Intensity and Duration of Vibration Emissions during Shipping as Interacting Factors on the Quality of Boar Semen Extended in Beltsville Thawing Solution
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Semen Processing
2.3. Simulation of Transport Vibration Emissions
2.4. Assessing Sperm Quality
2.4.1. Total Sperm Motility
2.4.2. Mitochondrial Activity and Plasma Membrane/Acrosome Integrity
2.5. Data Processing and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knox, R.; Levis, D.; Safranski, T.; Singleton, W. An update on north american boar stud practices. Theriogenology 2008, 70, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Bennemann, P.E.; Bragança, J.F.M.; Walter, M.P.; Bottan, J.; Machado, S.A. Characterization of boar studs in Brazil. Ciência Rural. 2020, 50, 998. [Google Scholar] [CrossRef]
- Schulze, M.; Jung, M.; Hensel, B. Science-based quality control in boar semen production. Mol. Reprod. Dev. 2022. Online ahead of print. [CrossRef]
- Bortolozzo, F.P.; Menegat, M.B.; Mellagi, A.P.G.; Bernardi, M.L.; Wentz, I. New artificial insemination technologies for swine. Reprod. Domest. Anim. 2015, 50 (Suppl. 2), 80–84. [Google Scholar] [CrossRef]
- Paschoal, A.F.L.; Luther, A.-M.; Jakop, U.; Schulze, M.; Bortolozzo, F.P.; Waberski, D. Factors influencing the response of spermatozoa to agitation stress: Implications for transport of extended boar semen. Theriogenology 2021, 175, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Bortfeldt, R.; Schäfer, J.; Jung, M.; Fuchs-Kittowski, F. Effect of vibration emissions during shipping of artificial insemination doses on boar semen quality. Anim. Reprod. Sci. 2018, 192, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Tamanini, M.S.C.; dos Santos, G.; Leal, L.A.; Wolf, L.M.; Schulze, M.; Christ, T.S.; Bortolozzo, F.P.; Ulguim, R.R.; Wentz, I.; Mellagi, A.P.G. Impact of agitation time of boar semen doses on sperm traits in short-and long-term extenders. Anim. Reprod. Sci. 2022, 247, 107159. [Google Scholar] [CrossRef]
- Fuchs-Kittowski, F.; Bortfeldt, R.; Schulze, M. Transportlog 1.0—Mobile Sensing-App Zur Analyse des Einflusses von Transportstress auf die Eberspermaqualität. In Informatik in der Land-, Forst- und Ernährungswirtschaft, Fokus: Digitale Marktplätze und Plattformen, Proceedings of 38th Jahrestagung der GIL, Kiel, Germany, 26–27 February 2018; Ruckelshausen, A., Meyer-Aurich, A., Borchard, K., Hofacker, C., Loy, J.-P., Schwerdtfeger, R., Sundermeier, H.-H., Floto, H., Theuvsen, B., Eds.; Gesellschaft für Informatik: Bonn, Germany, 2022; Lecture Notes in Informatics (LNI); Volume P-326, pp. 83–86. Available online: https://dl.gi.de/handle/20.500.12116/23125 (accessed on 24 February 2023).
- Schulze, P.; Fuchs-Kittowski, F.; Hafemeister, T.; Urban, A.; Berndl, M.; Simmet, C.; Schulze, M. Development of a Measuring System for Monitoring Transport of Boar Semen from Artificial Insemination Centers to Sow Farms. In INFORMATIK 2022, Procceedings of 52nd Jahrestagung der Gesellschaft für Informatik, Hamburg, Germany, 26–30 September 2022; Demmler, D., Krupka, D., Federrath, H., Eds.; Gesellschaft für Informatik: Bonn, Germany, 2022; Lecture Notes in Informatics (LNI); Volume P-278, pp. 935–945. Available online: https://dl.gi.de/handle/20.500.12116/39586 (accessed on 24 February 2023).
- Hafemeister, T.; Schulze, P.; Bortfeldt, R.; Simmet, C.; Jung, M.; Fuchs-Kittowski, F.; Schulze, M. Boar semen shipping for artificial insemination: Current status and analysis of transport conditions with a major focus on vibration emissions. Animals 2022, 12, 1331. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Ruediger, K.; Mueller, K.; Jung, M.; Well, C.; Reissmann, M. Development of an in vitro index to characterize fertilizing capacity of boar ejaculates. Anim. Reprod. Sci. 2013, 140, 70–76. [Google Scholar] [CrossRef]
- Schulze, M.; Henning, H.; Rüdiger, K.; Wallner, U.; Waberski, D. Temperature management during semen processing: Impact on boar sperm quality under laboratory and field conditions. Theriogenology 2013, 80, 990–998. [Google Scholar] [CrossRef]
- R Core Team, R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 24 February 2023).
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H. Lmertest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef][Green Version]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Schulze, M.; Rüdiger, K.; Waberski, D. Rotation of boar semen doses during storage affects sperm quality. Reprod. Domest. Anim. 2015, 50, 684–687. [Google Scholar] [CrossRef] [PubMed]
- Sebastián-Abad, B.; Llamas-López, P.J.; García-Vázquez, F.A. Relevance of the ejaculate fraction and dilution method on boar sperm quality during processing and conservation of seminal doses. Vet. Sci. 2021, 8, 292. [Google Scholar] [CrossRef]
- Garcia-Romeu-Martinez, M.A.; Singh, S.P.; Cloquell-Ballester, V.A. Measurement and analysis of vibration levels for truck transport in spain as a function of payload, suspension and speed. Packag. Technol. Sci. 2008, 21, 439–451. [Google Scholar] [CrossRef]
- Knox, R.V. Artificial insemination in pigs today. Theriogenology 2016, 85, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Popwell, J.M.; Flowers, W.L. Variability in relationships between semen quality and estimates of in vivo and in vitro fertility in boars. Anim. Reprod. Sci. 2004, 81, 97–113. [Google Scholar] [CrossRef]
- Kommisrud, E.; Paulenz, H.; Sehested, E.; Grevle, I.S. Influence of boar and semen parameters on motility and acrosome integrity in liquid boar semen stored for five days. Acta Vet. Scand. 2002, 43, 49–55. [Google Scholar] [CrossRef]
- Schulze, M.; Mohammadpour, F.; Schröter, F.; Jakop, U.; Hönicke, H.; Hasenfuss, T.; Henne, H.; Schön, J.; Müller, K. Suitability of semen stress tests for predicting fertilizing capacity of boar ejaculates. Theriogenology 2021, 176, 73–81. [Google Scholar] [CrossRef]
- Roca, J.; Broekhuijse, M.L.W.J.; Parrilla, I.; Rodriguez-Martinez, H.; Martinez, E.A.; Bolarin, A. Boar differences in artificial insemination outcomes: Can they be minimized? Reprod. Domest. Anim. 2015, 50 (Suppl. S2), 48–55. [Google Scholar] [CrossRef]
- Waterhouse, K.E.; Hofmo, P.O.; Tverdal, A.; Miller, R.R., Jr. Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm. Reproduction 2006, 131, 887–894. [Google Scholar] [CrossRef][Green Version]
- Hernández, M.; Roca, J.; Calvete, J.J.; Sanz, L.; Muiño-Blanco, T.; Cebrián-Pérez, J.A.; Vázquez, J.M.; Martínez, E.A. Cryosurvival and in vitro fertilizing capacity postthaw is improved when boar spermatozoa are frozen in the presence of seminal plasma from good freezer boars. J. Androl. 2007, 28, 689–697. [Google Scholar] [CrossRef][Green Version]
- Johnson, L.A.; Weitze, K.F.; Fiser, P.; Maxwell, W.M.C. Storage of boar semen. Anim. Reprod. Sci. 2000, 62, 143–172. [Google Scholar] [CrossRef] [PubMed]
- Vyt, P.; Maes, D.; Sys, S.U.; Rijsselaere, T.; Van Soom, A. Air contact influences the ph of extended porcine semen. Reprod. Domest. Anim. 2007, 42, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Miki, K.; Clapham, D.E. Rheotaxis guides mammalian sperm. Curr. Biol. 2013, 23, 443–452. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fair, S.; Romero-Aguirregomezcorta, J. Implications of boar sperm kinematics and rheotaxis for fertility after preservation. Theriogenology 2019, 137, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.-C.; Suarez, S.S. Hyperactivation of mammalian spermatozoa: Function and regulation. Reproduction 2001, 122, 519–526. [Google Scholar] [CrossRef] [PubMed]
Displacement Index (Di) | Corresponding Road Type 1 | Ejaculate Numbers (n) Examined with CASA |
---|---|---|
0.5 | Smooth asphalt | 3 |
1.0 | 3 | |
1.5 | Rough asphalt | 6 |
2.0 | 6 | |
3.0 | Cobblestone | 6 |
4.0 | 6 | |
5.0 | 3 | |
6.0 | 6 |
Displacement Index (Di) | Duration (h) | Δ-TSM (%) | Δ-TRT (%) | Δ-MITO (%) | Δ-PMI (%) |
---|---|---|---|---|---|
Control (n = 39, absolute values) | 0 (non-shaken) | 77.33 ± 6.59 | 63.73 ± 7.96 | 76.99 ± 5.83 | 83.25 ± 2.23 |
0.5 | 1 | −1.5 ± 0.3 | 0.2 ± 1.2 | −0.4 ± 1.1 | −1.4 ± 0.5 |
6 | 0.4 ± 1.3 | 3.4 ± 2.2 | −2.9 ± 2 | −2.4 ± 1 | |
12 | 0 ± 0.7 | −2.1 ± 1.2 | −4.9 ± 1.3 | −5.5 ± 0.9 | |
1.0 | 1 | 0.5 ± 0.2 | −2.6 ± 0.9 | −1.5 ± 0.8 | −0.6 ± 1.4 |
6 | −5.4 ± 0.7 | −11.4 ± 3.9 | −9.4 ± 0.8 | −8.1 ± 1.2 | |
12 | −7.8 ± 1 | −12.4 ± 2.7 | −16.2 ± 0.9 | −12.5 ± 1.1 | |
1.5 | 1 | −1.1 ± 2.2 | 0.3 ± 1.2 | −2.1 ± 0.7 | −2.7 ± 0.7 |
6 | −3.4 ± 2.7 | −5 ± 0.8 | −7.9 ± 2 | −8.9 ± 1.3 | |
12 | −3.8 ± 2.7 | −12.2 ± 4.3 | −9.9 ± 2.9 | −10.5 ± 2.6 | |
2.0 | 1 | −0.8 ± 1.6 | 0.6 ± 2.5 | −3.3 ± 1.4 | −3.9 ± 0.7 |
6 | −5 ± 1.9 | −7.5 ± 3.7 | −15.5 ± 1.1 | −14.3 ± 0.9 | |
12 | −10.2 ± 2.8 | −11.6 ± 2.3 | −19.4 ± 3.2 | −17.7 ± 3.7 | |
3.0 | 1 | −1 ± 2.1 | −1.2 ± 5.1 | −2.7 ± 1.6 | −3.8 ± 0.8 |
6 | −4.2 ± 1.5 | 0.8 ± 2.2 | −5.2 ± 0.6 | −9.9 ± 0.4 | |
12 | −11.7 ± 2.5 | −15.3 ± 5.5 | −12.5 ± 0.7 | −12.6 ± 1.5 | |
4.0 | 1 | 1.2 ± 1.3 | 0.1 ± 1.9 | −1.4 ± 0.4 | −2.6 ± 0.4 |
6 | −3.9 ± 1.5 | −0.5 ± 3.3 | −6 ± 1.1 | −9.1 ± 0.7 | |
12 | −11.6 ± 1.9 | −5.7 ± 3.6 | −15.6 ± 1.6 | −15 ± 2.3 | |
5.0 | 1 | −3.2 ± 0.6 | −2.3 ± 4.9 | 0 ± 0.6 | −3.1 ± 1.6 |
6 | −6.9 ± 2.4 | −5.9 ± 3.5 | −4.4 ± 1.5 | −6 ± 0.5 | |
12 | −16.4 ± 7.1 | −11.4 ± 6.1 | −13.6 ± 5.2 | −11.9 ± 3.9 | |
6.0 | 1 | −1.3 ± 2.3 | −5.5 ± 0.7 | −5 ± 1.4 | −1.4 ± 0.3 |
6 | −10.9 ± 2.9 | −10.1 ± 4.1 | −7.5 ± 1.2 | −8.3 ± 1.6 | |
12 | −20.3 ± 8.9 | −23.9 ± 2.1 | −18.3 ± 3.9 | −12.8 ± 0.8 |
Dependent Variable | Independent Variable | Estimates | SE | df | t-Value | p-Value |
---|---|---|---|---|---|---|
Total sperm motility | (Intercept) | 79.79 | 0.99 | 41 | 80.42 | |
Storage day | −0.66 | 0.08 | 2104 | −8.10 | <0.001 | |
Di × duration | −0.30 | 0.03 | 32 | −11.75 | <0.001 | |
Thermo-resistance test | (Intercept) | 64.46 | 2.08 | 23 | 30.98 | |
Di × duration | −0.39 | 0.06 | 16 | −6.95 | <0.001 | |
Mitochondrial activity | (Intercept) | 75.48 | 1.62 | 23 | 46.74 | |
Di × duration | −0.45 | 0.06 | 17 | −7.59 | <0.001 | |
Plasma membrane integrity | (Intercept) | 81.74 | 0.66 | 23 | 123.41 | |
Di × duration | −0.43 | 0.05 | 20 | −7.93 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafemeister, T.; Schulze, P.; Simmet, C.; Jung, M.; Fuchs-Kittowski, F.; Schulze, M. Intensity and Duration of Vibration Emissions during Shipping as Interacting Factors on the Quality of Boar Semen Extended in Beltsville Thawing Solution. Animals 2023, 13, 952. https://doi.org/10.3390/ani13050952
Hafemeister T, Schulze P, Simmet C, Jung M, Fuchs-Kittowski F, Schulze M. Intensity and Duration of Vibration Emissions during Shipping as Interacting Factors on the Quality of Boar Semen Extended in Beltsville Thawing Solution. Animals. 2023; 13(5):952. https://doi.org/10.3390/ani13050952
Chicago/Turabian StyleHafemeister, Tim, Paul Schulze, Christian Simmet, Markus Jung, Frank Fuchs-Kittowski, and Martin Schulze. 2023. "Intensity and Duration of Vibration Emissions during Shipping as Interacting Factors on the Quality of Boar Semen Extended in Beltsville Thawing Solution" Animals 13, no. 5: 952. https://doi.org/10.3390/ani13050952