Infrared Thermography Assessment of Aerobic Stability of a Total Mixed Ration: An Innovative Approach to Evaluating Dairy Cow Feed
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Recording of IRT Values of TMR
2.3. Chemical and Microbiological Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Restelatto, R.; Novinski, C.O.; Silva, E.P.A.; Pereira, L.M.; Volpi, D.; Zopollatto, M.; Daniel, J.L.P.; Schmidt, P. Effects of Holes in Plastic Film on the Storage Losses in Total Mixed Ration Silage in Round Bales. Transl. Anim. Sci. 2019, 3, 1543–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, P.; Niu, D.; Zuo, S.; Jiang, D.; Li, R.; Xu, C. Vitamin A and E in the Total Mixed Ration as Influenced by Ensiling and the Type of Herbage. Sci. Total Environ. 2020, 746, 141239. [Google Scholar] [CrossRef] [PubMed]
- Moscovici Joubran, A.; Pierce, K.M.; Garvey, N.; Shalloo, L.; O’Callaghan, T.F.; Joubran, A.M.; Pierce, K.M.; Garvey, N.; Shalloo, L.; O’Callaghan, T.F.; et al. Invited Review: A 2020 Perspective on Pasture-Based Dairy Systems and Products. J. Dairy Sci. 2021, 104, 7364–7382. [Google Scholar] [CrossRef]
- Maekawa, M.; Beauchemin, K.A.; Christensen, D.A. Effect of Concentrate Level and Feeding Management on Chewing Activities, Saliva Production, and Ruminal PH of Lactating Dairy Cows. J. Dairy Sci. 2002, 85, 1165–1175. [Google Scholar] [CrossRef]
- Miller-Cushon, E.K.; DeVries, T.J. Effect of Dietary Dry Matter Concentration on the Sorting Behavior of Lactating Dairy Cows Fed a Total Mixed Ration. J. Dairy Sci. 2009, 92, 3292–3298. [Google Scholar] [CrossRef]
- Kronqvist, C.; Petters, F.; Robertsson, U.; Lindberg, M. Evaluation of Production Parameters, Feed Sorting Behaviour and Social Interactions in Dairy Cows: Comparison of Two Total Mixed Rations with Different Particle Size and Water Content. Livest. Sci. 2021, 251, 104662. [Google Scholar] [CrossRef]
- Felton, C.A.; DeVries, T.J. Effect of Water Addition to a Total Mixed Ration on Feed Temperature, Feed Intake, Sorting Behavior, and Milk Production of Dairy Cows. J. Dairy Sci. 2010, 93, 2651–2660. [Google Scholar] [CrossRef]
- Nikkhah, A.; Plaizier, J.C.; Einarson, M.S.; Berry, R.J.; Scott, S.L.; Kennedy, A.D. Short Communication: Infrared Thermography and Visual Examination of Hooves of Dairy Cows in Two Stages of Lactation. J. Dairy Sci. 2005, 88, 2749–2753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hovinen, M.; Siivonen, J.; Taponen, S.; Hänninen, L.; Pastell, M.; Aisla, A.-M.M.; Pyörälä, S. Detection of Clinical Mastitis with the Help of a Thermal Camera. J. Dairy Sci. 2008, 91, 4592–4598. [Google Scholar] [CrossRef] [Green Version]
- Joy, A.; Taheri, S.; Dunshea, F.R.; Leury, B.J.; DiGiacomo, K.; Osei-Amponsah, R.; Brodie, G.; Chauhan, S.S. Non-Invasive Measure of Heat Stress in Sheep Using Machine Learning Techniques and Infrared Thermography. Small Rumin. Res. 2022, 207, 106592. [Google Scholar] [CrossRef]
- Petr, K.; Ivana, K. The Use of Infrared Thermography in Livestock Production and Veterinary Field. In InInfrared Thermography Recent Advances and Future Trends; Bentham Books: Sharjah, United Arab Emirates, 2012; pp. 85–101. [Google Scholar] [CrossRef] [Green Version]
- Idris, M.; Uddin, J.; Sullivan, M.; McNeill, D.M.; Phillips, C.J.C. Non-Invasive Physiological Indicators of Heat Stress in Cattle. Animals 2021, 11, 71. [Google Scholar] [CrossRef]
- Cook, N.; Chabot, B.; Liu, T.; Froehlich, D.; Basarab, J.; Juarez, M. Radiated Temperature from Thermal Imaging Is Related to Feed Consumption, Growth Rate and Feed Efficiency in Grower Pigs. J. Therm. Biol. 2020, 94, 102747. [Google Scholar] [CrossRef] [PubMed]
- Manickavasagan, A.; Jayas, D.S.; White, N.D.G.; Paliwal, J. Wheat Class Identification Using Thermal Imaging. Food Bioprocess Technol. 2010, 3, 450–460. [Google Scholar] [CrossRef]
- Addah, W.; Baah, J.; Okine, E.K.; McAllister, T.A. Use of Thermal Imaging and the in Situ Technique to Assess the Impact of an Inoculant with Feruloyl Esterase Activity on the Aerobic Stability and Digestibility of Barley Silage. Can. J. Anim. Sci. 2012, 92, 381–394. [Google Scholar] [CrossRef]
- Ünal, Ö.; Koc, F.; Okur, A.A.; Okur, E.; Özdüven, M.L. Using Thermal Imaging Camera Technique to Evaluation of the Aerobic Stability of Corn and Wheat Silage. Alınteri J. Agric. Sci. 2018, 33, 55–63. [Google Scholar]
- Junga, P.; Trávníček, P. Povrchová Teplota Odkrytého Čelního Profilu Siláže Jako Rychlý Indikátor Procesu Rozkladu Kukuřičné Siláže. J. Cent. Eur. Agric. 2015, 16, 76–91. [Google Scholar] [CrossRef]
- Green, O.; Bartzanas, T.; Løkke, M.M.; Bochtis, D.D.; Sørensen, C.G.; Jørgensen, O.J.; Tortajada, V.G. Spatial and Temporal Variation of Temperature and Oxygen Concentration inside Silage Stacks. Biosyst. Eng. 2012, 111, 155–165. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy of Sciences: Washington, DC, USA, 2001. [Google Scholar]
- Orman, A.; Endres, M.I. Use of Thermal Imaging for Identification of Foot Lesions in Dairy Cattle. Acta Agric. Scand. A Anim. Sci. 2016, 66, 1–7. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Esen, S.; Cabi, E.; Koç, F. Effect of Freeze-Dried Kefir Culture Inoculation on Nutritional Quality, in Vitro Digestibility, Mineral Concentrations, and Fatty Acid Composition of White Clover Silages. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Koc, F.; Coskuntuna, L. The Comparison of the Two Different Methods on the Determination of Organic Acids in Silage Fodders. J. Anim. Prod. 2003, 44, 37–47. [Google Scholar]
- Bağcık, C.; Koç, F.; Erten, K.; Esen, S.; Palangi, V.; Lackner, M. Lentilactobacillus Buchneri Preactivation Affects the Mitigation of Methane Emission in Corn Silage Treated with or without Urea. Fermentation 2022, 8, 747. [Google Scholar] [CrossRef]
- SAS. SAS/STAT®® User’s Guide: Statistics (Version 9.1); SAS Institute Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.84); R Fundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Husson, F.; Lê, S.; Pagès, J. Exploratory Multivariate Analysis by Example Using R; CRC Press: Boca Raton, FL, USA, 2017; ISBN 1315301865. [Google Scholar]
- Leonardi, C.; Giannico, F.; Armentano, L.E. Effect of Water Addition on Selective Consumption (Sorting) of Dry Diets by Dairy Cattle. J. Dairy Sci. 2005, 88, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Havekes, C.D.; Duffield, T.F.; Carpenter, A.J.; DeVries, T.J. Moisture Content of High-Straw Dry Cow Diets Affects Intake, Health, and Performance of Transition Dairy Cows. J. Dairy Sci. 2020, 103, 1500–1515. [Google Scholar] [CrossRef] [PubMed]
- Koc, F.; Okuyucu, B.; Koç, F.; Eser, S.; Okuyucu, B.; Esen, S. Effectiveness of Enzymes and Inoculants on Biological Pretreatment of Different High Dry Matter Lignocellulosic Materials. Bioresour. Technol. Rep. 2021, 16, 100836. [Google Scholar] [CrossRef]
- Esen, S.; Okuyucu, B.; Koç, F.; Özdüven, M.L. Determination of Nutritional Quality and Aerobic Stability of Sorghum, Maize, and Sorghum-Maize Mixture Silages. J. Tekirdag Agric. Fac. 2022, 19, 61–69. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, S.; Dong, Z.; Chen, L.; Li, J.; Shao, T. Effect of Substituting Pennisetum Sinese with Bamboo Shoot Shell (BSS) on Aerobic Stability and Digestibility of Ensiled Total Mixed Ration. Ital. J. Anim. Sci. 2021, 20, 1706–1715. [Google Scholar] [CrossRef]
- Bai, J.; Xu, D.; Xie, D.; Wang, M.; Li, Z.; Guo, X. Effects of Antibacterial Peptide-Producing Bacillus Subtilis and Lactobacillus Buchneri on Fermentation, Aerobic Stability, and Microbial Community of Alfalfa Silage. Bioresour. Technol. 2020, 315, 123881. [Google Scholar] [CrossRef]
- Zhang, G.; Fang, X.; Feng, G.; Li, Y.; Zhang, Y. Silage Fermentation, Bacterial Community, and Aerobic Stability of Total Mixed Ration Containing Wet Corn Gluten Feed and Corn Stover Prepared with Different Additives. Animals 2020, 10, 1775. [Google Scholar] [CrossRef]
- Holzer, M.; Mayrhuber, E.; Danner, H.; Braun, R. The Role of Lactobacillus Buchneri in Forage Preservation. Trends Biotechnol. 2003, 21, 282–287. [Google Scholar] [CrossRef]
- Auerbach, H.; Nadeau, E. Effects of Additive Type on Fermentation and Aerobic Stability and Its Interaction with Air Exposure on Silage Nutritive Value. Agronomy 2020, 10, 1229. [Google Scholar] [CrossRef]
- Rae, M.; Hong, H.; Li, H.L.; Jeon, B.T.; Choi, C.H.; Ding, Y.L.; Tang, Y.J.; Oh, M.R.; Hong, H.; Li, H.L.; et al. Effects of Physically Effective Neutral Detergent Fiber Content on Intake, Digestibility, and Chewing Activity in Fattening Heifer Fed Total Mixed Ration. Asian-Australas. J. Anim. Sci. 2016, 29, 1719–1724. [Google Scholar]
- Hristov, A.N.; Harper, M.T.; Roth, G.; Canale, C.; Huhtanen, P.; Richard, T.L.; DiMarco, K. Effects of Ensiling Time on Corn Silage Neutral Detergent Fiber Degradability and Relationship between Laboratory Fiber Analyses and in Vivo Digestibility. J. Dairy Sci. 2020, 103, 2333–2346. [Google Scholar] [CrossRef]
- Wang, Y.S.; Shi, W.; Huang, L.T.; Ding, C.L.; Dai, C.C. The Effect of Lactic Acid Bacterial Starter Culture and Chemical Additives on Wilted Rice Straw Silage. Anim. Sci. J. 2016, 87, 525–535. [Google Scholar] [CrossRef]
- Irawan, A.; Sofyan, A.; Ridwan, R.; Hassim, H.A.; Respati, A.N.; Wardani, W.W.; Sadarman; Astuti, W.D.; Jayanegara, A.; Abu, H.; et al. Effects of Different Lactic Acid Bacteria Groups and Fibrolytic Enzymes as Additives on Silage Quality: A Meta-Analysis. Bioresour. Technol. Rep. 2021, 14, 100654. [Google Scholar] [CrossRef]
- de Oliveira, I.L.; Lima, L.M.; Casagrande, D.R.; Lara, M.A.S.; Bernardes, T.F. Nutritive Value of Corn Silage from Intensive Dairy Farms in Brazil. Rev. Bras. Zootec. 2017, 46, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Gallo, A.; Bertuzzi, T.; Giuberti, G.; Moschini, M.; Bruschi, S.; Cerioli, C.; Masoero, F. New Assessment Based on the Use of Principal Factor Analysis to Investigate Corn Silage Quality from Nutritional Traits, Fermentation End Products and Mycotoxins. J. Sci. Food Agric. 2016, 96, 437–448. [Google Scholar] [CrossRef]
- Koç, F.; Özkan Ünal, E.; Okuyucu, B.; Esen, S.; Işık, R. Effect of Different Kefir Source on Fermentation, Aerobic Stability, and Microbial Community of Alfalfa Silage. Animals 2021, 11, 2096. [Google Scholar] [CrossRef]
Item | TMR |
---|---|
Ingredients (g/kg of DM) | |
Corn silage a | 241.1 |
Corn grain (high moisture) | 180.6 |
DDGS (corn) | 53.6 |
Barley | 33.7 |
Sunflower meal | 15.0 |
Alfalfa hay | 140.3 |
Canola meal | 50.3 |
Sugar beet pulp | 5.7 |
Wheat straw | 22.7 |
Sunflower grain | 9.2 |
Soybean peel | 9.3 |
Cottonseed | 58.9 |
Rice bran | 36.8 |
Wheat bran (fine) | 24.3 |
Molasses | 8.9 |
Orange pulp | 34.9 |
Maceration water | 51.2 |
Marble dust | 6.2 |
Vit + Min premix b | 4.2 |
Ecomass | 4.2 |
Buffer (Sodium bicarbonate) | 3.0 |
Salt | 2.1 |
Potassium carbonate | 2.0 |
OmniGen AF | 1.4 |
Toxin binder | 0.4 |
Chemical composition (g/kg of DM) | |
DM | 609.8 ± 8.05 |
CP | 144.6 ± 1.34 |
EE | 40.4 ± 0.18 |
Ash | 82.8 ± 0.75 |
NDF | 378.2 ± 0.10 |
ADF | 261.8 ± 6.71 |
Item | Time | 24 °C | 30 °C | p-Values | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
40% | 45% | 50% | 55% | 40% | 45% | 50% | 55% | SEM | M | ST | T | MxST | MxT | STxT | MxSTxT | ||
pH | 0 | 4.91 abc | 4.92 ab | 4.85 a–e | 4.82 b–i | 4.91 abc | 4.92 ab | 4.85 a–e | 4.82 b–i | 0.02 | <0.0001 | 0.0007 | <0.0001 | 0.0605 | 0.0581 | 0.0138 | 0.3445 |
2 | 4.94 a | 4.89 a–d | 4.86 a–e | 4.85 a–e | 4.83 b–i | 4.85 a–e | 4.81 d–l | 4.83 b–g | |||||||||
6 | 4.86 a–e | 4.83 b–h | 4.82 c–j | 4.82 c–j | 4.84 b–f | 4.84 b–f | 4.82 c–j | 4.82 c–j | |||||||||
12 | 4.79 d–n | 4.80 d–n | 4.77 e–o | 4.80 d–m | 4.79 d–n | 4.81 d–k | 4.78 e–n | 4.77 e–o | |||||||||
24 | 4.83 b–i | 4.78 e–n | 4.71 mno | 4.72 k–o | 4.73 i–o | 4.77 e–o | 4.72 j–o | 4.70 mno | |||||||||
48 | 4.74 f–o | 4.74 g–o | 4.71 mno | 4.71 l–o | 4.73 h–o | 4.72 k–o | 4.70 no | 4.68 o | |||||||||
DM | 0 | 609.8 b | 562.7 c | 511.5 def | 462.9 h | 609.8 b | 562.7 c | 511.5 def | 462.9 h | 4.64 | <0.0001 | <0.0001 | <0.0001 | 0.3098 | 0.9971 | 0.6230 | 0.9986 |
2 | 618.8 ab | 566.1 c | 513.0 de | 466.1 gh | 622.9 ab | 568.8 c | 520.2 d | 478.6 gh | |||||||||
6 | 620.7 ab | 566.4 c | 513.4 de | 469.0 gh | 623.7 ab | 570.7 c | 522.3 d | 480.7 gh | |||||||||
12 | 626.2 ab | 567.0 c | 519.1 d | 470.3 gh | 626.9 ab | 574.3 c | 529.0 d | 482.2 gh | |||||||||
24 | 628.9 ab | 578.3 c | 521.9 d | 475.6 gh | 636.1 ab | 576.6 c | 530.9 d | 484.8 fgh | |||||||||
48 | 630.1 ab | 579.7 c | 528.3 d | 481.0 gh | 639.6 a | 581.0 c | 532.2 d | 490.3 efg | |||||||||
WSC | 0 | 80.2 d–g | 89.6 a | 79.6 d–h | 73.2 hij | 80.2 d–g | 89.6 a | 79.6 d–h | 73.2 hij | 1.17 | <0.0001 | 0.0200 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
2 | 85.1 a–d | 80.4 d–g | 85.1 a–d | 82.2 b–e | 88.0 ab | 70.9 j | 77.6 e–j | 74.4 f–j | |||||||||
6 | 81.0 c–f | 87.7 abc | 71.0 j | 88.0 ab | 72.5 ij | 71.8 ij | 76.4 e–j | 87.9 ab | |||||||||
12 | 89.3 a | 55.6 k | 75.5 e–j | 78.6 d–i | 91.7 a | 87.5 abc | 73.8 g–j | 71.6 j | |||||||||
24 | 18.8 lmn | 14.8 l–o | 10.3 o | 20.4 l | 14.4 l–o | 16.9 l–o | 12.5 mno | 19.2 lm | |||||||||
48 | 14.3 l–o | 17.6 l–n | 3.4 p | 15.2 l–o | 12.0 no | 10.8 o | 12.6 mno | 12.8 mno | |||||||||
LA | 0 | 6.1 e–j | 6.4 e–j | 7.7 d–i | 10.9 abc | 6.1 e–j | 6.4 e–j | 7.7 d–i | 10.9 abc | 0.48 | <0.0001 | 0.4506 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
2 | 7.3 d–j | 8.7 b–e | 8.2 c–f | 7.0 d–j | 7.3 d–j | 8.2 c–f | 6.3 e–j | 6.8 e–j | |||||||||
6 | 7.5 d–i | 7.1 d–j | 11.5 a | 8.1 def | 6.7 e–j | 7.2 d–j | 6.0 e–j | 11.7 a | |||||||||
12 | 6.3 e–j | 11.8 a | 5.3 g–j | 7.2 d–j | 8.2 c–f | 6.0 e–j | 11.4 ab | 8.2 c–f | |||||||||
24 | 5.3 hij | 8.1 d–h | 9.7 a–d | 11.1 ab | 7.1 d–j | 4.6 j | 7.9 d–i | 8.1 d–h | |||||||||
48 | 5.2 ij | 8.0 d–i | 5.6 f–j | 6.0 e–j | 8.1 d–g | 6.8 e–j | 7.5 d–i | 8.2 c–f |
Item | Time | 24 °C | 30 °C | p-Values | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
40% | 45% | 50% | 55% | 40% | 45% | 50% | 55% | SEM | M | ST | T | MxST | MxT | STxT | MxSTxT | ||
LAB | 0 | 2.47 ab | 2.25 a–e | 2.30 a–d | 2.42 abc | 2.47 ab | 2.25 a–e | 2.30 a–d | 2.42 abc | 0.10 | <0.0001 | 0.5523 | <0.0001 | 0.0002 | <0.0001 | <0.0001 | <0.0001 |
2 | 2.13 a–g | 1.91 b–j | 1.88 c–k | 1.73 e–k | 1.76 d–k | 1.68 f–l | 2.05 a–h | 1.58 g–m | |||||||||
6 | 1.53 h–m | 1.90 c–j | 2.17 a–f | 2.03 a–h | 2.02 a–i | 1.74 e–k | 1.98 a–i | 2.11 a–g | |||||||||
12 | 1.84 d–k | 1.93 b–j | 1.70 e–k | 2.54 a | 1.77 d–k | 1.82 d–k | 1.98 a–i | 1.52 h–m | |||||||||
24 | 1.83 d–k | 1.33 klm | 1.49 h–m | 1.97 a–i | 1.39 j–m | 1.70 e–k | 1.76 d–k | 1.92 b–j | |||||||||
48 | 1.11 m | 1.13 lm | 1.03 m | 1.97 b–i | 1.46 i–m | 1.50 h–m | 1.72 e–k | 2.12 a–g | |||||||||
Yeast | 0 | 3.18 a–g | 3.06 c–m | 3.09 b–k | 3.14 a–i | 3.18 a–g | 3.06 c–m | 3.09 b–k | 3.14 a–i | 0.04 | <0.0001 | 0.7214 | <0.0001 | 0.2337 | <0.0001 | 0.0018 | 0.0003 |
2 | 2.85 no | 3.08 b–l | 3.18 a–g | 3.23 a–d | 2.81 o | 3.15 a–i | 3.34 a | 3.26 abc | |||||||||
6 | 3.03 d–n | 3.10 b–j | 3.22 a–d | 3.16 a–h | 3.08 b–l | 3.04 d–n | 3.09 b–l | 3.14 b–i | |||||||||
12 | 2.90 k–o | 2.99 f–o | 3.09 b–l | 3.05 d–n | 2.89 l–o | 3.00 e–o | 3.00 e–o | 3.28 ab | |||||||||
24 | 2.95 i–o | 2.99 g–o | 2.98 h–o | 3.19 a–f | 2.90 k–o | 2.87 mno | 2.92 j–o | 3.09 b–k | |||||||||
48 | 3.12 b–j | 3.01 e–o | 3.05 d–n | 3.20 a–e | 2.98 g–o | 3.09 b–k | 3.12 b–j | 3.22 a–d |
Item | Time | 24 °C | 30 °C | p-Values | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
40% | 45% | 50% | 55% | 40% | 45% | 50% | 55% | SEM | M | ST | T | MxST | MxT | STxT | MxSTxT | ||
CP | 0 | 144.6 cde | 145.9 cd | 143.6 de | 144.5 cde | 144.6 cde | 145.9 cd | 143.6 de | 144.5 cde | 0.58 | <0.0001 | 0.0005 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
24 | 144.8 cde | 150.8 a | 151.5 a | 150.8 a | 150.5 ab | 149.5 ab | 147.4 bc | 151.3 a | |||||||||
48 | 140.0 f | 151.7 a | 152.1 a | 149.8 ab | 145.7 cd | 142.2 ef | 143.9 de | 150.3 ab | |||||||||
EE | 0 | 40.4 f | 36.4 g | 35.4 h | 35.2 h | 40.4 f | 36.4 g | 35.4 h | 35.2 h | 0.18 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
24 | 43.5 cd | 46.1 b | 41.8 e | 42.5 de | 44.4 c | 43.4 d | 43.1 d | 48.1 a | |||||||||
48 | 31.0 ijk | 30.3 kl | 31.3 ij | 31.8 i | 30.4 jkl | 29.8 l | 34.8 h | 30.3 jkl | |||||||||
Ash | 0 | 82.8 | 81.5 | 82.9 | 83.9 | 82.8 | 81.5 | 82.9 | 83.9 | 1.07 | 0.2877 | 0.1944 | 0.0035 | 0.4221 | 0.1898 | 0.6492 | 0.1402 |
24 | 84.1 | 84.6 | 84.2 | 85.6 | 85.1 | 84.4 | 83.3 | 82.4 | |||||||||
48 | 85.4 | 84.4 | 84.9 | 85.4 | 82.4 | 86.5 | 81.7 | 85.9 | |||||||||
NDF | 0 | 378.2 | 383.0 | 382.9 | 387.9 | 378.2 | 383.0 | 382.9 | 387.9 | 8.49 | 0.3857 | 0.0590 | 0.0743 | 0.2717 | 0.2024 | 0.3812 | 0.0895 |
24 | 387.3 | 383.5 | 374.3 | 351.2 | 387.2 | 386.6 | 381.7 | 375.8 | |||||||||
48 | 356.5 | 386.1 | 356.5 | 370.4 | 394.2 | 368.0 | 382.7 | 370.1 | |||||||||
ADF | 0 | 261.8 b–e | 298.7 ab | 273.9 b–e | 244.7 e | 261.8 b–e | 298.7 ab | 273.9 b–e | 244.7 e | 7.25 | <0.0001 | 0.2411 | <0.0001 | 0.0129 | <0.0001 | 0.0209 | 0.2295 |
24 | 287.7 a–d | 287.7 a–d | 263.6 b–e | 254.9 cde | 267.3 b–e | 253.6 de | 262.6 b–e | 249.2 de | |||||||||
48 | 318.4 a | 293.3 abc | 267.0 b–e | 288.2 a–d | 324.4 a | 273.7 b–e | 300.8 ab | 287.2 a–d |
Original Variable | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
ST | 0.026 | −0.003 | 0.006 | 0.123 | 0.877 |
Time | 0.922 | 0.195 | 0.322 | −0.133 | −0.020 |
CT | 0.053 | 0.057 | −0.275 | −0.087 | −0.025 |
MT | 0.828 | 0.234 | −0.015 | 0.147 | 0.395 |
MTD | 0.837 | −0.021 | −0.122 | −0.168 | 0.127 |
DM | 0.021 | 0.836 | 0.028 | 0.249 | 0.006 |
pH | −0.913 | 0.209 | 0.050 | 0.141 | −0.097 |
Yeast | −0.244 | −0.391 | 0.426 | −0.590 | −0.040 |
LAB | −0.763 | −0.351 | 0.010 | −0.180 | 0.235 |
LA | 0.009 | −0.735 | −0.001 | 0.123 | −0.029 |
WSC | −0.976 | −0.115 | 0.131 | −0.021 | 0.020 |
CP | 0.460 | −0.251 | −0.444 | 0.063 | −0.163 |
Ash | 0.371 | −0.092 | 0.038 | −0.075 | −0.137 |
EE | −0.125 | −0.024 | −0.734 | 0.239 | 0.056 |
ADF | 0.170 | 0.471 | 0.601 | 0.191 | −0.087 |
NDF | −0.233 | 0.001 | 0.118 | 0.658 | 0.132 |
SS loadings | 5.120 | 1.961 | 1.511 | 1.103 | 1.084 |
Proportion (%) | 32.0 | 12.3 | 9.4 | 6.9 | 6.8 |
Cumulative (%) | 32.0 | 44.3 | 53.7 | 60.6 | 67.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Türkgeldi, B.; Koç, F.; Lackner, M.; Okuyucu, B.; Okur, E.; Palangi, V.; Esen, S. Infrared Thermography Assessment of Aerobic Stability of a Total Mixed Ration: An Innovative Approach to Evaluating Dairy Cow Feed. Animals 2023, 13, 2225. https://doi.org/10.3390/ani13132225
Türkgeldi B, Koç F, Lackner M, Okuyucu B, Okur E, Palangi V, Esen S. Infrared Thermography Assessment of Aerobic Stability of a Total Mixed Ration: An Innovative Approach to Evaluating Dairy Cow Feed. Animals. 2023; 13(13):2225. https://doi.org/10.3390/ani13132225
Chicago/Turabian StyleTürkgeldi, Burak, Fisun Koç, Maximilian Lackner, Berrin Okuyucu, Ersen Okur, Valiollah Palangi, and Selim Esen. 2023. "Infrared Thermography Assessment of Aerobic Stability of a Total Mixed Ration: An Innovative Approach to Evaluating Dairy Cow Feed" Animals 13, no. 13: 2225. https://doi.org/10.3390/ani13132225
APA StyleTürkgeldi, B., Koç, F., Lackner, M., Okuyucu, B., Okur, E., Palangi, V., & Esen, S. (2023). Infrared Thermography Assessment of Aerobic Stability of a Total Mixed Ration: An Innovative Approach to Evaluating Dairy Cow Feed. Animals, 13(13), 2225. https://doi.org/10.3390/ani13132225