Effect of Corn Grinding Methods and Particle Size on the Nutrient Digestibility of Chahua Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Feed Ingredients
2.2. Grinding Methods
2.3. Measurement of Particle Size
2.4. Experiment Design and Chickens
2.5. Determination of Nutrient Digestibility
2.6. Statistical Analysis
3. Results
3.1. Effect of Grinding Method on the Particle Size Distribution
3.2. Effect of Particle Size on the Nutrient Digestibility
4. Discussions
4.1. Effect of Grinding Method on the Particle Size Distribution
4.2. Effect of Particle Size on the Nutrient Digestibility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyu, F.; Thomas, M.; Hendriks, W.H.; van der Poel, A.F.B. Size reduction in feed technology and methods for determining, expressing and predicting particle size: A review. Anim. Feed Sci. Technol. 2020, 261, 114347. [Google Scholar] [CrossRef]
- Al-Rabadi, G.J.; Hosking, B.J.; Torley, P.J.; Williams, B.A.; Bryden, W.L.; Nielsen, S.G.; Black, J.L.; Gidley, M.J. Regrinding large particles from milled grains improves growth performance of pigs. Anim. Feed Sci. Technol. 2017, 233, 53–63. [Google Scholar] [CrossRef]
- Xu, Y.; Stark, C.R.; Ferket, P.R.; Williams, C.M.; Brake, J. Effects of feed form and dietary coarse ground corn on broiler live performance, body weight uniformity, relative gizzard weight, excreta nitrogen, and particle size preference behaviors. Poult. Sci. 2015, 94, 1549–1556. [Google Scholar] [CrossRef]
- Röhe, I.; Ruhnke, I.; Knorr, F.; Mader, A.; Boroojeni, F.G.; Löwe, R.; Zentek, J. Effects of grinding method, particle size, and physical form of the diet on gastrointestinal morphology and jejunal glucose transport in laying hens. Poult. Sci. 2014, 93, 2060–2068. [Google Scholar] [CrossRef]
- Córdova-Noboa, H.A.; Oviedo-Rondón, E.O.; Ortiz, A.; Matta, Y.; Hoyos, S.; Buitrago, G.D.; Martinez, J.D.; Yanquen, J.; Penuela, L.; Sorbara, J.O.B.; et al. Corn drying temperature, particle size, and amylase supplementation influence growth performance, digestive tract development, and nutrient utilization of broilers. Poult. Sci. 2020, 99, 5681–5696. [Google Scholar] [CrossRef]
- Engberg, R.M.; Hedemann, M.S.; Jensen, B.B. The influence of grinding and pelleting of feed on the microbial composition and activity in the digestive tract of broiler chickens. Br. Poult. Sci. 2002, 43, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G.; Thomas, D.G. Feed particle size: Implications on the digestion and performance of poultry. Worlds Poult. Sci. J. 2019, 63, 439–455. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.; Hendriks, W.H.; van der Poel, A.F.B. Size distribution analysis of wheat, maize and soybeans and energy efficiency using different methods for coarse grinding. Anim. Feed Sci. Technol. 2018, 240, 11–21. [Google Scholar] [CrossRef]
- Ruhnke, I.; Rohe, I.; Kramer, C.; Goodarzi Boroojeni, F.; Knorr, F.; Mader, A.; Schulze, E.; Hafeez, A.; Neumann, K.; Lowe, R.; et al. The effects of particle size, milling method, and thermal treatment of feed on performance, apparent ileal digestibility, and pH of the digesta in laying hens. Poult. Sci. 2015, 94, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G.; Thomas, D.G. Influence of feed particle size on the performance, energy utilization, digestive tract development, and digesta parameters of broiler starters fed wheat- and corn-based diets. Poult. Sci. 2008, 87, 2320–2328. [Google Scholar] [CrossRef] [PubMed]
- Vukmirović, D.; Čolović, R.; Rakita, S.; Brlek, T.; Đuragić, O.; Solà-Oriol, D. Importance of feed structure (particle size) and feed form (mash vs. pellets) in pig nutrition—A review. Anim. Feed Sci. Technol. 2017, 233, 133–144. [Google Scholar] [CrossRef]
- Vukmirović, D.M.; Lević, J.; Fišteš, A.; Čolović, R.; Brlek, T.; Čolović, D.; Đuragić, O. Influence of grinding method and grinding intensity of corn on mill energy consumption and pellet quality. Hem. Ind. 2016, 70, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Adapa, P.; Tabil, L.; Schoenau, G. Grinding performance and physical properties of non-treated and steam exploded barley, canola, oat and wheat straw. Biomass Bioenergy 2011, 35, 549–561. [Google Scholar] [CrossRef]
- Nir, I.; Hillel, R.; Shefet, G.; Nitsan, Z. Effect of grain particle size on performance. 2. Grain texture interactions. Poult. Sci. 1994, 73, 781–791. [Google Scholar] [CrossRef]
- Lv, M.; Yan, L.; Wang, Z.; An, S.; Wu, M.; Lv, Z. Effects of feed form and feed particle size on growth performance, carcass characteristics and digestive tract development of broilers. Anim. Nutr. 2015, 1, 252–256. [Google Scholar] [CrossRef]
- Chang, C.; Zhang, Q.Q.; Wang, H.H.; Chu, Q.; Zhang, J.; Yan, Z.X.; Liu, H.G.; Geng, A.L. Dietary metabolizable energy and crude protein levels affect pectoral muscle composition and gut microbiota in native growing chickens. Poult. Sci. 2023, 102, 102353. [Google Scholar] [CrossRef] [PubMed]
- Abouelezz, K.F.M.; Wang, Y.; Wang, W.; Lin, X.; Li, L.; Gou, Z.; Fan, Q.; Jiang, S. Impacts of Graded Levels of Metabolizable Energy on Growth Performance and Carcass Characteristics of Slow-Growing Yellow-Feathered Male Chickens. Animals 2019, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- American Society of Agricultural Engineers Standard S319.2; ASAE. Method of Determining and Expressing Fineness of Feed Materials by Sieving. Yearbook of Standards. American Society of Agricultural Engineers: St. Joseph, MO, USA, 1983.
- Hill, F.; Anderson, D. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 1958, 64, 587–603. [Google Scholar] [CrossRef]
- Barzegar, S.; Wu, S.B.; Noblet, J.; Swick, R.A. Metabolizable energy of corn, soybean meal and wheat for laying hens. Poult. Sci. 2019, 98, 5876–5882. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; AOAC Int.: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Gebhardt, J.T.; Paulk, C.B.; Tokach, M.D.; DeRouchey, J.M.; Goodband, R.D.; Woodworth, J.C.; De Jong, J.A.; Coble, K.F.; Stark, C.R.; Jones, C.K.; et al. Effect of roller mill configuration on growth performance of nursery and finishing pigs and milling characteristics. J. Anim. Sci. 2018, 96, 2278–2292. [Google Scholar] [CrossRef] [PubMed]
- Koch, K. Hammermills and Rollermills; MF-2048 Feed Manufacturing; Department of Grain Science and Industry, Kansas State University: Manhattan, KS, USA, 1996. [Google Scholar]
- Dey, S.K.; Dey, S.; Das, A. Comminution features in an impact hammer mill. Powder Technol. 2013, 235, 914–920. [Google Scholar] [CrossRef]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G.; Thomas, D.G. Influence of feed particle size and feed form on the performance, energy utilization, digestive tract development, and digesta parameters of broiler starters. Poult. Sci. 2007, 86, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Reece, F.N.; Lott, B.D.; Deaton, J.W. The Effects of Hammer Mill Screen Size on Ground Corn Particle Size, Pellet Durability, and Broiler Performance. Poult. Sci. 1986, 65, 1257–1261. [Google Scholar] [CrossRef]
- Lucht, T.; GmbH, A.K.; Co, K.G. Stage grinding with hammer mill and crushing roller mill. Feed. Compd. 2011, 31, 22–26. [Google Scholar]
- Kilburn, J.; Edwards, H.M., Jr. The response of broilers to the feeding of mash or pelleted diets containing maize of varying particle sizes. Br. Poult. Sci. 2001, 42, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Ravindran, V.; Wester, T.J.; Molan, A.L.; Ravindran, G. Influence of feeding coarse corn on performance, nutrient utilization, digestive tract measurements, carcass characteristics, and cecal microflora counts of broilers. Poult. Sci. 2014, 93, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Svihus, B.; Kløvstad, K.H.; Perez, V.; Zimonja, O.; Sahlström, S.; Schüller, R.B.; Jeksrud, W.K.; Prestløkken, E. Physical and nutritional effects of pelleting of broiler chicken diets made from wheat ground to different coarsenesses by the use of roller mill and hammer mill. Anim. Feed Sci. Technol. 2004, 117, 281–293. [Google Scholar] [CrossRef]
- Nir, I.; Shefet, G.; Aaroni, Y. Effect of particle size on performance. 1. Corn. Poult. Sci. 1994, 73, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Mtei, A.W.; Abdollahi, M.R.; Schreurs, N.M.; Ravindran, V. Impact of corn particle size on nutrient digestibility varies depending on bird type. Poult. Sci. 2019, 98, 5504–5513. [Google Scholar] [CrossRef] [PubMed]
- Ege, G.; Bozkurt, M.; Kocer, B.; Tuzun, A.E.; Uygun, M.; Alkan, G. Influence of feed particle size and feed form on productive performance, egg quality, gastrointestinal tract traits, digestive enzymes, intestinal morphology, and nutrient digestibility of laying hens reared in enriched cages. Poult. Sci. 2019, 98, 3787–3801. [Google Scholar] [CrossRef]
Corn | |
---|---|
DM (%) | 86.65 |
GE (MJ/kg) | 17.29 |
CP (%) | 10.83 |
Asp (%) | 0.70 |
Glu (%) | 2.19 |
Ser (%) | 0.49 |
Gly (%) | 0.33 |
His (%) | 0.26 |
Arg (%) | 0.53 |
Thr (%) | 0.38 |
Ala (%) | 0.75 |
Pro (%) | 0.78 |
Tyr (%) | 0.21 |
Val (%) | 0.36 |
Met (%) | 0.03 |
Cys (%) | 0.17 |
Ile (%) | 0.31 |
Leu (%) | 1.06 |
Phe (%) | 0.39 |
Lys (%) | 0.27 |
TAA (%) | 9.21 |
Group | Roller Mill | Hammer Mill | |||||
---|---|---|---|---|---|---|---|
Roller Gap (mm) | Roller Speed (m/s) | Peripheral Speed (m/s) | Hammer Tip to Sieve Clearance (mm) | Hammer Thickness (mm) | Hammer Numbers | Sieve Size (mm) | |
M1 | 0.4 | 6 | 85 | 6 | 4 | 12 | 2.0 |
M2 | 0.6 | 8 | 70 | 9 | 4 | 8 | 2.0 |
M3 | 0.8 | 6 | 55 | 12 | 2 | 8 | 4.5 |
M4 | 1.0 | 8 | 55 | 12 | 2 | 8 | 4.5 |
Ingredients | 0–6 w | 7–11 w | 13–18 w |
---|---|---|---|
Corn | 55.00 | 60.00 | 65.00 |
Soybean meal | 25.00 | 15.00 | 15.00 |
Corn gluten meal | 5.59 | 8.96 | 7.31 |
Wheat bran | 6.83 | 7.04 | 4.51 |
Soybean oil | 3.13 | 4.25 | 3.49 |
Limestone | 1.00 | 1.20 | 1.08 |
Dicalcium phosphate | 1.50 | 1.50 | 1.49 |
L–Lysine HCl | 0.44 | 0.50 | 0.55 |
DL-methionine | 0.26 | 0.30 | 0.32 |
Sodium chloride | 0.25 | 0.25 | 0.25 |
Premix 1 | 1.00 | 1.00 | 1.00 |
Total | 100 | 100 | 100 |
Nutritional levels 2 | |||
Metabolizable energy (MJ/kg) | 12.69 | 13.52 | 13.55 |
Crude Protein (%) | 20.10 | 18.52 | 17.68 |
Methionine (%) | 0.62 | 0.51 | 0.52 |
Lysine (%) | 1.08 | 1.09 | 1.09 |
Calcium (%) | 0.85 | 0.91 | 0.85 |
Total phosphorus (%) | 0.66 | 0.63 | 0.61 |
Available phosphorus (%) | 0.47 | 0.36 | 0.35 |
Group | Grinding Type | |||
---|---|---|---|---|
Roller Mill | Hammer Mill | Two-Stage Grinding | ||
dgw (μm) | M1 | 821.06 ± 31.26 a | 668.48 ± 3.79 c | 757.65 ± 38.37 b |
M2 | 963.59 ± 92.87 a | 724.82 ± 1.80 b | 907.72 ± 91.66 a | |
M3 | 1255.08 ± 102.44 a | 950.95 ± 13.23 b | 1081.86 ± 93.98 b | |
M4 | 1112.28 ± 48.27 a | 950.95 ± 13.23 b | 1107.65 ± 38.28 a | |
Sgw | M1 | 1.82 ± 0.04 a | 1.76 ± 0.02 b | 1.80 ± 0.03 a |
M2 | 1.99 ± 0.06 a | 1.78 ± 0.01 c | 1.92 ± 0.01 b | |
M3 | 2.04 ± 0.01 b | 2.12 ± 0.02 a | 2.01 ± 0.05 b | |
M4 | 2.10 ± 0.02 a | 2.12 ± 0.02 a | 2.05 ± 0.02 b |
M1 | M2 | M3 | M4 | |
---|---|---|---|---|
FI (g) | 745.41 ± 4.43 | 743.10 ± 1.69 | 748.26 ± 2.29 | 746.02 ± 4.55 |
Excreta (g) | 125.62 ± 2.06 b | 131.61 ± 5.35 b | 144.64 ± 4.01 a | 150.97 ± 2.28 a |
GE (MJ/kg) | 16.96 ± 0.04 b | 17.61 ± 0.26 a | 17.70 ± 0.39 a | 17.44 ± 0.14 a |
CP (%) | 33.71 ± 0.82 a | 31.95 ± 1.47 a | 30.01 ± 0.81 b | 28.99 ± 0.76 b |
Asp (%) | 1.13 ± 0.07 | 1.12 ± 0.08 | 1.13 ± 0.04 | 1.04 ± 0.11 |
Glu (%) | 1.82 ± 0.27 | 1.73 ± 0.16 | 1.74 ± 0.09 | 1.59 ± 0.18 |
Ser (%) | 0.78 ± 0.02 | 0.88 ± 0.10 | 0.81 ± 0.05 | 0.76 ± 0.05 |
Gly (%) | 0.92 ± 0.06 | 0.88 ± 0.06 | 0.82 ± 0.02 | 0.83 ± 0.06 |
His (%) | 0.24 ± 0.03 | 0.24 ± 0.02 | 0.26 ± 0.04 | 0.24 ± 0.02 |
Arg (%) | 0.82 ± 0.06 | 0.74 ± 0.02 | 0.79 ± 0.05 | 0.72 ± 0.07 |
Thr (%) | 0.70 ± 0.05 | 0.68 ± 0.05 | 0.69 ± 0.01 | 0.64 ± 0.05 |
Ala (%) | 0.73 ± 0.06 | 0.72 ± 0.05 | 0.73 ± 0.04 | 0.68 ± 0.07 |
Pro (%) | 0.90 ± 0.07 | 0.88 ± 0.06 | 0.79 ± 0.05 | 0.80 ± 0.05 |
Tyr (%) | 0.30 ± 0.03 | 0.29 ± 0.04 | 0.28 ± 0.02 | 0.29 ± 0.05 |
Val (%) | 0.59 ± 0.05 | 0.58 ± 0.05 | 0.55 ± 0.01 | 0.53 ± 0.06 |
Met (%) | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 |
Cys (%) | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.10 ± 0.00 | 0.11 ± 0.00 |
Ile (%) | 0.49 ± 0.04 | 0.48 ± 0.05 | 0.45 ± 0.01 | 0.44 ± 0.05 |
Leu (%) | 0.81 ± 0.07 | 0.80 ± 0.08 | 0.76 ± 0.04 | 0.74 ± 0.09 |
Phe (%) | 0.47 ± 0.04 | 0.46 ± 0.05 | 0.43 ± 0.01 | 0.42 ± 0.05 |
Lys (%) | 0.67 ± 0.08 | 0.64 ± 0.06 | 0.65 ± 0.04 | 0.63 ± 0.08 |
TAA (%) | 11.53 ± 0.89 | 11.27 ± 0.90 | 11.03 ± 0.41 | 10.51 ± 1.04 |
M1 | M2 | M3 | M4 | |
---|---|---|---|---|
DM | 83.15 ± 0.35 a | 82.29 ± 0.75 a | 80.67 ± 0.48 b | 79.76 ± 0.27 b |
AME | 14.43 ± 0.07 a | 14.17 ± 0.12 b | 13.87 ± 0.01 c | 13.76 ± 0.02 c |
CP | 47.57 ± 0.97 a | 47.83 ± 0.18 a | 46.48 ± 0.82 ab | 45.85 ± 0.75 b |
Asp | 72.72 ± 1.88 | 71.61 ± 2.5 | 68.71 ± 0.47 | 69.67 ± 3.18 |
Glu | 85.96 ± 2.22 | 86.04 ± 1.41 | 84.62 ± 0.59 | 85.33 ± 1.72 |
Ser | 73.14 ± 0.58 a | 68.33 ± 3.37 b | 68.06 ± 2.49 b | 68.36 ± 2.23 b |
Gly | 52.48 ± 4.09 | 52.71 ± 3.18 | 51.40 ± 2.35 | 48.78 ± 3.93 |
His | 84.31 ± 1.83 | 83.62 ± 2.17 | 80.52 ± 2.90 | 81.08 ± 1.68 |
Arg | 74.13 ± 2.38 | 75.48 ± 1.30 | 71.63 ± 1.78 | 72.74 ± 2.63 |
Thr | 69.17 ± 2.74 | 68.82 ± 2.50 | 65.35 ± 0.34 | 66.54 ± 2.86 |
Ala | 83.50 ± 1.49 | 82.87 ± 1.50 | 81.18 ± 0.70 | 81.62 ± 1.96 |
Pro | 80.47 ± 1.92 | 79.95 ± 1.43 | 80.31 ± 1.37 | 79.20 ± 1.47 |
Tyr | 76.37 ± 2.39 | 75.54 ± 3.63 | 73.99 ± 1.41 | 72.51 ± 4.83 |
Val | 72.13 ± 2.58 | 71.14 ± 2.82 | 70.43 ± 1.00 | 70.06 ± 3.24 |
Met | 79.99 ± 0.99 a | 79.49 ± 1.53 a | 76.35 ± 0.97 b | 77.30 ± 1.67 b |
Cys | 89.51 ± 0.21 a | 88.55 ± 0.93 ab | 88.43 ± 0.30 b | 86.89 ± 0.30 c |
Ile | 73.39 ± 2.29 | 72.21 ± 2.99 | 71.99 ± 0.77 | 71.08 ± 3.17 |
Leu | 87.02 ± 1.31 | 86.55 ± 1.49 | 86.05 ± 0.75 | 85.84 ± 1.68 |
Phe | 79.79 ± 2.00 | 79.15 ± 2.18 | 78.73 ± 0.53 | 78.02 ± 2.45 |
Lys | 57.99 ± 5.36 | 57.62 ± 4.11 | 53.45 ± 1.57 | 52.57 ± 6.23 |
TAA | 78.90 ± 1.87 | 78.32 ± 1.92 | 76.86 ± 0.72 | 76.91 ± 2.33 |
M1 | M2 | M3 | M4 | |
---|---|---|---|---|
FI (g) | 864.30 ± 75.87 | 836.51 ± 72.95 | 897.88 ± 52.61 | 817.07 ± 67.01 |
Excreta (g) | 139.48 ± 6.75 | 140.32 ± 8.45 | 153.12 ± 7.96 | 148.10 ± 8.12 |
GE (MJ/kg) | 17.33 ± 0.55 b | 17.04 ± 0.75 b | 18.83 ± 0.02 a | 19.05 ± 0.67 a |
CP (%) | 34.20 ± 1.53 a | 32.88 ± 1.17 a | 32.57 ± 0.56 ab | 30.71 ± 1.06 b |
Asp (%) | 0.86 ± 0.05 | 0.88 ± 0.08 | 0.90 ± 0.03 | 0.90 ± 0.14 |
Glu (%) | 1.29 ± 0.05 | 1.29 ± 0.11 | 1.32 ± 0.04 | 1.33 ± 0.21 |
Ser (%) | 0.60 ± 0.05 | 0.54 ± 0.06 | 0.60 ± 0.03 | 0.57 ± 0.14 |
Gly (%) | 0.69 ± 0.03 | 0.65 ± 0.05 | 0.64 ± 0.03 | 0.66 ± 0.09 |
His (%) | 0.21 ± 0.01 | 0.21 ± 0.03 | 0.23 ± 0.01 | 0.22 ± 0.03 |
Arg (%) | 0.64 ± 0.05 | 0.61 ± 0.04 | 0.69 ± 0.07 | 0.68 ± 0.11 |
Thr (%) | 0.54 ± 0.02 | 0.52 ± 0.05 | 0.56 ± 0.01 | 0.53 ± 0.10 |
Ala (%) | 0.53 ± 0.03 | 0.53 ± 0.04 | 0.55 ± 0.02 | 0.56 ± 0.07 |
Pro (%) | 0.60 ± 0.04 | 0.57 ± 0.03 | 0.59 ± 0.03 | 0.60 ± 0.11 |
Tyr (%) | 0.20 ± 0.01 | 0.20 ± 0.02 | 0.20 ± 0.00 | 0.20 ± 0.02 |
Val (%) | 0.39 ± 0.03 | 0.37 ± 0.03 | 0.38 ± 0.02 | 0.39 ± 0.07 |
Met (%) | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.01 |
Cys (%) | 0.09 ± 0.01 | 0.09 ± 0.00 | 0.08 ± 0.00 | 0.09 ± 0.01 |
Ile (%) | 0.32 ± 0.03 | 0.31 ± 0.03 | 0.31 ± 0.01 | 0.33 ± 0.05 |
Leu (%) | 0.52 ± 0.03 | 0.51 ± 0.05 | 0.53 ± 0.02 | 0.54 ± 0.09 |
Phe (%) | 0.30 ± 0.02 | 0.29 ± 0.02 | 0.30 ± 0.01 | 0.31 ± 0.05 |
Lys (%) | 0.47 ± 0.02 | 0.48 ± 0.05 | 0.50 ± 0.02 | 0.49 ± 0.06 |
TAA (%) | 8.28 ± 0.44 | 8.09 ± 0.63 | 8.41 ± 0.30 | 8.44 ± 1.35 |
M1 | M2 | M3 | M4 | |
---|---|---|---|---|
DM | 83.83 ± 0.61 a | 83.20 ± 0.47 a | 82.94 ± 0.12 a | 81.85 ± 0.48 b |
AME | 14.49 ± 0.02 a | 14.43 ± 0.05 a | 14.08 ± 0.03 b | 13.83 ± 0.04 c |
CP | 49.00 ± 0.57 | 49.05 ± 0.52 | 48.72 ± 0.52 | 48.58 ± 0.78 |
Asp | 79.94 ± 1.36 | 78.85 ± 2.43 | 77.99 ± 0.56 | 76.45 ± 3.98 |
Glu | 90.44 ± 0.64 | 90.11 ± 1.07 | 89.70 ± 0.26 | 88.91 ± 1.94 |
Ser | 80.28 ± 2.34 | 81.37 ± 2.47 | 79.12 ± 0.89 | 78.74 ± 5.71 |
Gly | 65.77 ± 2.60 | 66.63 ± 2.31 | 66.70 ± 1.41 | 63.42 ± 5.47 |
His | 87.14 ± 0.62 | 86.45 ± 2.11 | 84.98 ± 0.33 | 84.41 ± 2.45 |
Arg | 80.70 ± 1.51 | 80.76 ± 1.67 | 77.88 ± 2.06 | 76.89 ± 3.94 |
Thr | 77.25 ± 1.62 | 77.27 ± 2.73 | 75.35 ± 0.16 | 74.82 ± 5.28 |
Ala | 88.54 ± 0.87 | 88.00 ± 1.09 | 87.54 ± 0.34 | 86.46 ± 2.06 |
Pro | 87.54 ± 1.09 | 87.76 ± 1.01 | 87.13 ± 0.55 | 86.01 ± 2.84 |
Tyr | 84.87 ± 1.39 | 84.33 ± 1.84 | 84.19 ± 0.29 | 82.95 ± 2.51 |
Val | 82.59 ± 1.65 | 82.42 ± 1.89 | 81.81 ± 0.62 | 80.02 ± 3.86 |
Met | 84.27 ± 1.65 | 82.91 ± 2.07 | 84.35 ± 0.44 | 83.07 ± 5.44 |
Cys | 91.60 ± 0.96 | 91.11 ± 0.29 | 91.64 ± 0.14 | 90.20 ± 1.45 |
Ile | 83.44 ± 1.69 | 83.06 ± 1.71 | 82.69 ± 0.48 | 80.84 ± 3.39 |
Leu | 92.01 ± 0.67 | 91.86 ± 0.89 | 91.47 ± 0.29 | 90.72 ± 1.71 |
Phe | 87.50 ± 1.15 | 87.27 ± 1.29 | 86.70 ± 0.40 | 85.53 ± 2.59 |
Lys | 71.54 ± 1.14 | 69.97 ± 3.55 | 68.45 ± 0.81 | 66.86 ± 4.79 |
TAA | 85.45 ± 1.07 | 85.22 ± 1.46 | 84.43 ± 0.45 | 83.33 ± 2.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, G.; Zhang, T.; Cao, S.; Zhang, X.; Tao, L. Effect of Corn Grinding Methods and Particle Size on the Nutrient Digestibility of Chahua Chickens. Animals 2023, 13, 2364. https://doi.org/10.3390/ani13142364
Niu G, Zhang T, Cao S, Zhang X, Tao L. Effect of Corn Grinding Methods and Particle Size on the Nutrient Digestibility of Chahua Chickens. Animals. 2023; 13(14):2364. https://doi.org/10.3390/ani13142364
Chicago/Turabian StyleNiu, Guoyi, Tingrui Zhang, Shengxiong Cao, Xi Zhang, and Linli Tao. 2023. "Effect of Corn Grinding Methods and Particle Size on the Nutrient Digestibility of Chahua Chickens" Animals 13, no. 14: 2364. https://doi.org/10.3390/ani13142364
APA StyleNiu, G., Zhang, T., Cao, S., Zhang, X., & Tao, L. (2023). Effect of Corn Grinding Methods and Particle Size on the Nutrient Digestibility of Chahua Chickens. Animals, 13(14), 2364. https://doi.org/10.3390/ani13142364