Visual Navigation of Caged Chicken Coop Inspection Robot Based on Road Features
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Navigation Hardware System
2.2. Robot Kinematics Model
2.3. Navigation Process
2.3.1. Aisle Image Acquisition
2.3.2. Road Extraction
2.3.3. Navigation Line Fitting
2.4. Inspection Robot Performance Test
2.4.1. Road Segmentation Test
2.4.2. Robustness Test
2.4.3. Navigation Accuracy and Stability Test
3. Results and Discussion
3.1. Road Segmentation Test Result
3.2. Robustness Test Result
3.3. Navigation Accuracy and Stability Test Result
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, W.; Lu, C.; Li, X.; Kong, L. Dead Birds Detection in Modern Chicken Farm Based on SVM. In Proceedings of the 2009 2nd International Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009; IEEE: New York, NY, USA, 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Xiao, L.; Ding, K.; Gao, Y.; Rao, X. Behavior-induced health condition monitoring of caged chickens using binocular vision. Comput. Electron. Agric. 2019, 156, 254–262. [Google Scholar] [CrossRef]
- Fang, C.; Wu, Z.; Zheng, H.; Yang, J.; Ma, C.; Zhang, T. MCP: Multi-Chicken Pose Estimation Based on Transfer Learning. Animals 2024, 14, 1774. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, M. Online detection of abnormal chicken manure based on machine vision. In Proceedings of the 2021 ASABE Annual International Virtual Meeting, Virtual, 12–16 July 2021; ASABE: St. Joseph, MI, USA, 2021. [Google Scholar] [CrossRef]
- Xie, B.; Jin, Y.; Faheem, M.; Gao, W.; Liu, J.; Jiang, H.; Cai, L.; Li, Y. Research progress of autonomous navigation technology for multi-agricultural scenes. Comput. Electron Agric. 2023, 211, 107963. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, W.; Yang, J.; Wu, W.; Miao, H.; Zhang, S. An Approach for Autonomous Feeding Robot Path Planning in Poultry Smart Farm. Animals 2022, 12, 3089. [Google Scholar] [CrossRef] [PubMed]
- Ebertz, P.; Krommweh, M.S.; Buescher, W. Feasibility Study: Improving Floor Cleanliness by Using a Robot Scraper in Group-Housed Pregnant Sows and Their Reactions on the New Device. Animals 2019, 9, 185. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Lin, T.; Ying, Y.; Chowdhary, G.; Ting, K.C. Agricultural robotics research applicable to poultry production: A review. Comput. Electron. Agric. 2020, 169, 105216. [Google Scholar] [CrossRef]
- Vroegindeweij, B.A.; Blaauw, S.K.; Ijsselmuiden, J.M.M.; van Henten, E.J. Evaluation of the performance of PoultryBot, an autonomous mobile robotic platform for poultry houses. Biosyst. Eng. 2018, 174, 295–315. [Google Scholar] [CrossRef]
- Hartung, J.; Lehr, H.; Rosés, D.; Mergeay, M.; van den Bossche, J. ChickenBoy: A farmer assistance system for better animal welfare, health and farm productivity. In Proceedings of the Precision Livestock Farming ’19, Cork, UK, 26–29 August 2019; ECPLF: Parma, Italy, 2019; pp. 272–276. [Google Scholar]
- Ding, L.; Lv, Y.; Yu, L.; Ma, W.; Li, Q.; Gao, R.; Yu, Q. Real-time monitoring of fan operation in livestock houses based on the image processing. Expert Syst. Applcations 2023, 213, 118683. [Google Scholar] [CrossRef]
- Li, Y.; Fu, C.; Yang, H.; Li, H.; Zhang, R.; Zhang, Y.; Wang, Z. Design of a Closed Piggery Environmental Monitoring and Control System Based on a Track Inspection Robot. Agriculture 2023, 13, 1501. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, B.; Zhang, W.; Li, X. Development and test of spraying robot for anti-epidemic and disinfection in animal housing. In Proceedings of the 2021 WRC Symposium on Advanced Robotics and Automation, Beijing, China, 11 September 2021; IEEE: New York, NY, USA, 2021; pp. 24–29. [Google Scholar] [CrossRef]
- Yang, S.; Liang, S.; Zheng, Y.; Tan, Y.; Xiao, Z.; Li, B.; Liu, X. Integrated navigation models of a mobile fodder-pushing robot based on a standardized cow husbandry environment. Trans. ASABE 2020, 63, 221–230. [Google Scholar] [CrossRef]
- Krul, S.; Pantos, C.; Frangulea, M.; Valente, J. Visual SLAM for Indoor Livestock and Farming Using a Small Drone with a Monocular Camera: A Feasibility Study. Drones 2021, 5, 41. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, X.; Huang, J.; Huang, J.; Xie, J.; Xiao, X.; Yin, G.; Wang, X.; Li, M.; Fang, K. BDS/IMU Integrated Auto-Navigation System of Orchard Spraying Robot. Appl. Sci. 2022, 12, 8173. [Google Scholar] [CrossRef]
- Feng, D.; Wang, C.; He, C.; Zhuang, Y.; Xia, X.G. Kalman-Filter-Based Integration of IMU and UWB for High-Accuracy Indoor Positioning and Navigation. IEEE Internet Things J. 2020, 7, 3133–3146. [Google Scholar] [CrossRef]
- Han, Y.; Li, S.; Wang, N.; An, Y.; Zhang, M.; Li, H. Detecting the center line of chicken coop path using 3D Lidar. Trans. Chin. Soc. Agric. Eng. 2024, 40, 173–181. [Google Scholar] [CrossRef]
- Blok, P.M.; van Boheemen, K.; van Evert, F.K.; IJsselmuiden, J.; Kim, G. Robot navigation in orchards with localization based on Particle filter and Kalman filter. Comput. Electron. Agric. 2019, 157, 261–269. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; He, X.; Liu, W. Precision Variable-Rate Spraying Robot by Using Single 3D LIDAR in Orchards. Agronomy 2022, 12, 2509. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, Z.; Wang, H.; Jiang, F.; Wang, L. Autonomous navigation using machine vision and self-designed fiducial marker in a commercial chicken farming house. Comput. Electron. Agric. 2024, 224, 109179. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, M.E.S.; Li, B. A visual navigation algorithm for paddy field weeding robot based on image understanding. Comput. Electron. Agric. 2017, 143, 66–78. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, W.; Qureshi, W.S.; Gao, C.; Zhang, C.; Li, W. Autonomous navigation for a wolfberry picking robot using visual cues and fuzzy control. Inf. Process. Agric. 2021, 8, 15–26. [Google Scholar] [CrossRef]
- Liang, X.; Chen, B.; Wei, C.; Zhang, X. Inter-row navigation line detection for cotton with broken rows. Plant Methods 2022, 18, 90. [Google Scholar] [CrossRef]
- Chen, J.; Qiang, H.; Wu, J.; Xu, G.; Wang, Z. Navigation path extraction for greenhouse cucumber-picking robots using the prediction-point Hough transform. Comput. Electron. Agric. 2021, 180, 105911. [Google Scholar] [CrossRef]
- Murali, V.N.; Birchfield, S.T. Autonomous navigation and mapping using monocular low-resolution grayscale vision. In Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, 23–28 June 2008; IEEE: New York, NY, USA, 2008; pp. 1–8. [Google Scholar] [CrossRef]
- Lv, J.; Xu, L. Method to acquire regions of fruit, branch and leaf from image of red apple in orchard. Mod. Phys. Lett. B 2017, 31, 1740039. [Google Scholar] [CrossRef]
- Chen, J.; Qiang, H.; Wu, J.; Xu, G.; Wang, Z.; Liu, X. Extracting the navigation path of a tomato-cucumber greenhouse robot based on a median point Hough transform. Comput. Electron. Agric. 2020, 174, 105472. [Google Scholar] [CrossRef]
- Ma, Z.; Yin, C.; Du, X.; Zhao, L.; Lin, L.; Zhang, G.; Wu, C. Rice row tracking control of crawler tractor based on the satellite and visual integrated navigation. Comput. Electron. Agric. 2022, 197, 106935. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, J.; Shu, A.; Chen, Y.; Chen, J.; Yang, Y.; Tang, W.; Zhang, Y. Study of convolutional neural network-based semantic segmentation methods on edge intelligence devices for field agricultural robot navigation line extraction. Comput. Electron. Agric. 2023, 209, 107811. [Google Scholar] [CrossRef]
- Diao, Z.; Guo, P.; Zhang, B.; Zhang, D.; Yan, J.; He, Z.; Zhao, S.; Zhao, C. Maize crop row recognition algorithm based on improved UNet network. Comput. Electron. Agric. 2023, 210, 107940. [Google Scholar] [CrossRef]
- Yang, Z.; Ouyang, L.; Zhang, Z.; Duan, J.; Yu, J.; Wang, H. Visual navigation path extraction of orchard hard pavement based on scanning method and neural network. Comput. Electron. Agric. 2022, 197, 106964. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, T.; Fang, C.; Zheng, H. A defencing algorithm based on deep learning improves the detection accuracy of caged chickens. Comput. Electron. Agric. 2023, 204, 107501. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, T.; Zheng, H.; Huang, J.; Cuan, K. Pose estimation and behavior classification of broiler chickens based on deep neural networks. Comput. Electron. Agric. 2021, 180, 105863. [Google Scholar] [CrossRef]
- Zhao, C.; Liang, X.; Yu, H.; Wang, H.; Fan, S.; Li, B. Automatic Identification and Counting Method of Caged Hens and Eggs Based on Improved YOLO v7. Trans. Chin. Soc. Agric. Mach. 2023, 54, 300–312. [Google Scholar] [CrossRef]
Navigation Method | Main Component | Advantage | Disadvantage |
---|---|---|---|
Track navigation | Track | High navigation stability | Structural renovation required, poor flexibility |
Magnetic navigation | Magnetic stripes | Low cost, mature technology, and high navigation accuracy | Need to lay navigation landmarks, poor anti-interference ability, and poor flexibility of the route |
Inertial navigation | Inertial sensor | High short-term accuracy, no need for external signals, good anti-interference ability | Low long-term accuracy and cumbersome initial calibration |
Satellite navigation | Satellite positioning module | No cumulative positioning error, low cost | Cannot be used inside buildings, cannot be obstructed, and easily affected by the weather |
Lidar navigation | Lidar | High resolution and high positioning accuracy | Poor detectability of smooth object surfaces and easy scene degradation in environments without obvious features |
Visual navigation | Camera | Cheap, rich texture information, and the algorithm is mature | Large amount of information, time-consuming |
Parameter | Performance |
---|---|
Dimensions (L × W × H) | 1200 mm × 560 mm × 450 mm |
Weights | 136 kg |
Ground clearance | 100 mm |
Rated power | 650 W × 2 |
Running speed | 0–1.16 m/s |
Maximum load | 100 kg |
Motor rated voltage | 48 V DC |
Parameter | Value |
---|---|
Model | Logitech C925E |
Dimensions (L × W × H) | 126 mm × 45 mm × 73 mm |
Weights | 170 g |
Resolution | 1080 p/30 fps |
DFOV | 78° |
Data interface | USB-A |
Algorithm | PA | CPA | MPA | IoU | MIoU | Time (ms) |
---|---|---|---|---|---|---|
2G-R-B | 47.469% | 87.905% | 49.213% | 43.533% | 26.523% | 14.452 |
R-G | 76.000% | 80.220% | 73.527% | 64.291% | 60.668% | 14.001 |
UNet | 98.146% | 98.321% | 98.289% | 95.510% | 96.186% | 118.796 |
PSPNet | 98.782% | 98.492% | 98.686% | 96.849% | 97.289% | 113.462 |
4B-3R-2G | 92.918% | 95.160% | 93.685% | 85.549% | 86.909% | 16.448 |
Navigation Mode | Speed | Detection Number * | Average Accuracy * |
---|---|---|---|
0.116 m/s | 11949 | 76.238% | |
Inertial navigation | 0.232 m/s | 5276 | 76.084% |
0.348 m/s | 2807 | 74.778% | |
0.116 m/s | 17181 | 77.103% | |
Visual navigation | 0.232 m/s | 6898 | 76.430% |
0.348 m/s | 3400 | 76.006% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, H.; Zhang, T.; Li, K.; Yang, J. Visual Navigation of Caged Chicken Coop Inspection Robot Based on Road Features. Animals 2024, 14, 2515. https://doi.org/10.3390/ani14172515
Deng H, Zhang T, Li K, Yang J. Visual Navigation of Caged Chicken Coop Inspection Robot Based on Road Features. Animals. 2024; 14(17):2515. https://doi.org/10.3390/ani14172515
Chicago/Turabian StyleDeng, Hongfeng, Tiemin Zhang, Kan Li, and Jikang Yang. 2024. "Visual Navigation of Caged Chicken Coop Inspection Robot Based on Road Features" Animals 14, no. 17: 2515. https://doi.org/10.3390/ani14172515
APA StyleDeng, H., Zhang, T., Li, K., & Yang, J. (2024). Visual Navigation of Caged Chicken Coop Inspection Robot Based on Road Features. Animals, 14(17), 2515. https://doi.org/10.3390/ani14172515