Effectiveness of the Organic Acid-Based Antimicrobial Agent to Prevent Bacterial Contamination in Fish Meal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish Meal Samples and Antimicrobial Agent
2.2. Protein and Total Volatile Basic Nitrogen Contents
2.3. Total Plate Count and Detection of Escherichia coli
2.4. Detection of Salmonella spp.
2.5. Treatment of Fish Meal Using SALTEC 514TM against Salmonella
2.6. Statistical Analysis
3. Results
3.1. Total Plate Count and Occurrence of E. coli and Salmonella in Fish Meal
3.2. Effectiveness of SALTEC 514TM to Prevent Salmonella Contamination in Fish Meal
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davies, R.H.; Wales, A.D. Salmonella contamination of cereal ingredients for animal feeds. Vet. Microbiol. 2013, 166, 543–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, A.M.; Lawlor, P.G.; Gardiner, G.E.; McCabe, E.M.; Walsh, D.; Mohammed, M.; Grant, J.; Duffy, G. Salmonella occurrence and Enterobacteriaceae counts in pig feed ingredients and compound feed from feed mills in Ireland. Prev. Vet. Med. 2015, 121, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.M.; Parker, A.J.; Short, G.; O’Connor, A.M.; Wittum, T.E. Salmonella detection in commercially prepared livestock feed and the raw ingredients and equipment used to manufacture the feed: A systematic review and meta-analysis. Prev. Vet. Med. 2022, 198, 105546. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Microbiological risk assessment in feeding stuffs for food-producing animals—Scientific opinion of the panel on biological hazards. EFSA J. 2008, 720, 1–84. [Google Scholar]
- Crawshaw, R. Animal feeds, feeding practices and opportunities for feed contamination: An introduction. In Animal Feed Contamination: Effects on Livestock and Food Safety, 1st ed.; Fink-Gremmels, J., Ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 11–32. [Google Scholar]
- Davies, R.H.; Wray, C. Distribution of Salmonella contamination in ten animal feedmills. Vet. Microbiol. 1997, 57, 159–169. [Google Scholar] [CrossRef]
- Jaw, Y.M.; Chen, Y.Y.; Lee, Y.C.; Lee, P.H.; Jiang, C.M.; Tsai, Y.H. Histamine content and isolation of histamine-forming bacteria in fish meal and fish soluble concentrate. Fish. Sci. 2012, 78, 155–162. [Google Scholar] [CrossRef]
- Mataragas, M.; Skandamis, P.N.; Drosinos, E.H. Risk profiles of pork and poultry meat and risk ratings of various pathogen/product combinations. Int. J. Food Microbiol. 2008, 126, 1–12. [Google Scholar] [CrossRef]
- Pelyuntha, W.; Vongkamjan, K. Combined effects of Salmonella phage cocktail and organic acid for controlling Salmonella Enteritidis in chicken meat. Food Control 2022, 133, 108653. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, I.H. Fish meal–nutritive value. J. Anim. Physiol. Anim. Nutr. 2011, 95, 685–692. [Google Scholar] [CrossRef]
- Ween, O.; Stangeland, J.K.; Fylling, T.S.; Aas, G.H. Nutritional and functional properties of fishmeal produced from fresh by-products of cod (Gadus morhua L.) and saithe (Pollachius virens). Heliyon 2017, 3, e00343. [Google Scholar] [CrossRef] [Green Version]
- Mzengereza, K.; Ishikawa, M.; Koshio, S.; Yokoyama, S.; Yukun, Z.; Shadrack, R.S.; Seo, S.; Kotani, T.; Dossou, S.; El Basuini, M.F.; et al. Growth performance, growth-related genes, digestibility, digestive enzyme activity, immune and stress responses of de novo Camelina meal in diets of red seabream (Pagrus major). Animals 2021, 11, 3118. [Google Scholar] [CrossRef] [PubMed]
- Miles, R.D.; Chapman, F.A. The benefits of fish meal in aquaculture diets. EDIS 2006, 12, 1–7. [Google Scholar] [CrossRef]
- Masagounder, K.; Ramos, S.; Reimann, I.; Channarayapatna, G. Optimizing nutritional quality of aquafeeds. In Aquafeed Formulation, 1st ed.; Nates, S.F., Ed.; Academic Press: Cambridge, UK, 2016; pp. 239–264. [Google Scholar]
- de Koning, A.J. Quantitative quality tests for fish meal. II. An investigation of the quality of South African fish meals and the validity of a number of chemical quality indices. Int. J. Food Prop. 2002, 5, 495–507. [Google Scholar] [CrossRef]
- Botta, J.R.; Lauder, J.T.; Jewer, M.A. Effect of methodology on total volatile basic nitrogen (TVB-N) determination as an index of quality of fresh Atlantic cod (Gadus morhua). J. Food Sci. 1984, 49, 734–736. [Google Scholar] [CrossRef]
- Kyrana, V.R.; Lougovois, V.P.; Valsamis, D.S. Assessment of shelf-life of maricultured gilthead sea bream (Sparus aurata) stored in ice. Int. J. Food Sci. 1997, 32, 339–347. [Google Scholar] [CrossRef]
- Jeyasanta, K.; Patterson, J. Study on the effect of freshness of raw materials on the final quality of fish meals. Indian J. Geo-Mar. Sci. 2020, 49, 124–134. [Google Scholar]
- Novoslavskij, A.; Terentjeva, M.; Eizenberga, I.; Valciņa, O.; Bartkevičs, V.; Bērziņš, A. Major foodborne pathogens in fish and fish products: A review. Ann. Microbiol. 2016, 66, 1–15. [Google Scholar] [CrossRef]
- Austin, B.; Austin, D.A. Bacterial Fish Pathogens: Disease of Farmed and Wild Fish, 6th ed.; Springer: Chichester, UK, 2007. [Google Scholar]
- Park, S.B.; Aoki, T.; Jung, T.S. Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Vet. Res. 2012, 43, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Walczak, N.; Puk, K.; Guz, L. Bacterial flora associated with diseased freshwater ornamental fish. J. Vet. Res. 2017, 61, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egerton, S.; Culloty, S.; Whooley, J.; Stanton, C.; Ross, R.P. The gut microbiota of marine fish. Front. Microbiol. 2018, 9, 873. [Google Scholar] [CrossRef]
- Elhadi, N. Prevalence of extended-spectrum-β-lactamase-producing Escherichia coli in imported frozen freshwater fish in Eastern Province of Saudi Arabia. Saudi. J. Med. Med. Sci. 2016, 4, 19–25. [Google Scholar] [CrossRef]
- Marijani, E. Prevalence and antimicrobial resistance of bacteria isolated from marine and freshwater fish in Tanzania. Int. J. Microbiol. 2022, 2022, 4652326. [Google Scholar] [CrossRef]
- Kumar, H.S.; Parvathi, A.; Karunasagar, I. Prevalence and antibiotic resistance of Escherichia coli in tropical seafood. World J. Microbiol. Biotechnol. 2005, 21, 619–623. [Google Scholar] [CrossRef]
- Odonkor, S.T.; Ampofo, J.K. Escherichia coli as an indicator of bacteriological quality of water: An overview. Microbiol. Res. 2013, 4, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Price, R.G.; Wildeboer, D.E. coli as an indicator of contamination and health risk in environmental waters. In Escherichia coli-Recent Advances on Physiology, Pathogenesis and Biotechnological Applications; Samie, A., Ed.; IntechOpen: London, UK, 2017; pp. 125–139. [Google Scholar]
- Traoré, O.; Nyholm, O.; Siitonen, A.; Bonkoungou, I.J.O.; Traoré, A.S.; Barro, N.; Haukka, K. Prevalence and diversity of Salmonella enterica in water, fish and lettuce in Ouagadougou, Burkina Faso. BMC Microbiol. 2015, 15, 151. [Google Scholar] [CrossRef]
- Williams, M.S.; Ebel, E.D.; Hretz, S.A.; Golden, N.J. Adoption of neutralizing buffered peptone water coincides with changes in apparent prevalence of Salmonella and Campylobacter of broiler rinse samples. J. Food. Prot. 2018, 81, 1851–1863. [Google Scholar] [CrossRef]
- Carrique-Mas, J.J.; Bedford, S.; Davies, R.H. Organic acid and formaldehyde treatment of animal feeds to control Salmonella: Efficacy and masking during culture. J. Appl. Microbiol. 2007, 103, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Cox, N.A.; Cason, J.A.; Buhr, R.J.; Richardson, K.E.; Richardson, L.J.; Rigsby, L.L.; Fedorka-Cray, P.J. Variations in preenrichment pH of poultry feed and feed ingredients after incubation periods up to 48 hours. J. Appl. Poult. Res. 2013, 22, 190–195. [Google Scholar] [CrossRef]
- Cox, N.A.; Richardson, K.E.; Cosby, D.E.; Berrang, M.E.; Cason, J.A.; Rigsby, L.L.; Holcombe, N.; DeRome, L. Injury and death of various Salmonella serotypes due to acidic conditions. J. Appl. Poult. Res. 2016, 25, 62–66. [Google Scholar] [CrossRef]
- Pelyuntha, W.; Chaiyasut, C.; Kantachote, D.; Sirilun, S. Cell-free supernatants from cultures of lactic acid bacteria isolated from fermented grape as biocontrol against Salmonella Typhi and Salmonella Typhimurium virulence via autoinducer-2 and biofilm interference. PeerJ 2019, 7, e7555. [Google Scholar] [CrossRef] [Green Version]
- Pelyuntha, W.; Chaiyasut, C.; Kantachote, D.; Sirilun, S. Organic acids and 2, 4-Di-tert-butylphenol: Major compounds of Weissella confusa WM36 cell-free supernatant against growth, survival and virulence of Salmonella Typhi. PeerJ 2020, 8, e8410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koyuncu, S.; Andersson, M.G.; Löfström, C.; Skandamis, P.N.; Gounadaki, A.; Zentek, J.; Häggblom, P. Organic acids for control of Salmonella in different feed materials. BMC Vet. Res. 2013, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Raftari, M.; Jalilian, F.A.; Abdulamir, A.S.; Son, R.; Sekawi, Z.; Fatimah, A.B. Effect of organic acids on Escherichia coli O157: H7 and Staphylococcus aureus contaminated meat. Open. Microbiol. J. 2009, 3, 121. [Google Scholar] [CrossRef] [PubMed]
Fish Meal | Protein Content (g/100 g) 1 | Total Volatile Basic Nitrogen (mg/100 g) 1 |
---|---|---|
SM | 53.2 ± 3.1 | 87.1 ± 5.7 |
SO | 63.5 ± 4.4 | 73.8 ± 4.5 |
T | 67.5 ± 2.3 | 100.3 ± 9.2 |
K | 65.6 ± 8.1 | 100.4 ± 11.2 |
Fish Meal | Total Plate Count (Log Colony Forming Unit/g) 1 | Escherichia coli | Salmonella spp. |
---|---|---|---|
SM | 2.3 ± 0.2 | ND | ND |
SO | 2.0 ± 0.3 | ND | ND |
T | 4.5 ± 0.5 | ND | ND |
K | 4.2 ± 0.4 | ND | ND |
Fish Meal | Dosage | Salmonella Counts (Log Colony Forming Unit/g) at Each Storage Time 1 | ||||||
---|---|---|---|---|---|---|---|---|
Before Salmonella Challenge | Challenge at Day 30 | Challenge at Day 90 | ||||||
Day 0 | Day 1 | Day 7 | Day 31 | Day 37 | Day 91 | Day 97 | ||
SM | Control | 2.9 ± 0.1 aA | 3.0 ± 0.3 bA | 4.0 ± 0.1 cA | 2.9 ± 0.2 aA | 4.1 ± 0.1 cA | 3.7 ± 0.1 cA | 3.8 ± 0.3 cA |
Low | 3.1 ± 0.3 aA | 0.0 ± 0.0 cB | 0.0 ± 0.0 cB | 0.0 ± 0.0 cB | 2.5 ± 0.1 bB | 2.5 ± 0.2 bB | 3.4 ± 0.4 aA | |
Medium | 3.0 ± 0.1 aA | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bC | 0.0 ± 0.0 bC | 0.0 ± 0.0 bB | |
High | 3.1 ± 0.2 aA | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bC | 0.0 ± 0.0 bC | 0.0 ± 0.0 bB | |
SO | Control | 2.8 ± 0.3 aA | 3.6 ± 0.2 bA | 3.8 ± 0.1 bcA | 3.6 ± 0.2 bA | 3.6 ± 0.2 bA | 4.2 ± 0.1 cA | 3.2 ± 0.2 bB |
Low | 3.1 ± 0.2 bA | 0.0 ± 0.0 cB | 0.0 ± 0.0 cB | 0.0 ± 0.0 cB | 0.0 ± 0.0 Cb | 3.8 ± 0.2 aA | 3.8 ± 0.1 aA | |
Medium | 2.8 ± 0.2 bA | 0.0 ± 0.0 cB | 0.0 ± 0.0 cB | 0.0 ± 0.0 cB | 0.0 ± 0.0 cB | 3.7 ± 0.1 aA | 3.7 ± 0.4 aA | |
High | 2.9 ± 0.4 aA | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bC | |
T | Control | 2.7 ± 0.4 aA | 3.1 ± 0.2 bA | 3.8 ± 0.3 cA | 2.5 ± 0.1 aA | 2.5 ± 0.1 aA | 2.8 ± 0.3 abA | 2.8 ± 0.2 abA |
Low | 3.1 ± 0.1 aA | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | |
Medium | 3.3 ± 0.4 aA | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | |
High | 3.1 ± 0.2 aA | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | |
K | Control | 2.8 ± 0.3 aA | 3.4 ± 0.1 abA | 4.2 ± 0.2 bA | 4.7 ± 0.1 bcA | 4.6 ± 0.2 bcA | 3.3 ± 0.1 abA | 5.0 ± 0.4 cA |
Low | 2.9 ± 0.1 aA | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 3.2 ± 0.2 aA | 4.1 ± 0.1 aB | |
Medium | 3.1 ± 0.2 bA | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 0.0 ± 0.0 bB | 3.1 ± 0.2 bA | 3.7 ± 0.2 aB | |
High | 3.0 ± 0.2 aA | 0.0 ± 0.0 cB | 0.0 ± 0.0 cB | 0.0 ± 0.0 cB | 0.0 ± 0.0 cB | 2.9 ± 0.2 aA | 2.3 ± 0.1 bC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelyuntha, W.; Yafa, A.; Charoenwong, B.; Vongkamjan, K. Effectiveness of the Organic Acid-Based Antimicrobial Agent to Prevent Bacterial Contamination in Fish Meal. Animals 2022, 12, 3367. https://doi.org/10.3390/ani12233367
Pelyuntha W, Yafa A, Charoenwong B, Vongkamjan K. Effectiveness of the Organic Acid-Based Antimicrobial Agent to Prevent Bacterial Contamination in Fish Meal. Animals. 2022; 12(23):3367. https://doi.org/10.3390/ani12233367
Chicago/Turabian StylePelyuntha, Wattana, Ananya Yafa, Baramee Charoenwong, and Kitiya Vongkamjan. 2022. "Effectiveness of the Organic Acid-Based Antimicrobial Agent to Prevent Bacterial Contamination in Fish Meal" Animals 12, no. 23: 3367. https://doi.org/10.3390/ani12233367
APA StylePelyuntha, W., Yafa, A., Charoenwong, B., & Vongkamjan, K. (2022). Effectiveness of the Organic Acid-Based Antimicrobial Agent to Prevent Bacterial Contamination in Fish Meal. Animals, 12(23), 3367. https://doi.org/10.3390/ani12233367