Evaluation of Electrical Cardiometry for Measuring Cardiac Output and Derived Hemodynamic Variables in Comparison with Lithium Dilution in Anesthetized Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Induction of General Anesthesia and Standard Anesthetic Monitoring
2.3. Instrumentation for EC to Measure CO (COEC) and Other Hemodynamic Variables
2.4. Instrumentation for LiD to Measure CO (LiDCO)
2.5. Administration of Treatments, Associated Hemodynamic Goals, and Data Collection
2.6. Recovery from General Anesthesia
2.7. Statistical Analysis
3. Results
3.1. Comparisons between LiDCO and ECCO during the Experiment
3.2. Impact of Pharmacological Interventions on EC-Derived Variables during the Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoar, P.F.; Stone, J.G.; Faltas, A.N.; Bendixen, H.H.; Head, R.J.; Berkowitz, B.A. Hemodynamic and adrenergic responses to anesthesia and operation for myocardial revascularization. J. Thorac. Cardiovasc. Surg. 1980, 80, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Mitter, N.; Grogan, K.; Berkowitz, D.E.; Nyhan, D. Pharmacology of Anesthetic Drugs. In Kaplan’s Cardiac Anesthesia: For Cardiac and Noncardiac Surgery, 7th ed.; Kaplan, J.A., Ed.; Elsevier: Philadelphia, PA, USA, 2017; pp. 247–291. [Google Scholar]
- Meng, T.; Bu, W.; Ren, X.; Chen, X.; Yu, J.; Eckenhoff, R.G.; Gao, W.D. Molecular mechanism of anesthetic-induced depression of myocardial contraction. FASEB J. 2016, 30, 2915–2925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, T.; Takeda, J.; Koyama, K.; Sekiguchi, H.; Fukushima, K.; Kawazoe, T. Effects of sevoflurane, isoflurane, enflurane, and halothane on left ventricular diastolic performance in dogs. J. Cardiothorac. Vasc. Anesth. 1994, 8, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Conzen, P.F.; Hobbhahn, J.; Goetz, A.E.; Habazettl, H.; Granetzny, T.; Peter, K.; Brendel, W. Myocardial contractility, blood flow, and oxygen consumption in healthy dogs during anesthesia with isoflurane or enflurane. J. Cardiothorac. Anesth. 1989, 3, 70–77. [Google Scholar] [CrossRef]
- Hüneke, R.; Fassl, J.; Rossaint, R.; Lückhoff, A. Effects of volatile anesthetics on cardiac ion channels. Acta Anaesthesiol. Scand. 2004, 48, 547–561. [Google Scholar] [CrossRef]
- Hayashi, Y.; Sumikawa, K.; Tashiro, C.; Yamatodani, A.; Yoshiya, I. Arrhythmogenic threshold of epinephrine during sevoflurane, enflurane, and isoflurane anesthesia in dogs. Anesthesiology 1988, 69, 145–147. [Google Scholar] [CrossRef]
- Imamura, S.; Ikeda, K. Comparison of the epinephrine-induced arrhythmogenic effect of sevoflurane with isoflurane and halothane. J. Anesth. 1987, 1, 62–68. [Google Scholar] [CrossRef]
- Nakamura, K.; Toda, H.; Hatano, Y.; Mori, K. Comparison of the direct effects of sevoflurane, isoflurane and halothane on isolated canine coronary arteries. Can. J. Anaesth. 1993, 40, 257–261. [Google Scholar] [CrossRef]
- Torri, G. Inhalation anesthetics: A review. Minerva Anestesiol. 2010, 76, 215–228. [Google Scholar]
- Tanaka, S.; Tsuchida, H.; Nakabayashi, K.; Seki, S.; Namiki, A. The effects of sevoflurane, isoflurane, halothane, and enflurane on hemodynamic responses during an inhaled induction of anesthesia via a mask in humans. Anesth. Analg. 1996, 82, 821–826. [Google Scholar] [CrossRef]
- Brioni, J.D.; Varughese, S.; Ahmed, R.; Bein, B. A clinical review of inhalation anesthesia with sevoflurane: From early research to emerging topics. J. Anesth. 2017, 31, 764–778. [Google Scholar] [CrossRef] [Green Version]
- Wesselink, E.M.; Kappen, T.H.; Torn, H.M.; Slooter, A.J.C.; van Klei, W.A. Intraoperative hypotension and the risk of postoperative adverse outcomes: A systematic review. Br. J. Anaesth. 2018, 121, 706–721. [Google Scholar] [CrossRef] [Green Version]
- Muzi, M.; Ebert, T.J. Randomized, prospective comparison of halothane, isoflurane, and enflurane on baroreflex control of heart rate in humans. Adv. Pharmacol. 1994, 31, 379–387. [Google Scholar] [CrossRef]
- Lesitsky, M.A.; Davis, S.; Murray, P.A. Preservation of hypoxic pulmonary vasoconstriction during sevoflurane and desflurane anesthesia compared to the conscious state in chronically instrumented dogs. Anesthesiology 1998, 89, 1501–1508. [Google Scholar] [CrossRef]
- Sato, K.; Seki, S.; Murray, P.A. Effects of halothane and enflurane anesthesia on sympathetic beta-adrenoreceptor-mediated pulmonary vasodilation in chronically instrumented dogs. Anesthesiology 2002, 97, 478–487. [Google Scholar] [CrossRef]
- Hamilton, M.A.; Cecconi, M.; Rhodes, A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth. Analg. 2011, 112, 1392–1402. [Google Scholar] [CrossRef]
- Marshall, K.; Thomovsky, E.; Johnson, P.; Brooks, A. A Review of Available Techniques for Cardiac Output Monitoring. Top. Companion Anim. Med. 2016, 31, 100–108. [Google Scholar] [CrossRef]
- Shih, A. Cardiac output monitoring in horses. Vet. Clin. N. Am. Equine Pract. 2013, 29, 155–167. [Google Scholar] [CrossRef]
- Linton, R.A.; Young, L.E.; Marlin, D.J.; Blissitt, K.J.; Brearley, J.C.; Jonas, M.M.; O’Brien, T.K.; Linton, N.W.; Band, D.M.; Hollingworth, C.; et al. Cardiac output measured by lithium dilution, thermodilution, and transesophageal Doppler echocardiography in anesthetized horses. Am. J. Vet. Res. 2000, 61, 731–737. [Google Scholar] [CrossRef]
- Mason, D.J.; O’Grady, M.; Woods, J.P.; McDonell, W. Assessment of lithium dilution cardiac output as a technique for measurement of cardiac output in dogs. Am. J. Vet. Res. 2001, 62, 1255–1261. [Google Scholar] [CrossRef]
- Corley, K.T.; Donaldson, L.L.; Furr, M.O. Comparison of lithium dilution and thermodilution cardiac output measurements in anaesthetized neonatal foals. Equine Vet. J. 2002, 34, 598–601. [Google Scholar] [CrossRef] [PubMed]
- Corley, K.T.; Donaldson, L.L.; Durando, M.M.; Birks, E.K. Cardiac output technologies with special reference to the horse. J. Vet. Intern. Med. 2003, 17, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Morgaz, J.; del Granados, M.M.; Muñoz-Rascón, P.; Dominguez, J.M.; Fernández-Sarmiento, J.A.; Gómez-Villamandos, R.J.; Navarrete, R. Comparison of thermodilution, lithium dilution, and pulse contour analysis for the measurement of cardiac output in 3 different hemodynamic states in dogs. J. Vet. Emerg. Crit. Care 2014, 24, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, K.E.; Kerr, C.L.; McDonell, W.N. Evaluation of a lithium dilution cardiac output technique as a method for measurement of cardiac output in anesthetized cats. Am. J. Vet. Res. 2005, 66, 1639–1645. [Google Scholar] [CrossRef]
- Zoremba, N.; Bickenbach, J.; Krauss, B.; Rossaint, R.; Kuhlen, R.; Schalte, G. Comparison of electrical velocimetry and thermodilution techniques for the measurement of cardiac output. Acta Anaesthesiol. Scand. 2007, 51, 1314–1319. [Google Scholar] [CrossRef]
- Liu, Y.; Pian-Smith, M.C.; Leffert, L.R.; Minehart, R.D.; Torri, A.; Cote, C.; Kacmarek, R.M.; Jiang, Y. Continuous measurement of cardiac output with the electrical velocimetry method in patients under spinal anesthesia for cesarean delivery. J. Clin. Monit. Comput. 2015, 29, 627–634. [Google Scholar] [CrossRef]
- Narula, J.; Chauhan, S.; Ramakrishnan, S.; Gupta, S.K. Electrical Cardiometry: A reliable solution to cardiac output estimation in children with structural heart disease. J. Cardiothorac. Vasc. Anesth. 2017, 31, 912–917. [Google Scholar] [CrossRef]
- Sasaki, K.; Mutoh, T.; Mutoh, T.; Kawashima, R.; Tsubone, H. Electrical velocimetry for noninvasive cardiac output and stroke volume variation measurements in dogs undergoing cardiovascular surgery. Vet. Anaesth. Analg. 2017, 44, 7–16. [Google Scholar] [CrossRef]
- Sasaki, K.; Mutoh, T.; Mutoh, T.; Taki, Y.; Kawashima, R. Noninvasive stroke volume variation using electrical velocimetry for predicting fluid responsiveness in dogs undergoing cardiac surgery. Vet. Anaesth. Analg. 2017, 44, 719–726. [Google Scholar] [CrossRef]
- Sasaki, K.; Mutoh, T.; Yamamoto, S.; Taki, Y.; Kawashima, R. Utility of electrical velocimetry-based noninvasive stroke volume variation in predicting fluid responsiveness under different ventilation modes in anaesthetized dogs. Clin. Exp. Pharmacol. Physiol. 2018, 45, 983–988. [Google Scholar] [CrossRef]
- Sasaki, K.; Yamamoto, S.; Mutoh, T. Noninvasive assessment of fluid responsiveness for emergency abdominal surgery in dogs with pulmonary hypertension: Insights into high-risk companion animal anesthesia. PLoS ONE 2020, 15, e0241234. [Google Scholar] [CrossRef]
- Paranjape, V.V.; Henao-Guerrero, N.; Menciotti, G.; Saksena, S.; Agostinho, M. Agreement between Electrical Cardiometry and Pulmonary Artery Thermodilution for Measuring Cardiac Output in Isoflurane-Anesthetized Dogs. Animals 2023, 13, 1420. [Google Scholar] [CrossRef]
- Osthaus, W.A.; Huber, D.; Beck, C.; Winterhalter, M.; Boethig, D.; Wessel, A.; Sumpelmann, R. Comparison of electrical velocimetry and transpulmonary thermodilution for measuring cardiac output in piglets. Paediatr. Anaesth. 2007, 17, 749–755. [Google Scholar] [CrossRef]
- Bernstein, D.; Osypka, M. Apparatus and Method for Determining an Approximation of the Stroke Volume and the Cardiac Output of the Heart. U.S. Patent 6,511,438 B2, 28 January 2003. Available online: https://patents.google.com/patent/EP1247487A1/en (accessed on 28 April 2023).
- Osypka, M. An Introduction to Electrical CardiometryTM.; Cardiotronic An Osypka Company: La Jolla, CA, USA, 2009; pp. 1–10. Available online: https://osypka-asia.com/pdf/technique.pdf (accessed on 28 April 2023).
- Paranjape, V.V.; Henao-Guerrero, N.; Menciotti, G.; Saksena, S. Esophageal Doppler-derived indices and arterial load variables provide useful hemodynamic information during assessment of fluid responsiveness in anesthetized dogs undergoing acute changes in blood volume. Am. J. Vet. Res. 2023, 84, ajvr.22.11.0198. [Google Scholar] [CrossRef]
- Paranjape, V.V.; Henao-Guerrero, N.; Menciotti, G.; Saksena, S. Volumetric evaluation of fluid responsiveness using a modified passive leg raise maneuver during experimental induction and correction of hypovolemia in anesthetized dogs. Vet. Anaesth. Analg. 2023, 50, 211–219. [Google Scholar] [CrossRef]
- Paranjape, V.V.; Shih, A.C.; Garcia-Pereira, F.L. Use of a modified passive leg-raising maneuver to predict fluid responsiveness during experimental induction and correction of hypovolemia in healthy isoflurane-anesthetized pigs. Am. J. Vet. Res. 2019, 80, 24–32. [Google Scholar] [CrossRef]
- Paranjape, V.V.; Shih, A.C.; Garcia-Pereira, F.L.; Saksena, S. Transpulmonary ultrasound dilution is an acceptable technique for cardiac output measurement in anesthetized pigs. Am. J. Vet. Res. 2022, 83, ajvr.21.11.0189. [Google Scholar] [CrossRef]
- Duffy, A.L.; Butler, A.L.; Radecki, S.V.; Campbell, V.L. Comparison of continuous arterial pressure waveform analysis with the lithium dilution technique to monitor cardiac output in conscious dogs with systemic inflammatory response syndrome. Am. J. Vet. Res. 2009, 70, 1365–1373. [Google Scholar] [CrossRef]
- Cooper, E.S.; Muir, W.W. Continuous cardiac output monitoring via arterial pressure waveform analysis following severe hemorrhagic shock in dogs. Crit. Care Med. 2007, 35, 1724–1729. [Google Scholar] [CrossRef]
- Chen, H.C.; Sinclair, M.D.; Dyson, D.H.; McDonell, W.N.; Sears, W.C. Comparison of Arterial Pressure Waveform Analysis with the Lithium Dilution Technique to Monitor Cardiac Output in Anesthetized Dogs. Am. J. Vet. Res. 2005, 66, 1430–1436. [Google Scholar] [CrossRef]
- Critchley, L.A.; Critchley, J.A. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J. Clin. Monit. Comput. 1999, 15, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Critchley, L.A.; Lee, A.; Ho, A.M. A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output. Anesth. Analg. 2010, 111, 1180–1192. [Google Scholar] [CrossRef]
- Critchley, L.A.; Yang, X.X.; Lee, A. Assessment of trending ability of cardiac output monitors by polar plot methodology. J. Cardiothorac. Vasc. Anesth. 2011, 25, 536–546. [Google Scholar] [CrossRef]
- Peyton, P.J.; Chong, S.W. Minimally invasive measurement of cardiac output during surgery and critical care: A meta-analysis of accuracy and precision. Anesthesiology 2010, 113, 1220–1235. [Google Scholar] [CrossRef] [Green Version]
- Reuter, D.A.; Huang, C.; Edrich, T.; Shernan, S.K.; Eltzschig, H.K. Cardiac output monitoring using indicator-dilution techniques: Basics, limits, and perspectives. Anesth. Analg. 2010, 110, 799–811. [Google Scholar] [CrossRef]
- Kurita, T.; Morita, K.; Kato, S.; Kikura, M.; Horie, M.; Ikeda, K. Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br. J. Anaesth. 1997, 79, 770–775. [Google Scholar] [CrossRef]
- Shih, A.; Giguère, S.; Sanchez, L.C.; Valverde, A.; Bandt, C.; Jankunas, H.; Robertson, S. Determination of cardiac output in neonatal foals by ultrasound velocity dilution and its comparison to the lithium dilution method. J. Vet. Emerg. Crit. Care 2009, 19, 438–443. [Google Scholar] [CrossRef]
- Valverde, A.; Giguère, S.; Morey, T.E.; Sanchez, L.C.; Shih, A. Comparison of noninvasive cardiac output measured by use of partial carbon dioxide rebreathing or the lithium dilution method in anesthetized foals. Am. J. Vet. Res. 2007, 68, 141–147. [Google Scholar] [CrossRef]
- Giguère, S.; Bucki, E.; Adin, D.B.; Valverde, A.; Estrada, A.H.; Young, L. Cardiac output measurement by partial carbon dioxide rebreathing, 2-dimensional echocardiography, and lithium-dilution method in anesthetized neonatal foals. J. Vet. Intern. Med. 2005, 19, 737–743. [Google Scholar] [CrossRef]
- Valverde, A.; Gianotti, G.; Rioja, E.; Hathway, A. Comparison of cardiac output determined by arterial pulse pressure waveform analysis method (FloTrac/Vigileo) versus lithium dilution method in anesthetized dogs. J. Vet. Emerg. Crit. Care 2011, 21, 328–334. [Google Scholar] [CrossRef]
- Shih, A.; Giguère, S.; Vigani, A.; Shih, R.; Thuramalla, N.; Bandt, C. Determination of cardiac output by ultrasound velocity dilution in normovolemia and hypovolemia in dogs. Vet. Anaesth. Analg. 2011, 38, 279–285. [Google Scholar] [CrossRef]
- Shih, A.; Maisenbacher, H.W.; Bandt, C.; Ricco, C.; Bailey, J.; Rivera, J.; Estrada, A. Assessment of cardiac output measurement in dogs by transpulmonary pulse contour analysis. J. Vet. Emerg. Crit. Care 2011, 21, 321–327. [Google Scholar] [CrossRef]
- Mason, D.J.; O’Grady, M.; Woods, J.P.; McDonell, W. Comparison of a central and a peripheral (cephalic vein) injection site for the measurement of cardiac output using the lithium-dilution cardiac output technique in anesthetized dogs. Can. J. Vet. Res. 2002, 66, 207–210. [Google Scholar]
- Teboul, J.L.; Saugel, B.; Cecconi, M.; De Backer, D.; Hofer, C.K.; Monnet, X.; Perel, A.; Pinsky, M.R.; Reuter, D.A.; Rhodes, A.; et al. Less Invasive Hemodynamic Monitoring in Critically Ill Patients. Intensive Care Med. 2016, 42, 1350–1359. [Google Scholar] [CrossRef]
- Mason, D.J.; O’Grady, M.; Woods, J.P.; McDonell, W.N. Effect of background serum lithium concentrations on the accuracy of lithium dilution cardiac output determination in dogs. Am. J. Vet. Res. 2002, 63, 1048–1052. [Google Scholar] [CrossRef]
- Hatfield, C.L.; McDonell, W.N.; Lemke, K.A.; Black, W.D. Pharmacokinetics and toxic effects of lithium chloride after intravenous administration in conscious horses. Am. J. Vet. Res. 2001, 62, 1387–1392. [Google Scholar] [CrossRef]
- Davies, N.L. Lithium toxicity in two dogs. J. S. Afr. Vet. Assoc. 1991, 62, 140–142. [Google Scholar] [CrossRef]
- Ambrisko, T.D.; Kabes, R.; Moens, Y. Influence of drugs on the response characteristics of the LiDCO sensor: An in vitro study. Br. J. Anaesth. 2013, 110, 305–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, M. Oesophageal Doppler. Curr. Opin. Crit. Care 2009, 15, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Nichols, C.G.; Hanck, D.A.; Jewell, B.R. The Anrep effect: An intrinsic myocardial mechanism. Can. J. Physiol. Pharmacol. 1988, 66, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.Y.; Critchley, L.A.; Fok, B.S.; James, A.E. Evaluation of impedance-based indices of cardiac contractility in dogs. J. Clin. Monit. Comput. 2004, 18, 103–109. [Google Scholar] [CrossRef]
Variable | DOBbaseline | DOB | ESMbaseline | ESM | PHEbaseline | PHE | ISObaseline | ISO |
---|---|---|---|---|---|---|---|---|
LiDCO (L/min) | 1.95 ± 0.46 | 2.92 ± 0.24 * | 1.79 ± 0.27 | 0.99 ± 0.32 † | 1.90 ± 0.22 | 0.81 ± 0.16 ‡ | 1.76 ± 0.21 | 0.71 ± 0.29 § |
MAP (mmHg) | 78 ± 7 | 92 ± 5 * | 81 ± 6 | 61 ± 8 † | 84 ± 7 | 145 ± 10 ‡ | 71 ± 6 | 39 ± 5 § |
ETISO (%) | 1.5 ± 0.1 | 1.5 ± 0.1 | 1.5 ± 0.1 | 1.5 ± 0.1 | 1.5 ± 0.0 | 1.4 ± 0.0 | 1.5 ± 0.1 | 3.8 ± 0.3 § |
EC-derived | ||||||||
HREC (beats/min) | 92 ± 5 | 99 ± 6 | 99 ± 6 | 85 ± 7 † | 103 ± 7 | 72 ± 8 ‡ | 95 ± 8 | 80 ± 6 § |
SVEC (mL) | 22.9 ± 3.5 | 31.1 ± 4.2 * | 19.2 ± 2.9 | 10.3 ± 4.9 † | 19.6 ± 2.7 | 12.5 ± 3.0 ‡ | 20.2 ± 4.4 | 9.4 ± 3.9 § |
ECSVR (dynes/s/cm5) | 3057 ± 276 | 2346 ± 408 * | 3326 ± 454 | 3902 ± 221 † | 3240 ± 259 | 12,494 ± 563 ‡ | 3296 ± 413 | 2466 ± 201 § |
FTC (ms) | 340 ± 9 | 371 ± 14 | 321 ± 11 | 343 ± 20 | 350 ± 15 | 274 ± 11 ‡ | 325 ± 18 | 379 ± 16 § |
ICONTM | 98 ± 14 | 126 ± 17 * | 103 ± 11 | 62 ± 13 † | 95 ± 10 | 117 ± 9 ‡ | 100 ± 11 | 69 ± 12 § |
STR | 0.42 ± 0.11 | 0.30 ± 0.10 * | 0.41 ± 0.10 | 0.55 ± 0.18 † | 0.43 ± 0.12 | 0.44 ± 0.15 | 0.41 ± 0.13 | 0.56 ± 0.11 § |
PEP (ms) | 114 ± 11 | 95 ± 10 * | 119 ± 15 | 136 ± 9 † | 122 ± 9 | 141 ± 10 ‡ | 111 ± 9 | 130 ± 6 § |
LVET (ms) | 275 ± 17 | 314 ± 15 * | 284 ± 12 | 246 ± 14 † | 286 ± 10 | 324 ± 13 ‡ | 270 ± 11 | 229 ± 9 § |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paranjape, V.V.; Garcia-Pereira, F.L.; Menciotti, G.; Saksena, S.; Henao-Guerrero, N.; Ricco-Pereira, C.H. Evaluation of Electrical Cardiometry for Measuring Cardiac Output and Derived Hemodynamic Variables in Comparison with Lithium Dilution in Anesthetized Dogs. Animals 2023, 13, 2362. https://doi.org/10.3390/ani13142362
Paranjape VV, Garcia-Pereira FL, Menciotti G, Saksena S, Henao-Guerrero N, Ricco-Pereira CH. Evaluation of Electrical Cardiometry for Measuring Cardiac Output and Derived Hemodynamic Variables in Comparison with Lithium Dilution in Anesthetized Dogs. Animals. 2023; 13(14):2362. https://doi.org/10.3390/ani13142362
Chicago/Turabian StyleParanjape, Vaidehi V., Fernando L. Garcia-Pereira, Giulio Menciotti, Siddharth Saksena, Natalia Henao-Guerrero, and Carolina H. Ricco-Pereira. 2023. "Evaluation of Electrical Cardiometry for Measuring Cardiac Output and Derived Hemodynamic Variables in Comparison with Lithium Dilution in Anesthetized Dogs" Animals 13, no. 14: 2362. https://doi.org/10.3390/ani13142362
APA StyleParanjape, V. V., Garcia-Pereira, F. L., Menciotti, G., Saksena, S., Henao-Guerrero, N., & Ricco-Pereira, C. H. (2023). Evaluation of Electrical Cardiometry for Measuring Cardiac Output and Derived Hemodynamic Variables in Comparison with Lithium Dilution in Anesthetized Dogs. Animals, 13(14), 2362. https://doi.org/10.3390/ani13142362