Abundance of Amino Acid Transporters and mTOR Pathway Components in the Gastrointestinal Tract of Lactating Holstein Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Handling and Experimental Design
2.2. Sample Collection
2.3. Metabolomics
2.4. RNA Extraction
2.5. cDNA Synthesis and qRT-PCR
2.6. Statistical Analysis
3. Results
3.1. Amino Acid Profiles
3.2. mRNA Abundance of Protein Synthesis Regulation Genes
3.3. mRNA Abundance of Amino Acid Transporters
4. Discussion
4.1. Amino Acid Profiles
4.2. mRNA Abundance of Targets Associated with Protein Synthesis
4.3. mRNA Abundance of Amino Acid Transporters
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myles-Worsley, M.; Tiobech, J.; Browning, S.R.; Korn, J.; Goodman, S.; Gentile, K.; Melhem, N.; Byerley, W.; Faraone, S.V.; Middleton, F.A. Deletion at the SLC1A1 glutamate transporter gene co-segregates with schizophrenia and bipolar schizoaffective disorder in a 5-generation family. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2013, 162, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Scalise, M.; Pochini, L.; Console, L.; Losso, M.A.; Indiveri, C. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front. Cell Dev. Biol. 2018, 6, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, P.D.; Wang, H.; Huang, W.; Kekuda, R.; Rajan, D.P.; Leibach, F.H.; Ganapathy, V. Human LAT1, a Subunit of System L Amino Acid Transporter: Molecular Cloning and Transport Function. Biochem. Biophys. Res. Commun. 1999, 255, 283–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Batistel, F.; Parys, C.; Loor, J.J. Methionine supply during the periparturient period enhances insulin signaling, amino acid transporters, and mechanistic target of rapamycin pathway proteins in adipose tissue of Holstein cows. J. Dairy Sci. 2019, 102, 4403–4414. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Alharthi, A.S.; Elolimy, A.A.; Bucktrout, R.; Lopreiato, V.; Martinez-Cortés, I.; Xu, C.; Fernandez, C.; Trevisi, E.; Loor, J.J. Molecular networks of insulin signaling and amino acid metabolism in subcutaneous adipose tissue are altered by body condition in periparturient Holstein cows. J. Dairy Sci. 2020, 103, 10459–10476. [Google Scholar] [CrossRef]
- Batistel, F.; Alharthi, A.S.M.; Wang, L.; Parys, C.; Pan, Y.X.; Cardoso, F.C.; Loor, J.J. Placentome Nutrient Transporters and Mammalian Target of Rapamycin Signaling Proteins Are Altered by the Methionine Supply during Late Gestation in Dairy Cows and Are Associated with Newborn Birth Weight. J. Nutr. 2017, 147, 1640–1647. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.; Coleman, D.N.; Hu, L.; Martinez-Cortés, I.; Wang, M.; Parys, C.; Shen, X.; Loor, J.J. Methionine and arginine supplementation alter inflammatory and oxidative stress responses during lipopolysaccharide challenge in bovine mammary epithelial cells in vitro. J. Dairy Sci. 2020, 103, 676–689. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Zheng, Y.; Zhang, Y.; Loor, J.J.; Wang, H.; Wang, M. Dietary N-carbamylglutamate or L-arginine improves fetal intestinal amino acid profiles during intrauterine growth restriction in undernourished ewes. Anim. Nutr. 2022, 8, 341–349. [Google Scholar] [CrossRef]
- Wu, G. Intestinal Mucosal Amino Acid Catabolism. J. Nutr. 1998, 128, 1249–1252. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.M.; Proud, C.G. The mTOR pathway in the control of protein synthesis. Physiology 2006, 21, 362–369. [Google Scholar] [CrossRef] [Green Version]
- Muller, D.; Lasfargues, C.; El Khawand, S.; Alard, A.; Schneider, R.J.; Bousquet, C.; Pyronnet, S.; Martineau, Y. 4E-BP restrains eIF4E phosphorylation. Translation 2013, 1, e25819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, H.; Xu, W.; Rahman, R.; Na, D.; Fieldsend, A.; Song, W.; Liu, S.; Li, C.; Rosbash, M. TRIBE editing reveals specific mRNA targets of eIF4E-BP in Drosophila and in mammals. Sci. Adv. 2020, 6, eabb8771. [Google Scholar] [CrossRef]
- Marcotrigiano, J.; Gingras, A.C.; Sonenberg, N.; Burley, S.K. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of elF4G. Mol. Cell 1999, 3, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, B.; Ekim, B.; Fingar, D.C. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem. J. 2012, 441, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Bohlen, J.; Roiuk, M.; Teleman, A.A. Phosphorylation of ribosomal protein S6 differentially affects mRNA translation based on ORF length. Nucleic Acids Res. 2021, 49, 13062–13074. [Google Scholar] [CrossRef]
- Kvidera, S.K.; Horst, E.A.; Sanz Fernandez, M.V.; Abuajamieh, M.; Ganesan, S.; Gorden, P.J.; Green, H.B.; Schoenberg, K.M.; Trout, W.E.; Keating, A.F.; et al. Characterizing effects of feed restriction and glucagon-like peptide 2 administration on biomarkers of inflammation and intestinal morphology. J. Dairy Sci. 2017, 100, 9402–9417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vailati-Riboni, M.; Crookenden, M.; Kay, J.K.; Meier, S.; Mitchell, M.D.; Heiser, A.; Roche, J.R.; Loor, J.J. Hepatic one-carbon metabolism enzyme activities and intermediate metabolites are altered by prepartum body condition score and plane of nutrition in grazing Holstein dairy cows. J. Dairy Sci. 2020, 103, 2662–2676. [Google Scholar] [CrossRef]
- Liang, Y.; Batistel, F.; Parys, C.; Loor, J.J. Glutathione metabolism and nuclear factor erythroid 2-like 2 (NFE2L2)-related proteins in adipose tissue are altered by supply of ethyl-cellulose rumen-protected methionine in peripartal Holstein cows. J. Dairy Sci. 2019, 102, 5530–5541. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Coleman, D.N.; Zhang, H.; Guyader, J.; Pan, Y.X.; Loor, J.J. One-carbon metabolism and related pathways in ruminal and small intestinal epithelium of lactating dairy cows. J. Anim. Sci. 2023. [Google Scholar] [CrossRef]
- Hu, L.; Chen, Y.; Cortes, I.M.; Coleman, D.N.; Dai, H.; Liang, Y.; Parys, C.; Fernandez, C.; Wang, M.; Loor, J.J. Supply of methionine and arginine alters phosphorylation of mechanistic target of rapamycin (mTOR), circadian clock proteins, and α-s1-casein abundance in bovine mammary epithelial cells. Food Funct. 2020, 11, 883–894. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Sodhi, M.; Sharma, A.; Sharma, V.L.; Verma, P.; Swami, S.K.; Kumari, P.; Mukesh, M. Selection of suitable reference genes for normalization of quantitative RT-PCR (RT-qPCR) expression data across twelve tissues of riverine buffaloes (Bubalus bubalis). PLoS ONE 2018, 13, e0191558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leyens, G.; Donnay, I.; Knoops, B. Cloning of bovine peroxiredoxins-gene expression in bovine tissues and amino acid sequence comparison with rat, mouse and primate peroxiredoxins. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2003, 136, 943–955. [Google Scholar] [CrossRef] [PubMed]
- Steele, M.A.; AlZahal, O.; Walpole, M.E.; McBride, B.W. Short communication: Grain-induced subacute ruminal acidosis is associated with the differential expression of insulin-like growth factor-binding proteins in rumen papillae of lactating dairy cattle. J. Dairy Sci. 2012, 95, 6072–6076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, H.; Maruyama, S.; Fukuoka, M.; Kozakai, T.; Nakajima, K.; Onaga, T.; Kato, S. Fatty acid-binding protein expression in the gastrointestinal tract of calves and cows. Anim. Sci. J. 2013, 84, 35–41. [Google Scholar] [CrossRef]
- Ontsouka, E.C.; Korczak, B.; Hammon, H.M.; Blum, J.W. Real-time PCR quantification of bovine lactase mRNA: Localization in the gastrointestinal tract of milk-fed calves. J. Dairy Sci. 2004, 87, 4230–4237. [Google Scholar] [CrossRef] [Green Version]
- Sturn, A.; Quackenbush, J.; Trajanoski, Z. Genesis: Cluster analysis of microarray data. Bioinformatics 2002, 18, 207–208. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Yao, K.; Zhang, X.; Zhao, S.; Sun, Z.; Tian, G.; Yu, B.; Lin, Y.; Zhu, B.; Jia, G.; et al. Nutrition and health relevant regulation of intestinal sulfur amino acid metabolism. Amino Acids 2010, 39, 633–640. [Google Scholar] [CrossRef]
- Wang, W.W.; Qiao, S.Y.; Li, D.F. Amino acids and gut function. Amino Acids 2009, 37, 105–110. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Xiong, X.; Yin, Y. Energy metabolism in intestinal epithelial cells during maturation along the crypt-villus axis. Sci. Rep. 2016, 6, 31917. [Google Scholar] [CrossRef] [Green Version]
- Wallace, R.J. Ruminal microbial metabolism of peptides and amino acids. J. Nutr. 1996, 126, 1326S–1334S. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Knabe, D.A.; Flynn, N.E. Amino acid metabolism in the small intestine: Biochemical bases and nutritional significance. Biol. Grow. Anim. 2005, 3, 107–126. [Google Scholar] [CrossRef]
- Larsen, M.; Rontved, C.M.; Theil, P.K.; Khatun, M.; Lauridsen, C.; Kristensen, N.B. Effect of experimentally increased protein supply to postpartum dairy cows on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis. J. Anim. Sci. 2017, 95, 2097–2110. [Google Scholar] [CrossRef] [PubMed]
- Shoveller, A.K.; Brunton, J.A.; Pencharz, P.B.; Bal, R.O. The methionine requirement is lower in neonatal piglets fed parenterally than in those fed enterally. J. Nutr. 2003, 133, 1390–1397. [Google Scholar] [CrossRef] [Green Version]
- Shoveller, A.K.; Brunton, J.A.; House, J.D.; Pencharz, P.B.; Ball, R.O. Dietary cysteine reduces the methionine requirement by an equal proportion in both parenterally and enterally fed piglets. J. Nutr. 2003, 133, 4215–4224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Z.; Huang, F.; Luo, J.; Wei, H.; Ma, L.; Jiang, S.; Peng, J. Effects of dl-2-hydroxy-4-methylthiobutyrate on the first-pass intestinal metabolism of dietary methionine and its extra-intestinal availability. Br. J. Nutr. 2010, 103, 643–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, C.; Simmons, N.L. Functional organization of the bovine rumen epithelium. Am. J. Physiol.—Regul. Integr. Comp. Physiol. 2005, 288, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Miniaci, M.C.; Irace, C.; Capuozzo, A.; Piccolo, M.; Di Pascale, A.; Russo, A.; Lippiello, P.; Lepre, F.; Russo, G.; Santamaria, R. Cysteine Prevents the Reduction in Keratin Synthesis Induced by Iron Deficiency in Human Keratinocytes. J. Cell. Biochem. 2016, 117, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Reeds, P.J.; Burrin, D.G.; Stoll, B.; Jahoor, F. Intestinal glutamate metabolism. J. Nutr. 2000, 130, 978s–982s. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, M.; Blachier, F. Amino Acids in Intestinal Physiology and Health. Adv. Exp. Med. Biol. 2020, 1265, 1–20. [Google Scholar] [CrossRef]
- El-Kadi, S.W.; Baldwin, R.L.; McLeod, K.R.; Sunny, N.E.; Bequette, B.J. Glutamate Is the Major Anaplerotic Substrate in the Tricarboxylic Acid Cycle of Isolated Rumen Epithelial and Duodenal Mucosal Cells from Beef Cattle. J. Nutr. 2009, 139, 869–875. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.M.; Wagner, D.A.; Tredget, E.E.; Walaszewski, J.A.; Burke, J.F.; Young, V.R. Quantitative role of splanchnic region in leucine metabolism: L-[1-13C,15N]leucine and substrate balance studies. Am. J. Physiol. 1990, 259, E36–E51. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.; Henry, J.; Reeds, P.J.; Yu, H.; Jahoor, F.; Burrin, D.G. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J. Nutr. 1998, 128, 606–614. [Google Scholar] [CrossRef] [Green Version]
- Cappelli, F.P.; Seal, C.J.; Parker, D.S. Glucose and [13C]leucine metabolism by the portal-drained viscera of sheep fed on dried grass with acute intravenous and intraduodenal infusions of glucose. Br. J. Nutr. 1997, 78, 931–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryall, J.; Nguyen, M.; Bendayan, M.; Shore, G.C. Expression of Nuclear Genes Encoding the Urea Cycle Enzymes, Carbamoyl-Phosphate Synthetase-I and Ornithine Carbamoyl Transferase, in Rat-Liver and Intestinal-Mucosa. Eur. J. Biochem. 1985, 152, 287–292. [Google Scholar] [CrossRef]
- Laidlaw, S.A.; Grosvenor, M.; Kopple, J.D. The taurine content of common foodstuffs. J. Parenter. Enter. Nutr. 1990, 14, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Vitvitsky, V.; Garg, S.K.; Banerjee, R. Taurine Biosynthesis by Neurons and Astrocytes. J. Biol. Chem. 2011, 286, 32002–32010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tochitani, S. Taurine: A Maternally Derived Nutrient Linking Mother and Offspring. Metabolites 2022, 12, 228. [Google Scholar] [CrossRef] [PubMed]
- Guzior, D.V.; Quinn, R.A.J.M. microbial transformations of human bile acids. Microbiome 2021, 9, 1–13. [Google Scholar] [CrossRef]
- Post, A.; Tsikas, D.; Bakker, S.J.L. Creatine is a Conditionally Essential Nutrient in Chronic Kidney Disease: A Hypothesis and Narrative Literature Review. Nutrients 2019, 11, 1044. [Google Scholar] [CrossRef] [Green Version]
- Brosnan, J.T.; da Silva, R.P.; Brosnan, M.E. The metabolic burden of creatine synthesis. Amino Acids 2011, 40, 1325–1331. [Google Scholar] [CrossRef]
- Wang, W.W.; Wu, Z.L.; Dai, Z.L.; Yang, Y.; Wang, J.J.; Wu, G.Y. Glycine metabolism in animals and humans: Implications for nutrition and health. Amino Acids 2013, 45, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Turer, E.; McAlpine, W.; Wang, K.W.; Lu, T.; Li, X.; Tang, M.; Zhan, X.; Wang, T.; Zhan, X.; Bu, C.H.; et al. Creatine maintains intestinal homeostasis and protects against colitis. Proc. Natl. Acad. Sci. USA 2017, 114, E1273–E1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBride, B.W.; Kelly, J.M. Energy cost of absorption and metabolism in the ruminant gastrointestinal tract and liver: A review. J. Anim. Sci. 1990, 68, 2997–3010. [Google Scholar] [CrossRef] [PubMed]
- Pause, A.; Belsham, G.J.; Gingras, A.-C.; Donzé, O.; Lin, T.-A.; Lawrence, J.C.; Sonenberg, N. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 1994, 371, 762–767. [Google Scholar] [CrossRef]
- Fingar, D.C.; Salama, S.; Tsou, C.; Harlow, E.; Blenis, J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002, 16, 1472–1487. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.K.; Webb, A.E. Regulation of FOXO Factors in Mammalian Cells. Curr. Top. Dev. Biol. 2018, 127, 165–192. [Google Scholar] [CrossRef]
- Li, D.; Wei, T.; Abbott, C.M.; Harrich, D. The Unexpected Roles of Eukaryotic Translation Elongation Factors in RNA Virus Replication and Pathogenesis. Microbiol. Mol. Biol. Rev. 2013, 77, 253–266. [Google Scholar] [CrossRef] [Green Version]
- Vera, M.; Pani, B.; Griffiths, L.A.; Muchardt, C.; Abbott, C.M.; Singer, R.H.; Nudler, E. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. Elife 2014, 3, e03164. [Google Scholar] [CrossRef]
- Wu, G.Y.; Wu, Z.L.; Dai, Z.L.; Yang, Y.; Wang, W.W.; Liu, C.; Wang, B.; Wang, J.J.; Yin, Y.L. Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids 2013, 44, 1107–1113. [Google Scholar] [CrossRef]
- Xi, P.B.; Jiang, Z.Y.; Dai, Z.L.; Li, X.L.; Yao, K.; Zheng, C.T.; Lin, Y.C.; Wang, J.J.; Wu, G.Y. Regulation of protein turnover by L-glutamine in porcine intestinal epithelial cells. J. Nutr. Biochem. 2012, 23, 1012–1017. [Google Scholar] [CrossRef]
- Martel, J.; Chang, S.H.; Ko, Y.F.; Hwang, T.L.; Young, J.D.; Ojcius, D.M. Gut barrier disruption and chronic disease. Trends Endocrinol. Metab. 2022, 33, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Santos, K.A.; Stern, M.D.; Satter, L.D. Protein degradation in the rumen and amino acid absorption in the small intestine of lactating dairy cattle fed various protein sources. J. Anim. Sci. 1984, 58, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Kiela, P.R.; Ghishan, F.K. Physiology of Intestinal Absorption and Secretion. Best Pr. Res. Clin. Gastroenterol. 2016, 30, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Kanai, Y.; Hediger, M.A. Primary Structure and Functional-Characterization of a High-Affinity Glutamate Transporter. Nature 1992, 360, 467–471. [Google Scholar] [CrossRef]
- Bailey, C.G.; Ryan, R.M.; Thoeng, A.D.; Ng, C.; King, K.; Vanslambrouck, J.M.; Auray-Blais, C.; Vandenberg, R.J.; Broer, S.; Rasko, J.E.J. Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J. Clin. Investig. 2011, 121, 446–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almilaji, A.; Pakladok, T.; Guo, A.; Munoz, C.; Foller, M.; Lang, F. Regulation of the glutamate transporter EAAT3 by mammalian target of rapamycin mTOR. Biochem. Biophys. Res. Commun. 2012, 421, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Dado-Senn, B.; Skibiel, A.L.; Dahl, G.E.; Arriola Apelo, S.I.; Laporta, J. Dry Period Heat Stress Impacts Mammary Protein Metabolism in the Subsequent Lactation. Animals 2021, 11, 2676. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.M.H.; Howard, A.; Walters, J.R.F.; Ganapathy, V.; Thwaites, D.T. Taurine uptake across the human intestinal brush-border membrane is via two transporters: H+-coupled PAT1 (SLC36A1) and Na+- and Cl−-dependent TauT (SLC6A6). J Physiol.-Lond. 2009, 587, 731–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segawa, H.; Fukasawa, Y.; Miyamoto, K.; Takeda, E.; Endou, H.; Kanai, Y. Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J. Biol. Chem. 1999, 274, 19745–19751. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.F.; Vanzant, E.S.; Harmon, D.L.; Mcleod, K.R.; Boling, J.A.; Matthews, J.C. Ruminal and abomasal starch hydrolysate infusions selectively decrease the expression of cationic amino acid transporter mRNA by small intestinal epithelia of forage-fed beef steers. J. Dairy Sci. 2009, 92, 1124–1135. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.M.; Roderick, H.L.; Camacho, P.; Jiang, J.X. Characterization of an N-system amino acid transporter expressed in retina and its involvement in glutamine transport. J. Biol. Chem. 2001, 276, 24137–24144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.P.; Huang, W.; Sugawara, M.; Devoe, L.D.; Leibach, F.H.; Prasad, P.D.; Ganapathy, V. Cloning and functional expression of ATA1, a subtype of amino acid transporter A, from human placenta. Biochem. Biophys. Res. Commun. 2000, 273, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Yamada, D.; Kawabe, K.; Tosa, I.; Tsukamoto, S.; Nakazato, R.; Kou, M.; Fujikawa, K.; Nakamura, S.; Ono, M.; Oohashi, T.; et al. Inhibition of the glutamine transporter SNAT1 confers neuroprotection in mice by modulating the mTOR-autophagy system. Commun. Biol. 2019, 2, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagglund, M.G.A.; Hellsten, S.V.; Bagchi, S.; Philippot, G.; Lofqvist, E.; Nilsson, V.C.O.; Almkvist, I.; Karlsson, E.; Sreedharan, S.; Tafreshiha, A.; et al. Transport of L-Glutamine, L-Alanine, L-Arginine and L-Histidine by the Neuron-Specific Slc38a8 (SNAT8) in CNS. J. Mol. Biol. 2015, 427, 1495–1512. [Google Scholar] [CrossRef]
- Guetg, A.; Mariotta, L.; Bock, L.; Herzog, B.; Fingerhut, R.; Camargo, S.M.R.; Verrey, F. Essential amino acid transporter Lat4 (Slc43a2) is required for mouse development. J. Physiol.-Lond. 2015, 593, 1273–1289. [Google Scholar] [CrossRef] [Green Version]
- Bror, S. The SLC38 family of sodium-amino acid co-transporters. Pflug. Arch.-Eur. J. Physiol. 2014, 466, 155–172. [Google Scholar] [CrossRef]
- Xie, Y.M.; Xu, Q.B.; Wu, Y.M.; Huang, X.B.; Liu, J.X. Duodenum has the greatest potential to absorb soluble non-ammonia nitrogen in the nonmesenteric gastrointestinal tissues of dairy cows. J. Zhejiang Univ. Sci. B 2015, 16, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Scalise, M.; Galluccio, M.; Console, L.; Pochini, L.; Indiveri, C. The Human SLC7A5 (LAT1): The Intriguing Histidine/Large Neutral Amino Acid Transporter and Its Relevance to Human Health. Front. Chem. 2018, 6, 243. [Google Scholar] [CrossRef]
- Digomann, D.; Linge, A.; Dubrovska, A. SLC3A2/CD98hc, autophagy and tumor radioresistance: A link confirmed. Autophagy 2019, 15, 1850–1851. [Google Scholar] [CrossRef]
- Sokolov, A.M.; Holmberg, J.C.; Feliciano, D.M. The amino acid transporter SLC7A5 regulates the mTOR pathway and is required for granule cell development. Hum. Mol. Genet. 2020, 29, 3003–3013. [Google Scholar] [CrossRef]
- Kekuda, R.; Prasad, P.D.; Fei, Y.J.; TorresZamorano, V.; Sinha, S.; YangFeng, T.L.; Leibach, F.H.; Ganapathy, V. Cloning of the sodium-dependent, broad-scope, neutral amino acid transporter B-O from a human placental choriocarcinoma cell line. J. Biol. Chem. 1996, 271, 18657–18661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koppula, P.; Zhuang, L.; Gan, B. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 2021, 12, 599–620. [Google Scholar] [CrossRef]
- Wang, S.; Tsun, Z.Y.; Wolfson, R.L.; Shen, K.; Wyant, G.A.; Plovanich, M.E.; Yuan, E.D.; Jones, T.D.; Chantranupong, L.; Comb, W.; et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015, 347, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Rebsamen, M.; Superti-Furga, G. SLC38A9: A lysosomal amino acid transporter at the core of the amino acid-sensing machinery that controls MTORC1. Autophagy 2016, 12, 1061–1062. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Genau, H.M.; Behrends, C. Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9. Mol. Cell. Biol. 2015, 35, 2479–2494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, T.; Shimabukuro-Demoto, S.; Yoshida-Sugitani, R.; Furuyama-Tanaka, K.; Karyu, H.; Sugiura, Y.; Shimizu, Y.; Hosaka, T.; Goto, M.; Kato, N.; et al. The Histidine Transporter SLC15A4 Coordinates mTOR-Dependent Inflammatory Responses and Pathogenic Antibody Production. Immunity 2014, 41, 375–388. [Google Scholar] [CrossRef] [Green Version]
- Sagne, C.; Agulhon, C.; Ravassard, P.; Darmon, M.; Hamon, M.; El Mestikawy, S.; Gasnier, B.; Giros, B. Identification and characterization of a lysosomal transporter for small neutral amino acids. Proc. Natl. Acad. Sci. USA 2001, 98, 7206–7211. [Google Scholar] [CrossRef] [Green Version]
- Heublein, S.; Kazi, S.; Ogmundsdottir, M.H.; Attwood, E.V.; Kala, S.; Boyd, C.A.; Wilson, C.; Goberdhan, D.C. Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation. Oncogene 2010, 29, 4068–4079. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Peng, A.; Yu, Y.; Guo, S.; Wang, M.; Coleman, D.N.; Loor, J.J.; Wang, H. N-Carbamylglutamate and l-Arginine Promote Intestinal Absorption of Amino Acids by Regulating the mTOR Signaling Pathway and Amino Acid and Peptide Transporters in Suckling Lambs with Intrauterine Growth Restriction. J. Nutr. 2019, 149, 923–932. [Google Scholar] [CrossRef]
Item, ng/mg of Total Protein | Rumen | Duodenum | Jejunum | Ileum | SEM | p-Value | Contrast p Value | ||
---|---|---|---|---|---|---|---|---|---|
Rumen vs. Small Int | Duodenum vs. Jejunum and Ileum | Jejunum vs. Ileum | |||||||
Alanine | 8652 b | 13,297 a | 13,724 a | 12,508 a | 1123 | <0.01 | <0.01 | 0.87 | 0.35 |
Arginine | 136 b | 2975 a | 2824 a | 2298 a | 248 | <0.01 | <0.01 | 0.13 | 0.10 |
Asparagine | 600 a | 332 b | 314 b | 207 b | 34 | <0.01 | <0.01 | 0.09 | 0.03 |
Aspartate | 2111 c | 11,228 a | 7158 b | 7362 b | 1093 | <0.01 | <0.01 | <0.01 | 0.88 |
Cysteine | 5173 a | 1757 b | 2695 ab | 2426 b | 658 | <0.01 | <0.01 | 0.31 | 0.77 |
Cystine | 701 | 37 | 457 | 317 | 199 | 0.13 | 0.06 | 0.15 | 0.60 |
Glutamine | 3450 b | 6182 a | 7154 a | 5695 a | 692 | <0.01 | <0.01 | 0.69 | 0.05 |
Glutamate | 21,486 | 23,149 | 26,447 | 20,688 | 2325 | 0.09 | 0.31 | 0.84 | 0.02 |
Glycine | 10,804 ab | 13,801 a | 10,053 bc | 7155 c | 899 | <0.01 | 0.64 | <0.01 | 0.03 |
Histidine | 447 b | 1099 a | 1016 a | 731 b | 85 | <0.01 | <0.01 | 0.02 | 0.01 |
Isoleucine | 1981 b | 3841 a | 3722 a | 2856 ab | 298 | <0.01 | <0.01 | 0.11 | 0.03 |
Leucine | 2938 b | 7424 a | 7124 a | 5559 a | 573 | <0.01 | <0.01 | 0.09 | 0.04 |
Lysine | 5573 b | 7738 a | 8090 a | 6165 ab | 740 | 0.01 | 0.01 | 0.34 | 0.01 |
Methionine | 734 c | 4349 a | 3392 ab | 2615 b | 386 | <0.01 | <0.01 | <0.01 | 0.09 |
Phenylalanine | 1447 c | 5866 a | 5251 ab | 4140 b | 474 | <0.01 | <0.01 | 0.03 | 0.07 |
Proline | 3271 b | 5165 a | 5985 a | 4591 ab | 513 | <0.01 | <0.01 | 0.79 | 0.02 |
Serine | 546 b | 3400 a | 3442 a | 2937 a | 280 | <0.01 | <0.01 | 0.45 | 0.13 |
Taurine | 4540 c | 15,224 b | 20,913 a | 20,826 a | 1610 | <0.01 | <0.01 | <0.01 | 0.96 |
Threonine | 1520 b | 3443 a | 3854 a | 3226 a | 329 | <0.01 | <0.01 | 0.76 | 0.10 |
Tryptophan | 652 b | 993 a | 764 ab | 507 b | 96 | <0.01 | 0.28 | <0.01 | 0.04 |
Tyrosine | 1744 b | 6414 a | 6170 a | 5006 a | 551 | <0.01 | <0.01 | 0.15 | 0.08 |
Valine | 4953 b | 7724 a | 8305 a | 6618 ab | 599 | <0.01 | <0.01 | 0.66 | 0.02 |
Item 1 | Rumen | Duodenum | Jejunum | Ileum | SEM | p-Value | Contrast p Value | ||
---|---|---|---|---|---|---|---|---|---|
Rumen vs. Small Int | Duodenum vs. Jejunum and Ileum | Jejunum vs. Ileum | |||||||
Protein synthesis | |||||||||
IRS1 | 1.23 | 1.09 | 0.87 | 1.66 | 0.22 | 0.11 | 0.93 | 0.54 | 0.02 |
AKT1 | 0.74 b | 1.14 b | 1.66 a | 1.82 a | 0.11 | <0.01 | <0.01 | <0.01 | 0.31 |
MTOR | 0.61 c | 1.05 b | 1.6 a | 1.77 a | 0.10 | <0.01 | <0.01 | <0.01 | 0.09 |
EIF4EBP1 | 0.85 | 0.96 | 0.62 | 0.89 | 0.11 | 0.16 | 0.86 | 0.14 | 0.09 |
EIF4EBP2 | 1.11 | 1.03 | 0.93 | 1.18 | 0.07 | 0.12 | 0.48 | 0.38 | 0.02 |
RPS6KB1 | 1.07 | 0.96 | 1.24 | 0.91 | 0.13 | 0.30 | 0.82 | 0.48 | 0.08 |
EEF1A1 | 1.51 a | 0.93 b | 0.80 b | 0.99 b | 0.06 | <0.01 | <0.01 | 0.65 | 0.04 |
Amino acids transporters | |||||||||
SLC1A1 | 0.05 b | 0.44 ab | 4.1 a | 3.71 ab | 1.00 | 0.01 | 0.02 | 0.01 | 0.77 |
SLC1A5 | 1.26 | 1.00 | 0.69 | 1.05 | 0.14 | 0.06 | 0.04 | 0.47 | 0.08 |
SLC3A2 | 1.51 a | 0.83 b | 0.97 b | 1.11 b | 0.08 | <0.01 | <0.01 | 0.03 | 0.2 |
SLC6A6 | 0.01 c | 0.24 bc | 3.4 a | 3.14 ab | 0.84 | 0.01 | 0.02 | <0.01 | 0.81 |
SLC7A5 | 1.28 a | 1.25 b | 0.52 b | 0.71 ab | 0.16 | <0.01 | 0.02 | <0.01 | 0.41 |
SLC7A8 | 0.01 c | 0.28 bc | 3.88 a | 3.33 ab | 0.82 | <0.01 | 0.02 | <0.01 | 0.63 |
SLC38A1 | 0.34 b | 1.28 a | 0.86 a | 1.28 a | 0.13 | <0.01 | <0.01 | 0.19 | 0.03 |
SLC38A2 | 1.12 | 1.07 | 0.86 | 1.28 | 0.09 | 0.66 | 0.60 | 0.70 | 0.28 |
SLC38A7 | 0.76 b | 1.41 a | 1.56 a | 1.69 a | 0.10 | <0.01 | <0.01 | 0.08 | 0.35 |
SLC38A11 | NA | 2.52 | 1.56 | 1.69 | 0.19 | 0.98 | NA | 0.89 | 0.89 |
SLC43A2 | 0.08 b | 0.73 ab | 3.83 a | 4.02 a | 0.91 | 0.01 | 0.01 | 0.01 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.; Sherlock, D.N.; Guyader, J.; Loor, J.J. Abundance of Amino Acid Transporters and mTOR Pathway Components in the Gastrointestinal Tract of Lactating Holstein Cows. Animals 2023, 13, 1189. https://doi.org/10.3390/ani13071189
Jiang Q, Sherlock DN, Guyader J, Loor JJ. Abundance of Amino Acid Transporters and mTOR Pathway Components in the Gastrointestinal Tract of Lactating Holstein Cows. Animals. 2023; 13(7):1189. https://doi.org/10.3390/ani13071189
Chicago/Turabian StyleJiang, Qianming, Danielle N. Sherlock, Jessie Guyader, and Juan J. Loor. 2023. "Abundance of Amino Acid Transporters and mTOR Pathway Components in the Gastrointestinal Tract of Lactating Holstein Cows" Animals 13, no. 7: 1189. https://doi.org/10.3390/ani13071189
APA StyleJiang, Q., Sherlock, D. N., Guyader, J., & Loor, J. J. (2023). Abundance of Amino Acid Transporters and mTOR Pathway Components in the Gastrointestinal Tract of Lactating Holstein Cows. Animals, 13(7), 1189. https://doi.org/10.3390/ani13071189