Equine Crofton Weed (Ageratina spp.) Pneumotoxicity: What Do We Know and What Do We Need to Know?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Crofton Weed Identification, Morphology, and Impact
2.1. Identification of Crofton Weed
2.2. Pollen Morphology and Investigation as a Potential Alveolar Mechanical Irritant
2.3. Geographic Distribution of Crofton Weed Toxicity in Horses
3. Phytotoxicity
3.1. Crofton Weed Phytochemical Analysis
3.2. Feeding Trials in Horses
3.3. Postmortem Findings of Equine Crofton Weed Toxicity
3.4. Species Differences in Crofton Weed Organ-Selective Toxicity
4. Discussion
4.1. Gaps in Clinical Diagnostics
4.2. Areas Requiring Further Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones, N. Numinbah horse sickness. Institute of Inspectors of Stock. In New South Wales Year Book; Government Printer Sydney: Sydney, Australia, 1954; pp. 80–84. [Google Scholar]
- Nikaido, R. A Chemical Study of Some Hawaiian Plants; University of Hawai’i at Manoa: Honolulu, HI, USA, 1934. [Google Scholar]
- Wan, F.; Liu, W.; Guo, J.; Qiang, S.; Li, B.; Wang, J.; Yang, G.; Niu, H.; Gui, F.; Huang, W.; et al. Invasive mechanism and control strategy of Ageratina adenophora (Sprengel). Sci. China Life Sci. 2010, 53, 1291–1298. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.-Z. Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China. Divers. Distrib. 2006, 12, 397–408. [Google Scholar] [CrossRef]
- Shi, W.; Luo, S.; Li, S. Defensive Sesquiterpenoids from Leaves of Eupatorium adenophorum. Chin. J. Chem. 2012, 30, 1331–1334. [Google Scholar] [CrossRef]
- Cronk, C.B.; Fuller, J.L. Plant Invaders the Threat to Natural Ecosystems; Routledge: London, UK, 2001. [Google Scholar]
- Ren, Z.; Okyere, S.K.; Wen, J.; Xie, L.; Cui, Y.; Wang, S.; Wang, J.; Cao, S.; Shen, L.; Ma, X.; et al. An Overview: The Toxicity of Ageratina adenophora on Animals and Its Possible Interventions. Int. J. Mol. Sci. 2021, 22, 11581. [Google Scholar] [CrossRef]
- Kundu, A.; Saha, S.; Walia, S.; Shakil, N.A.; Kumar, J.; Annapurna, K. Cadinene sesquiterpenes from Eupatorium adenophorum and their antifungal activity. J. Environ. Sci. Health Part B 2013, 48, 516–522. [Google Scholar] [CrossRef]
- Chopra, R.N.; Nayar, S.L.; Chopra, I.C. Glossary of Indian Medicinal Plants; National Institute of Science Communication and Information Resources: New Delhi, India, 2002. [Google Scholar]
- Jiangsu New Medical, C. Dictionary of Traditional Chinese Medicine; Shanghai Science and Technology Publishing House: Shanghai, China, 1977; Volume 1, pp. 318–320. [Google Scholar]
- Heras, B.D.L.; Slowing, K.; Benedí, J.; Carretero, E.; Ortega, T.; Toledo, C.; Bermejo, P.; Iglesias, I.; Abad, M.; Gómez-Serranillos, P.; et al. Antiinflammatory and antioxidant activity of plants used in traditional medicine in Ecuador. J. Ethnopharmacol. 1998, 61, 161–166. [Google Scholar] [CrossRef]
- El-Seedi, H.; Ohara, T.; Sata, N.; Nishiyama, S. Antimicrobial diterpenoids from Eupatorium glutinosum (Asteraceae). J. Ethnopharmacol. 2002, 81, 293–296. [Google Scholar] [CrossRef]
- Neupane, N.P.; Karn, A.K.; Mukeri, I.H.; Pathak, P.; Kumar, P.; Singh, S.; Qureshi, I.A.; Jha, T.; Verma, A. Molecular dynamics analysis of phytochemicals from Ageratina adenophora against COVID-19 main protease (Mpro) and human angiotensin-converting enzyme 2 (ACE2). Biocatal. Agric. Biotechnol. 2021, 32, 101924. [Google Scholar] [CrossRef]
- Poudel, R.; Neupane, N.P.; Mukeri, I.H.; Alok, S.; Verma, A. An updated review on invasive nature, phytochemical evaluation, & pharmacological activity of Ageratina adenophora. Int. J. Pharm. Sci. Res. 2020, 11, 2510–2520. [Google Scholar]
- Sharma, O.P.; Dawra, R.K.; Kurade, N.P.; Sharma, P.D. A review of the toxicosis and biological properties of the genus Eupatorium. Nat. Toxins 1998, 6, 1–14. [Google Scholar] [CrossRef]
- O’Sullivan, B.M. Crofton Weed (Eupatorium adenophorum) Toxicity in Horses. Aust. Vet. J. 1979, 55, 19–21. [Google Scholar] [CrossRef]
- O’Sullivan, B.M. Investigations into Crofton weed (Eupatorium adenophorum) toxicity in horses. Aust. Vet. J. 1985, 62, 30–32. [Google Scholar] [CrossRef]
- Stewart, A.J. Large Animal Internal Medicine, 6th ed.; Smith, B.P., Van Metre, D.C., Pusterla, N., Eds.; Elsevier: Philadelphia, PA, USA, 2019; pp. 550–559. [Google Scholar]
- Buergelt, C.D.; Hines, S.A.; Cantor, G.; Stirk, A.; Wilson, J.H. A Retrospective Study of Proliferative Interstitial Lung Disease of Horses in Florida. Vet. Pathol. 1986, 23, 750–756. [Google Scholar] [CrossRef]
- Nout, Y.S.; Hinchcliff, K.W.; Samii, V.F.; Kohn, C.W.; Jose-Cunilleras, E.; Reed, S.M. Chronic pulmonary disease with radiographic interstitial opacity (interstitial pneumonia) in foals. Equine Vet. J. 2010, 34, 542–548. [Google Scholar] [CrossRef]
- Spelta, C.; Axon, J.; Begg, A.; Diallo, I.; Carrick, J.; Russell, C.; Collins, N. Equine multinodular pulmonary fibrosis in three horses in Australia. Aust. Vet. J. 2013, 91, 274–280. [Google Scholar] [CrossRef]
- Winder, C.; Ehrensperger, F.; Hermann, M.; Howald, B.; Fellenberg, R. Interstitial pneumonia in the horse: Two unusual cases. Equine Vet. J. 1988, 20, 298–301. [Google Scholar] [CrossRef]
- Buergelt, C.D. Interstitial pneumonia in the horse: A fledgling morphological entity with mysterious causes. Equine Vet. J. 1995, 27, 4–5. [Google Scholar] [CrossRef]
- Katoch, R.; Sharma, O.P.; Dawra, R.K.; Kurade, N.P. Hepatotoxicity of Eupatorium adenophorum to rats. Toxicon 2000, 38, 309–314. [Google Scholar] [CrossRef]
- Oelrichs, P.B.; Calanasan, C.A.; Macleod, J.K.; Seawright, A.A.; Ng, J.C. Isolation of a compound from Eupatorium adenophorum (Spreng.) [Ageratina adenophora (Spreng.)] causing hepatotoxicity in mice. Nat. Toxins 1995, 3, 350–354. [Google Scholar] [CrossRef]
- Sun, W.; Zeng, C.; Yue, D.; Liu, S.; Ren, Z.; Zuo, Z.; Deng, J.; Peng, G.; Hu, Y. Ageratina adenophora causes spleen toxicity by inducing oxidative stress and pyroptosis in mice. R. Soc. Open Sci. 2019, 6, 190127. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Chen, W.; Hu, Y.; Luo, B.; Wu, L.; Qiao, Y.; Mo, Q.; Xu, R.; Zhou, Y.; Ren, Z.; et al. E. adenophorum Induces Cell Cycle and Apoptosis of Renal Cells through Mitochondrial Pathway and Caspase Activation in Saanen Goat. PLoS ONE 2015, 10, e0138504. [Google Scholar] [CrossRef]
- He, Y.; Mo, Q.; Hu, Y.; Chen, W.; Luo, B.; Wu, L.; Qiao, Y.; Xu, R.; Zhou, Y.; Zuo, Z.; et al. E. adenophorum induces Cell Cycle Arrest and Apoptosis of Splenocytes through the Mitochondrial Pathway and Caspase Activation in Saanen Goats. Sci. Rep. 2015, 5, 15967. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Mo, Q.; Luo, B.; Qiao, Y.; Xu, R.; Zuo, Z.; Deng, J.; Nong, X.; Peng, G.; He, W.; et al. Induction of apoptosis and autophagy via mitochondria- and PI3K/Akt/mTOR-mediated pathways by E. adenophorum in hepatocytes of Saanen goat. Oncotarget 2016, 7, 54537–54548. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Mal, G.; Kannan, A.; Bhar, R.; Sharma, R.; Singh, B. Degradation of euptox A by tannase-producing rumen bacteria from migratory goats. J. Appl. Microbiol. 2017, 123, 1194–1202. [Google Scholar] [CrossRef]
- Crofton Weed. 2022. Available online: https://www.daf.qld.gov.au/__data/assets/pdf_file/0005/74966/crofton-weed.pdf (accessed on 10 June 2023).
- NSW Weedwise, Crofton Weed (Ageratina adenophora). Available online: https://weeds.dpi.nsw.gov.au/Weeds/Details/47 (accessed on 10 June 2023).
- Tripathi, R.S.; Yadav, A.S. Population dynamics of Eupatorium adenophorum Spreng. and Eupatorium riparium Regel in relation to burning. Weed Res. 1987, 27, 229–236. [Google Scholar] [CrossRef]
- Tripathi, R.S.; Kushwaha, S.P.S.; Yadav, A.S. Ecology of three invasive species of Eupatorium: A review. Int. J. Ecol. Environ. Sci. 2006, 32, 301–326. [Google Scholar]
- Tripathi, R.S.; Yadav, A.S. Population dynamics of invasive alien species of Eupatorium. In Invasive Alien Plants: An Ecological Appraisal for the Indian Subcontinent; CABI: Wallingford, UK, 2012; pp. 257–270. [Google Scholar] [CrossRef]
- Bess, H.A.; Haramoto, F.H. Biological Control of Pamakani, Eupatorium adenophorum, in Hawaii by a Tephritid Gall Fly, Procecidochares Utilis. 2. Population Studies of the Weed, the Fly, and the Parasites of the Fly. Ecology 1959, 40, 244–249. [Google Scholar] [CrossRef]
- Huffaker, C.B. Biological Control of Weeds with Insects. Annu. Rev. Èntomol. 1959, 4, 251–276. [Google Scholar] [CrossRef]
- Muniappan, R.; Raman, A.; Reddy, G.V.P. Biological Control of Tropical Weeds Using Arthropods; Muniappan, R., Reddy, G.V.P., Raman, A., Eds.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Lu, H.; Shen, J.; Sang, W.; Zhang, X.; Lin, J. Pollen Viability, Pollination, Seed Set, and Seed Germination of Croftonweed (Eupatorium Adenophorum) in China. Weed Sci. 2008, 56, 42–51. [Google Scholar] [CrossRef]
- Sullivan, V.I. Pollen and pollination in the genus Eupatorium (Compositae). Can. J. Bot. 1975, 53, 582–589. [Google Scholar] [CrossRef]
- Grashoff, J.L.; Beaman, J.H. Studies in Eupatorium (Compositae), III. Apparent Wind Pollination. Brittonia 1970, 22, 77–84. [Google Scholar] [CrossRef]
- Hui, L. Biological replacement control of “Crofton weed”. Rangel. Arch. 1987, 9, 180. [Google Scholar]
- Mo, Q.; Hu, L.; Weng, J.; Zhang, Y.; Zhou, Y.; Xu, R.; Zuo, Z.; Deng, J.; Ren, Z.; Zhong, Z.; et al. Euptox A Induces G1 Arrest and Autophagy via p38 MAPK- and PI3K/Akt/mTOR-Mediated Pathways in Mouse Splenocytes. J. Histochem. Cytochem. 2017, 65, 543–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okyere, S.K.; Mo, Q.; Pei, G.; Ren, Z.; Deng, J.; Hu, Y. Euptox A Induces G0 /GI arrest and apoptosis of hepatocyte via ROS, mitochondrial dysfunction and caspases-dependent pathways in vivo. J. Toxicol. Sci. 2020, 45, 661–671. [Google Scholar] [CrossRef]
- Motooka, P.; Castro, L.; Nelson, D.; Nagai, G.; Ching, L. Weeds of Hawaii’s Pastures and Natural Areas: An Identification and Management Guide College of Tropical Agriculture and Human Resources; University of Hawai ‘i at Manoa: Manoa, HI, USA, 2003; Volume 316. [Google Scholar]
- Trujillo, E.V.I. International Symposia on Biological Control of Weeds; Delfosse, E.S., Ed.; Agric-Can: Vancouver, BC, Canada, 1985; pp. 661–671. [Google Scholar]
- Borges, A.S.; Mair, T.; Pasval, I.; Saulez, M.N.; Tennent-Brown, B.S.; van Eps, A.W. Emergency Diseases Outside the Continental United States. In Equine Emergencies; Elsevier Saunders: St Louis, MO, USA, 2014; pp. 656–686. [Google Scholar]
- Connor, H.E. The poisonous plants in New Zealand. Government Printer: Wellington, New Zealand, 1977. [Google Scholar]
- Government, Q. Crofton Weed. Available online: https://www.daf.qld.gov.au/__data/assets/pdf_file/74966/crofton-weed.pdf (accessed on 22 June 2023).
- Inderjit; Van der Putten, W.H. Impacts of soil microbial communities on exotic plant invasions. Trends Ecol. Evol. 2010, 25, 512–519. [Google Scholar] [CrossRef]
- Kaushal, V.; Dawra, R.K.; Sharma, O.; Kurade, N. Biochemical alterations in the blood plasma of rats associated with hepatotoxicity induced by Eupatorium adenophorum. Vet. Res. Commun. 2001, 25, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.L.; Seawright, A.A.; Ng, J.; Hertle, A.T.; Thomson, J.A.; Bostock, P.D. Ptaquiloside in Bracken Ferns (Pteridium Spp) from Eastern Australia and from a Cultivated Collection of Bracken from World-Wide Sources. Plant-Assoc. Toxins 1994, 2, 347–353. [Google Scholar]
- Liu, Y.; Chen, P.; Zhou, M.; Wang, T.; Fang, S.; Shang, X.; Fu, X. Geographic Variation in the Chemical Composition and Antioxidant Properties of Phenolic Compounds from Cyclocarya paliurus (Batal) Iljinskaja Leaves. Molecules 2018, 23, 2440. [Google Scholar] [CrossRef] [Green Version]
- Inderjit Evans, H.; Crocoll, C.; Bajpai, D.; Kaur, R.; Feng, Y.L.; Silva, C.; Carreón, J.T.; Valiente-Banuet, A.; Gershenzon, J.; Callaway, R.M. Volatile chemicals from leaf litter are associated with invasiveness of a neotropical weed in Asia. Ecology 2011, 92, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Inderjit; Simberloff, D.; Kaur, H.; Kalisz, S.; Bezemer, T.M. Novel chemicals engender myriad invasion mechanisms. New Phytol. 2021, 232, 1184–1200. [Google Scholar] [CrossRef]
- Okyere, S.K.; Wen, J.; Cui, Y.; Xie, L.; Gao, P.; Wang, J.; Wang, S.; Hu, Y. Toxic mechanisms and pharmacological properties of euptox A, a toxic monomer from A. adenophora. Fitoterapia 2021, 155, 105032. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, M.U.; Khazeo, P.; Puro, K.N.; Jyrwa, R.; Jamir, N.; Sailo, L. Qualitative and Quantitative Analysis of Phyto-Chemicals of Crude Extracts of Ageratina Adenophora Leaves; Atlantis Press: Amsterdam, The Netherlands, 2018; pp. 178–182. [Google Scholar]
- Subba, B.; Kandel, R.C. Chemical Composition and Bioactivity of Essential Oil of Ageratina adenophora from Bhaktapur District of Nepal. J. Nepal Chem. Soc. 2013, 30, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Liao, F.; Hu, Y.; Luo, B.; He, Y.; Mo, Q.; Zuo, Z.; Ren, Z.; Deng, J.; Wei, Y. Clinical efficacy of 9-oxo-10, 11-dehydroageraphorone extracted from Eupatorium adenophorum against Psoroptes cuniculi in rabbits. BMC Vet. Res. 2014, 10, 970. [Google Scholar] [CrossRef] [Green Version]
- Liao, F.; Hu, Y.; Tan, H.; Wu, L.; Wang, Y.; Huang, Y.; Mo, Q.; Wei, Y. Acaricidal activity of 9-oxo-10,11-dehydroageraphorone extracted from Eupatorium adenophorum in vitro. Exp. Parasitol. 2014, 140, 8–11. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, B.; Yang, J.; Ma, X.; Deng, S.; Huang, Y.; Wen, Y.; Yuan, J.; Yang, X. Essential Oil Derived From Eupatorium adenophorum Spreng. Mediates Anticancer Effect by Inhibiting STAT3 and AKT Activation to Induce Apoptosis in Hepatocellular Carcinoma. Front. Pharmacol. 2018, 9, 483. [Google Scholar] [CrossRef] [Green Version]
- Colegate, S.M.; Upton, R.; Gardner, D.R.; Panter, K.E.; Betz, J.M. Potentially toxic pyrrolizidine alkaloids in Eupatorium perfoliatum and three related species. Implications for herbal use as boneset. Phytochem. Anal. 2018, 29, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, Z.; Wong, L.; He, Y.; Zhao, Z.; Ye, Y.; Fu, P.P.; Lin, G. Contamination of hepatotoxic pyrrolizidine alkaloids in retail honey in China. Food Control 2018, 85, 484–494. [Google Scholar] [CrossRef]
- Kast, C.; Dübecke, A.; Kilchenmann, V.; Bieri, K.; Böhlen, M.; Zoller, O.; Beckh, G.; Lüllmann, C. Analysis of Swiss honeys for pyrrolizidine alkaloids. J. Apic. Res. 2014, 53, 75–83. [Google Scholar] [CrossRef]
- Kempf, M.; Heil, S.; Haßlauer, I.; Schmidt, L.; von der Ohe, K.; Theuring, C.; Reinhard, A.; Schreier, P.; Beuerle, T. Pyrrolizidine alkaloids in pollen and pollen products. Mol. Nutr. Food Res. 2009, 54, 292–300. [Google Scholar] [CrossRef]
- Gibson, J.A.; O’Sullivan, B.M. Lung lesions in horses fed mist flower (Eupatorium riparium). Aust. Vet. J. 1984, 61, 271. [Google Scholar] [CrossRef]
- Stewart, A.J.; Cuming, R.S. Update on Fungal Respiratory Disease in Horses. Vet. Clin. N. Am. Equine Pract. 2015, 31, 43–62. [Google Scholar] [CrossRef]
- Wang, X.; Wise, J.C.; Stewart, A.J. Hendra Virus: An Update on Diagnosis, Vaccination, and Biosecurity Protocols for Horses. Vet. Clin. N. Am. Equine Pract. 2023, 39, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Neupane, S.P.; Shrestha, N.P.; Gatenby, R.M.; Aryal, I.K. Performance of Goats Given Different Levels of Banmara (Eupatorium adenophorum) at Pakhribas Agricultural Centre; PAC Technical Paper; Pakhribas Agricultural Centre: Dhankuta, Nepal, 1992.
- Kaushal, V.; Dawra, R.; Sharma, O.; Kurade, N. Hepatotoxicity in rat induced by partially purified toxins from Eupatorium adenophorum (Ageratina adenophora). Toxicon 2000, 39, 615–619. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Singh, A.; Sharma, O.P.; Dawra, R.K.; Kurade, N.P.; Mahato, S.B. Hepatotoxicity and cholestasis in rats induced by the sesquiterpene, 9-oxo-10,11-dehydroageraphorone, isolated from Eupatorium adenophorum. J. Biochem. Mol. Toxicol. 2001, 15, 279–286. [Google Scholar] [CrossRef]
- Cui, Y.; Okyere, S.K.; Gao, P.; Wen, J.; Cao, S.; Wang, Y.; Deng, J.; Hu, Y. Ageratina adenophora Disrupts the Intestinal Structure and Immune Barrier Integrity in Rats. Toxins 2021, 13, 651. [Google Scholar] [CrossRef] [PubMed]
- Sani, Y.; Harper, P.A.W.; Cook, R.L.; Seawright, A.A.; Ng, J.C. The Toxicity of Eupatorium Adenophorum for the Liver of the Mouse; Iowa State University Press: Ames, IA, USA, 1992; pp. 626–629. [Google Scholar]
- Singh, Y.D.; Mukhopadhayay, S.K.; Shah, M.A.; Ali, M.A.; Tolenkhomba, T.C. Effects of Eupatorium adenophorum on Antioxidant Enzyme Status in a Mice Model. Int. J. Pharm. Pharm. Sci. 2012, 4, 436–439. [Google Scholar]
- Singh, D.; Mukhopadhayay, S.K.; Tolenkhomba, T.C.; Shah, A. Short-term toxicity studies of Eupatorium adenophorum in Swiss albino mice. Int. J. Res. Phytochem. Pharmacol. 2011, 1, 165–171. [Google Scholar]
- Ouyang, C.-B.; Liu, X.-M.; Liu, Q.; Bai, J.; Li, H.-Y.; Li, Y.; Wang, Q.-X.; Yan, D.-D.; Mao, L.-G.; Cao, A.; et al. Toxicity Assessment of Cadinene Sesquiterpenes from Eupatorium adenophorum in Mice. Nat. Prod. Bioprospect. 2014, 5, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.; Yadav, B.P.S.; Sampath, K.T. Possible use of Spreng (Eupatorium adenophorum) in Animal Feeding. Indian J. Anim. Nutr. 1987, 4, 189. [Google Scholar]
- Botha, C.J.; Lewis, A.; du Plessis, E.C.; Clift, S.; Williams, M.C. Crotalariosis equorum (“jaagsiekte”) in horses in southern Mozambique, a rare form of pyrrolizidine alkaloid poisoning. J. Vet. Diagn. Investig. 2012, 24, 1099–1104. [Google Scholar] [CrossRef] [Green Version]
- Moreira, R.; Pereira, D.M.; Valentão, P.; Andrade, P.B. Pyrrolizidine Alkaloids: Chemistry, Pharmacology, Toxicology and Food Safety. Int. J. Mol. Sci. 2018, 19, 1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Z.; He, Y.; Ma, J.; Fu, P.P.; Lin, G. Pulmonary toxicity is a common phenomenon of toxic pyrrolizidine alkaloids. J. Environ. Sci. Health Part C 2020, 38, 124–140. [Google Scholar] [CrossRef]
- He, Y.; Lian, W.; Ding, L.; Fan, X.; Ma, J.; Zhang, Q.-Y.; Ding, X.; Lin, G. Lung injury induced by pyrrolizidine alkaloids depends on metabolism by hepatic cytochrome P450s and blood transport of reactive metabolites. Arch. Toxicol. 2020, 95, 103–116. [Google Scholar] [CrossRef]
- Fink-Gremmels, J. Implications of hepatic cytochrome P450-related biotransformation processes in veterinary sciences. Eur. J. Pharmacol. 2008, 585, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Larsson, P.; Persson, E.; Tydén, E.; Tjälve, H. Cell-specific activation of aflatoxin B1 correlates with presence of some cytochrome P450 enzymes in olfactory and respiratory tissues in horse. Res. Vet. Sci. 2003, 74, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Chauret, N.; Gauthier, A.; Martin, J.; A Nicoll-Griffith, D. In vitro comparison of cytochrome P450-mediated metabolic activities in human, dog, cat, and horse. Drug Metab. Dispos. 1997, 25, 89. [Google Scholar]
- Baillie, T.A.; Rettie, A.E. Role of Biotransformation in Drug-Induced Toxicity: Influence of Intra- and Inter-Species Differences in Drug Metabolism. Drug Metab. Pharmacokinet. 2011, 26, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Lakritz, J.; Winder, B.S.; Noorouz-Zadeh, J.; Huang, T.L.; Buckpitt, A.R.; Hammock, B.D.; Plopper, C.G. Hepatic and pulmonary enzyme activities in horses. Am. J. Vet. Res. 2000, 61, 152–157. [Google Scholar] [CrossRef]
- Becerra Jimenez, J. Phytochemical and analytical studies of feed and medicinal plants in relation to the presence of toxic pyrrolizidine alkaloids. Ph.D. Thesis, Universitäts-und Landesbibliothek Bonn, Bonn, Germany, 2013. [Google Scholar]
- Stewart, A.J. Coccidiomycosis: Evidence from human medicine to diagnose and treat equids. Equine Vet. Educ. 2021, 34, 352–354. [Google Scholar] [CrossRef]
- Yuen, K.Y.; Fraser, N.S.; Henning, J.; Halpin, K.; Gibson, J.S.; Betzien, L.; Stewart, A.J. Hendra virus: Epidemiology dynamics in relation to climate change, diagnostic tests and control measures. One Health 2020, 12, 100207. [Google Scholar] [CrossRef]
- Masetla, N.; Maila, Y.; Shadung, K. Accumulation of phytochemicals at different growth stages of Cleome gynandra grown under greenhouse and microplot conditions. Res. Crops 2022, 23, 657–665. [Google Scholar] [CrossRef]
- Richins, R.D.; Rodriguez-Uribe, L.; Lowe, K.; Ferral, R.; O’connell, M.A. Accumulation of bioactive metabolites in cultivated medical Cannabis. PLoS ONE 2018, 13, e0201119. [Google Scholar] [CrossRef] [Green Version]
- Hazrati, S.; Hosseini, S.J.; Ebadi, M.-T.; Nicola, S. Evolution of Phytochemical Variation in Myrtle (Myrtus communis L.) Organs during Different Phenological Stages. Horticulturae 2022, 8, 757. [Google Scholar] [CrossRef]
- Rivest, S.; Forrest, J.R.K. Defence compounds in pollen: Why do they occur and how do they affect the ecology and evolution of bees? New Phytol. 2019, 225, 1053–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlier, J.; Guitton, J.; Romeuf, L.; Bévalot, F.; Boyer, B.; Fanton, L.; Gaillard, Y. Screening approach by ultra-high performance liquid chromatography–tandem mass spectrometry for the blood quantification of thirty-four toxic principles of plant origin. Application to forensic toxicology. J. Chromatogr. B 2015, 975, 65–76. [Google Scholar] [CrossRef]
- Williams, J.H.; Whitehead, Z.; Van Wilpe, E. Paraquat intoxication and associated pathological findings in three dogs in South Africa. J. South Afr. Vet. Assoc. 2016, 87, e1–e9. [Google Scholar] [CrossRef] [Green Version]
- Boyd, M.R.; Wilson, B.J. Isolation and characterization of 4-ipomeanol, a lung-toxic furanoterpenoid produced by sweet potatoes (Ipomoea batatas). J. Agric. Food Chem. 1972, 20, 428–430. [Google Scholar] [CrossRef]
- Garst, J.E.; Wilson, W.C.; Kristensen, N.C.; Harrison, P.C.; Corbin, J.E.; Simon, J.; Philpot, R.M.; Szabo, R.R. Species Susceptibility to the Pulmonary Toxicity of 3-Furyl Isoamyl Ketone (Perilla Ketone): In Vivo Support for Involvement of the Lung Monooxygenase System. J. Anim. Sci. 1985, 60, 248–257. [Google Scholar] [CrossRef]
- Merrill, J.; Bray, T. Effects of species, MFO inducers and conjugation agents on the in vitro covalent binding of 14C-3-methylindole metabolite in liver and lung tissues. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1983, 75, 395–398. [Google Scholar] [CrossRef]
- Huijzer, J.C.; Adams, J.D.; Jaw, J.Y.; Yost, G.S. Inhibition of 3-methylindole bioactivation by the cytochrome P-450 suicide substrates 1-aminobenzotriazole and alpha-methylbenzylaminobenzotriazole. Drug Metab. Dispos. 1989, 17, 37–42. [Google Scholar]
- El-Hage, C.; Mekuria, Z.; Dynon, K.; Hartley, C.; McBride, K.; Gilkerson, J. Association of Equine Herpesvirus 5 with Mild Respiratory Disease in a Survey of EHV1, -2, -4 and -5 in 407 Australian Horses. Animals 2021, 11, 3418. Available online: https://mdpi-res.com/d_attachment/animals/animals-11-03418/article_deploy/animals-11-03418-v3.pdf?version=1639460331 (accessed on 10 May 2023). [CrossRef] [PubMed]
- Liao, F.; Wang, Y.; Huang, Y.; Mo, Q.; Tan, H.; Wei, Y.; Hu, Y. Isolation and identification of bacteria capable of degrading euptox A from Eupatorium adenophorum Spreng. Toxicon 2014, 77, 87–92. [Google Scholar] [CrossRef] [PubMed]
Species | Fed as | Administration | Identified or Administered Toxin | Toxicity Notes |
---|---|---|---|---|
Horses | Whole plant [11,12] | PO [11,12], IG [12] | NI. [11,12] | Pneumotoxicity [11,12] |
Rabbits | Whole plant [11] | PO [11] | NI. [11] | Pulmonary histopathological abnormalities [11] |
Sheep | Whole plant [11] | PO and IG [11] | NI [11] | No toxicity observed [11] |
Cattle | Leaves [50] | PO [50] | NI [50] | Anorexia, rumen suspension, and photosensitisation [50] |
Goats | Fresh leaves [51] and dried leaves [21,22,23] | PO [21,22,23,51] | NI [21,22,23,51] | Renal toxicity [21], spleen toxicity [22], hepatotoxicity [23], and inappetence [51] |
Mice | Leaf powder [52], pelleted plant [20], freeze-dried LP [53], ME [19,54], and purified toxins [55,56] | PO [19,52,53,54,55], IG [56,57] | Euptox A [19,55,56], DAOA [55], and OA [55] | Hepatotoxicity [19,52,53,54,55,57] and spleen toxicity [20,55,56] |
Rats | Whole plant [11], freeze-dried LP [18], air-dried LP [58], oven-dried leaves [46,59], feed containing ME [59], and purified toxins [60] | PO [11,18,46,58,59,60] | Euptox A [60] | No toxicity observed [11], hepatotoxicity [18,46,59,60], intestinal damage, and intestinal immune barrier dysfunction [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapter, F.M.; Granados-Soler, J.L.; Stewart, A.J.; Bertin, F.R.; Allavena, R. Equine Crofton Weed (Ageratina spp.) Pneumotoxicity: What Do We Know and What Do We Need to Know? Animals 2023, 13, 2082. https://doi.org/10.3390/ani13132082
Shapter FM, Granados-Soler JL, Stewart AJ, Bertin FR, Allavena R. Equine Crofton Weed (Ageratina spp.) Pneumotoxicity: What Do We Know and What Do We Need to Know? Animals. 2023; 13(13):2082. https://doi.org/10.3390/ani13132082
Chicago/Turabian StyleShapter, Frances Marie, José Luis Granados-Soler, Allison J. Stewart, Francois Rene Bertin, and Rachel Allavena. 2023. "Equine Crofton Weed (Ageratina spp.) Pneumotoxicity: What Do We Know and What Do We Need to Know?" Animals 13, no. 13: 2082. https://doi.org/10.3390/ani13132082
APA StyleShapter, F. M., Granados-Soler, J. L., Stewart, A. J., Bertin, F. R., & Allavena, R. (2023). Equine Crofton Weed (Ageratina spp.) Pneumotoxicity: What Do We Know and What Do We Need to Know? Animals, 13(13), 2082. https://doi.org/10.3390/ani13132082