly monitor the influence of liner type and overmilking on teat tissue recovery. Acta Vet. Scand. 2005, 46, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Hamann, J.; Mein, G.A. Teat thickness changes may provide biological test for effective pulsation. J. Dairy Res. 1996, 63, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Penry, J.F.; Upton, J.; Mein, G.A.; Rasmussen, M.D.; Ohnstad, I.; Thompson, P.D.; Reinemann, D.J. Estimating teat canal cross-sectional area to determine the effects of teat-end and mouthpiece chamber vacuum on teat congestion. J. Dairy Sci. 2017, 100, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Melvin, J.M.; Heuwieser, W.; Virkler, P.D.; Nydam, D.V.; Wieland, M. Machine milking-induced changes in teat canal dimensions as assessed by ultrasonography. J. Dairy Sci. 2019, 102, 2657–2669. [Google Scholar] [CrossRef] [PubMed]
- Szencziová, I.; Strapák, P.; Stádník, L.; Ducháček, J.; Beran, J. Relationship of udder and teat morphology to milking characteristics and udder health determined by ultrasonographic examinations in dairy cows. Ann. Anim. Sci. 2013, 13, 783–795. [Google Scholar] [CrossRef]
- Mein, G.; Reinemann, D.; Schuring, N.; Ohnstad, I. Milking machines and mastitis risk: A storm in a Teatcup. In Proceedings of the National Mastitis Council Annual Meeting, 43nd Annual Meeting of the National Mastitis Council, Charlotte, NC, USA, 1–4 February 2004; pp. 176–188. [Google Scholar]
- Gašparík, M.; Ducháček, J.; Stádník, L.; Vrhel, M.; Ptáček, M. Milkability characteristics of Jersey cows throughout the lactation and their effect on milking induced teat prolongation. Mljekarstvo 2022, 72, 114–122. [Google Scholar] [CrossRef]
- Weiss, D.; Weinfurtner, M.; Bruckmaier, R.M. Teat anatomy and its relationship with quarter and udder milk flow characteristics in dairy cows. J. Dairy Sci. 2004, 87, 3280–3289. [Google Scholar] [CrossRef]
- Nørstebø, H.; Rachah, A.; Dalen, G.; Rønningen, O.; Whist, A.C.; Reksen, O. Milk-flow data collected routinely in an automatic milking system: An alternative to milking-time testing in the management of teat-end condition? Acta Vet. Scand. 2018, 60, 2. [Google Scholar] [CrossRef] [PubMed]
- Bobić, T.; Mijić, P.; Vučković, G.; Gregić, M.; Baban, M.; Gantner, V. Morphological and milkability breed differences of dairy cows. Mljekarstvo 2014, 64, 71–78. [Google Scholar]
- Strapák, P.; Strapáková, E.; Rušinová, M.; Szencziová, I. The influence of milking on the teat canal of dairy cows determined by ultrasonographic measurements. Czech J. Anim. Sci. 2017, 62, 75–81. [Google Scholar] [CrossRef]
- Neijenhuis, F.; Klungel, G.H.; Hogeveen, H. Recovery of cow teats after milking as determined by ultrasonographic scanning. J. Dairy Sci. 2001, 84, 2599–2606. [Google Scholar] [CrossRef]
- Wieland, M.; Melvin, J.M.; Virkler, P.D.; Nydam, D.V.; Heuwieser, W. Technical note: Development and evaluation of a standard operating procedure for ultrasound-based measurements of teat canal dimensions in dairy cows. J. Dairy Sci. 2018, 101, 1518–1523. [Google Scholar] [CrossRef] [PubMed]
- Zecconi, A.; Hamann, J.; Bronzo, V.; Ruffo, G. Machine-induced teat tissue reactions and infection risk in a dairy herd free from contagious mastitis pathogens. J. Dairy Res. 1992, 59, 265–271. [Google Scholar] [CrossRef]
- Zecconi, A.; Bronzo, V.; Piccinini, R.; Moroni, P.; Ruffo, G. Field study on the relationship between teat thickness changes and intramammary infections. J. Dairy Res. 1996, 63, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.; Flöck, M.; Khol, J.L.; Franz, S.; Stüger, H.P.; Baumgartner, W. Ultrasonographic measurement of the bovine teat: Breed differences, and the significance of the measurements for udder health. J. Dairy Res. 2005, 72, 296–302. [Google Scholar] [CrossRef]
- Česká Národní Rada. Zákon č. 246/1992 Sb. na Ochranu Zvířat Proti Týrání; Česká Národní Rada: Prague, Czechia, 1992; Available online: https://www.zakonyprolidi.cz/cs/1992-246 (accessed on 29 September 2024).
- European Parliament; Council of the European Union. DIRECTIVE 2010/63/EU on the Protection of Animals Used for Scientific Purposes; European Parliament: Brussels, Belgium, 2010; Available online: https://eur-lex.europa.eu/eli/dir/2010/63/oj (accessed on 29 September 2024).
- Wieland, M.; Virkler, P.D.; Borkowski, A.H.; Älveby, N.; Wood, P.; Nydam, D.V. An observational study investigating the association of ultrasonographically assessed machine milking-induced changes in teat condition and teat-end shape in dairy cows. Animal 2019, 13, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Afimilk. Afifarm 3.08 User Manual; Afimilk: Afikim, Israel, 2011. [Google Scholar]
- Dzidic, A.; Kaps, M.; Bruckmaier, R.M. Machine Milking of Istrian Dairy Crossbreed Ewes: Udder Morphology and Milking Characteristics. Small Rumin. Res. 2004, 55, 183–189. [Google Scholar] [CrossRef]
- Gašparík, M.; Szencziová, I.; Ducháček, J.; Tóthová Tarová, E.; Stádník, L.; Nagy, M.; Kejdová Rysová, L.; Vrhel, M.; Legarová, V. Complex relationships between milking-induced changes in teat structures and their pre-milking dimensions in Holstein cows. Animal 2023, 13, 1085. [Google Scholar] [CrossRef]
- SAS Institute. Statistical Analysis Software (SAS) User’s Guide Version 9.4; SAS Institute, Inc.: Cary, NC, USA, 2016. [Google Scholar]
- Fasulkov, I.; Vasilev, N.; Karadaev, M.; Dineva, G. Visualization and Measurement of Teat Structures in Black-and-White Cows Through Ultrasonography. Maced. Vet. Rev. 2014, 37, 89–93. [Google Scholar] [CrossRef]
- Geishauser, T.; Querengässer, K. Investigations on Teat Canal Length in Teats with Milk Flow Disturbances. J Dairy Sci. 2000, 83, 1976–1980. [Google Scholar] [CrossRef]
- O’shea, J. Machine Milking Factors Affecting Mastitis. A Literature Review; Bulletin International Dairy Federation: Bruxelles, Belgium, 1987. [Google Scholar]
- Edwards, J.P.; O’Brien, B.; Lopez-Villalobos, N.; Jago, J.G. Overmilking Causes Deterioration in Teat-End Condition of Dairy Cows in Late Lactation. J. Dairy Res. 2013, 80, 344–348. [Google Scholar] [CrossRef]
- Hamann, J.; Mein, G.A.; Wetzel, S. Teat Tissue Reactions to Milking: Effects of Vacuum Level. J. Dairy Sci. 1993, 76, 1040–1046. [Google Scholar] [CrossRef]
- Isaksson, A.; Lind, O. Teat Reactions in Cows Associated with Machine Milking. Zentralbl Vet. A. 1992, 39, 282–288. [Google Scholar] [CrossRef]
- Hamann, J.; Mein, G.A. Measurement of Machine-Induced Changes in Thickness of the Bovine Teat. J. Dairy Res. 1990, 57, 495–505. [Google Scholar] [CrossRef]
- Stauffer, C.; Van der Vekens, E.; Stoffel, M.H.; Schweizer, D.; Bruckmaier, R.M. Increased Teat Wall Thickness in Response to Machine Milking. J. Dairy Sci. 2021, 104, 9082–9092. [Google Scholar] [CrossRef] [PubMed]
- Dechow, C.D.; Sondericker, K.S.; Enab, A.A.; Hardie, L.C. Genetic, Farm, and Lactation Effects on Behavior and Performance of US Holsteins in Automated Milking Systems. J. Dairy Sci. 2020, 103, 11503–11514. [Google Scholar] [CrossRef]
- Tilki, M.; Inal, S.; Colak, M.; Garip, M. Relationships Between Milk Yield and Udder Measurements in Brown Swiss Cows. Turk. J. Vet. Anim. Sci. 2005, 29, 75–81. [Google Scholar]
Milk Yield | MY2 min | Milking Time | MF0-15 | MF15-30 | MF30-60 | MF60-120 | AMF | Bimodal Flow | |
---|---|---|---|---|---|---|---|---|---|
LENGTH | −0.019 | −0.107 * | 0.136 * | −0.086 * | −0.079 | −0.132 * | −0.084 * | −0.143 * | −0.004 |
BARREL | 0.123 * | 0.016 | 0.153 * | −0.042 | 0.011 | 0.079 | −0.010 | −0.037 | −0.135 * |
CISTERN | 0.109 * | 0.042 | 0.172 * | 0.003 | 0.021 | 0.094 * | 0.019 | −0.030 | −0.090 * |
WALL | 0.003 | 0.035 | −0.107 * | −0.030 | 0.045 | 0.028 | 0.039 | 0.075 | 0.045 |
APEX | 0.129 * | 0.036 | 0.136 * | −0.115 * | 0.086 * | 0.096 * | 0.003 | −0.029 | −0.051 |
CANAL | 0.115 * | 0.027 | 0.022 | −0.147 * | 0.023 | −0.012 | 0.066 | 0.036 | 0.063 |
LENGTH% | 0.002 | 0.030 | 0.016 | 0.011 | 0.051 | 0.035 | 0.018 | −0.002 | 0.065 |
BARREL% | −0.053 | 0.010 | −0.073 | −0.003 | 0.055 | −0.028 | 0.017 | 0.031 | 0.107 * |
CISTERN% | −0.082 * | −0.028 | −0.095 * | −0.007 | −0.039 | −0.048 | −0.009 | 0.013 | 0.028 |
WALL% | 0.023 | 0.063 | 0.020 | 0.088 * | 0.021 | 0.085 * | 0.049 | 0.037 | −0.065 |
APEX% | 0.047 | −0.005 | −0.006 | 0.043 | −0.050 | −0.022 | 0.014 | 0.044 | −0.002 |
CANAL% | 0.028 | 0.077 | 0.001 | 0.083 * | 0.050 | 0.100 * | 0.057 | 0.023 | −0.084 * |
LENGTH% | BARREL% | CISTERN% | WALL% | APEX% | CANAL% | |
---|---|---|---|---|---|---|
LENGTH | −0.457 * | −0.084 * | −0.012 | −0.069 | −0.067 | 0.029 |
BARREL | −0.044 | −0.602 * | −0.345 * | 0.134 * | −0.155 * | 0.126 * |
CISTERN | −0.059 | −0.436 * | −0.520 * | 0.338 * | −0.209 * | 0.054 |
WALL | 0.024 | 0.193 * | 0.309 * | −0.558 * | 0.270 * | 0.050 |
APEX | −0.018 | −0.236 * | −0.131 * | 0.094 * | −0.542 * | 0.035 |
CANAL | −0.144 * | 0.184 * | 0.255 * | −0.307 * | −0.023 | −0.047 |
Effect | Groups | Milk Yield (kg) | MY2 min (kg) | Milking Time (min) | MF30-60 (kg.min−1) | AMF (kg.min−1) | Delayed Flow (%) | Bimodal Flow (%) |
---|---|---|---|---|---|---|---|---|
LENGTH (mm) | <43.5 | 14.70 | 5.84 b | 5.95 | 3.16 A, a | 2.52 A | 61.17 | 21.68 |
43.5–52.5 | 14.31 | 5.36 a | 6.18 | 2.85 b | 2.37 B | 70.76 | 28.66 | |
>52.5 | 14.20 | 5.39 a | 6.26 | 2.82 B | 2.36 B | 67.07 | 27.83 | |
BARREL (mm) | <24.2 | 13.89 A, a | 5.32 | 5.96 A | 2.75 a | 2.39 | 71.13 | 30.37 a |
24.2–26.5 | 14.50 b | 5.59 | 6.08 a | 2.99 | 2.44 | 65.45 | 28.60 a | |
>26.5 | 14.91 B | 5.66 | 6.49 B, b | 3.09 b | 2.40 | 63.08 | 17.34 b | |
CISTERN (mm) | <11 | 13.89 A | 5.35 | 5.95 A | 2.78 a | 2.38 | 67.39 | 30.47 |
11–14.5 | 14.39 | 5.53 | 6.03 A | 2.98 | 2.44 | 68.79 | 24.34 | |
>14.5 | 15.00 B | 5.69 | 6.50 B | 3.07 b | 2.42 | 62.82 | 23.68 | |
WALL (mm) | <5.7 | 14.86 a | 5.53 | 6.48 A | 2.98 | 2.38 | 62.89 | 23.89 |
5.7–7 | 14.42 | 5.50 | 6.18 | 2.89 | 2.41 | 66.99 | 26.09 | |
>7 | 14.12 b | 5.52 | 5.93 B | 2.95 | 2.43 | 68.13 | 27.68 | |
APEX (mm) | <21 | 13.82 A | 5.44 | 5.87 A | 2.80 | 2.42 | 63.20 | 30.34 |
21–22.5 | 14.70 B | 5.57 | 6.17 | 3.00 | 2.44 | 64.71 | 24.32 | |
>22.5 | 14.77 B | 5.55 | 6.43 B | 3.04 | 2.39 | 72.72 | 22.95 | |
CANAL (mm) | <11.8 | 15.08 A | 5.80 a | 6.27 | 3.16 a | 2.51 a | 55.67 a | 24.70 |
11.8–14 | 13.90 B | 5.31 b | 6.11 | 2.79 b | 2.34 b | 70.06 b | 24.23 | |
>14 | 14.40 | 5.51 | 6.07 | 2.92 | 2.43 | 71.01 b | 29.65 |
Effect | Groups | LENGTH% | BARREL% | CISTERN% | WALL% | APEX% | CANAL% |
---|---|---|---|---|---|---|---|
Milk yield (kg) | <13 | 14.13 a | −4.04 a | −23.92 A | 21.10 | −0.88 a | 7.48 A |
13–16 | 16.29 | −5.99 b | −27.81 | 26.27 | −0.07 | 10.33 | |
>16 | 18.46 b | −5.22 | −33.90 B, b | 24.43 | 1.06 b | 12.57 B | |
MY2 min (kg) | < 4.5 | 14.13 a | −4.27 | −26.13 | 21.57 | −0.12 | 8.07 A |
4.5–6 | 16.29 | −5.81 | −28.20 | 24.38 | 0.09 | 8.32 A | |
>6 | 18.46 b | −5.15 | −29.39 | 25.94 | −0.21 | 13.35 B | |
MY2 min (%) | <30 | 14.93 | −5.12 | −29.09 | 26.23 | 0.24 | 10.35 |
30–45 | 16.89 | −5.80 a | −28.36 | 22.09 | −0.01 | 8.66 | |
>45 | 15.67 | −3.99 b | −26.29 | 25.40 | −0.45 | 11.58 | |
Milking time (min) | <5 | 15.97 | −3.57 a | −21.97 A, a | 23.59 | −0.33 | 10.36 |
5–7 | 15.81 | −5.32 | −28.55 b | 21.90 A | −0.16 | 9.19 | |
>7 | 16.72 | −6.09 b | −31.97 B | 28.85 B | 0.32 | 10.94 | |
MF30-60 (kg.min−1) | <2.5 | 15.07 | −4.44 | −24.35 a | 19.04 A. a | 0.12 | 7.52 A |
2.5–3.5 | 16.29 | −5.64 | −29.51 b | 26.14 B | −0.08 | 9.39 a | |
>3.5 | 16.78 | −4.85 | −28.88 | 25.44 b | −0.29 | 13.70 B, b | |
Delayed flow | no | 16.62 | −5.27 | −27.98 | 25.92 | 0.20 | 11.82 a |
yes | 15.79 | −5.06 | −27.94 | 23.08 | −0.21 | 8.92 b | |
Average milk flow (kg.min−1) | <2 | 15.56 | −4.91 | −26.44 | 22.01 | 0.12 | 8.82 |
2–2.7 | 15.74 | −5.24 | −28.80 | 25.09 | −0.32 | 9.15 | |
>2.7 | 16.99 | −5.13 | −27.87 | 24.03 | 0.15 | 11.87 | |
Bimodal flow | yes | 15.21 A | −5.54 a | −28.22 | 24.91 | −0.02 | 10.50 |
no | 18.48 B | −3.96 b | −27.22 | 21.57 | −0.23 | 8.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szencziová, I.; Gašparík, M.; Ducháček, J.; Tóthová Tarová, E.; Nagy, M.; Stádník, L.; Mičiaková, M.; Codl, R. Could Milkability Parameters Serve as a Reliable Tool to Predict the Morphology of Teat Structures and Their Milking-Induced Changes? Animals 2024, 14, 3610. https://doi.org/10.3390/ani14243610
Szencziová I, Gašparík M, Ducháček J, Tóthová Tarová E, Nagy M, Stádník L, Mičiaková M, Codl R. Could Milkability Parameters Serve as a Reliable Tool to Predict the Morphology of Teat Structures and Their Milking-Induced Changes? Animals. 2024; 14(24):3610. https://doi.org/10.3390/ani14243610
Chicago/Turabian StyleSzencziová, Iveta, Matúš Gašparík, Jaromír Ducháček, Eva Tóthová Tarová, Melinda Nagy, Luděk Stádník, Mária Mičiaková, and Radim Codl. 2024. "Could Milkability Parameters Serve as a Reliable Tool to Predict the Morphology of Teat Structures and Their Milking-Induced Changes?" Animals 14, no. 24: 3610. https://doi.org/10.3390/ani14243610
APA StyleSzencziová, I., Gašparík, M., Ducháček, J., Tóthová Tarová, E., Nagy, M., Stádník, L., Mičiaková, M., & Codl, R. (2024). Could Milkability Parameters Serve as a Reliable Tool to Predict the Morphology of Teat Structures and Their Milking-Induced Changes? Animals, 14(24), 3610. https://doi.org/10.3390/ani14243610