The Effect of the Inclusion of Different Concentrates in Feed Rations on the Contents of Tocopherols, β-Carotene and Retinol in the Livers and Longissimus dorsi Muscles of Farm-Raised Fallow Deer (Dama dama L.)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design and Diets
2.2. Sampling and Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Chemical Composition, Contents of β-Carotene, Retinol and Tocopherols in the Livers of Fallow Deer, and Correlations with Selected Biologically Active Compounds
4.2. Chemical Composition and Contents of β-Carotene, Retinol and Tocopherols in the LD Muscles of Fallow Deer and Correlations with Selected Biologically Active Compounds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flis, M. Dziczyzna jako źródło żywności, prawno-ekonomiczne aspekty wprowadzania na rynek. Prz. Hod. 2016, 6, 29–31. [Google Scholar]
- Borys, B.; Bogdaszewska, Z.; Bogdaszewski, M. Dynamiczny wzrost fermowej hodowli danieli i jeleni w Polsce. Wiadomości Zootech. 2012, 50, 33–44. [Google Scholar]
- Kudrnáčová, E.; Bartoň, L.; Bureš, D.; Hoffman, L.C. Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Sci. 2018, 141, 9–27. [Google Scholar] [CrossRef]
- DeVuyst, E.A. Construction and operating costs for whitetail deer farms. J. ASFMRA (Am. Soc. Farm Manag. Rural. Appraisers) 2013, 76, 1–18. [Google Scholar] [CrossRef]
- Daszkiewicz, T.; Hnatyk, N.; Dąbrowski, D.; Janiszewski, P.; Gugołek, A.; Kubiak, D.; Śmiecińska, K.; Winiarski, R.; Koba-Kowalczyk, M. A comparison of the quality of the Longissimus lumborum muscle from wild and farm-raised fallow deer (Dama dama L.). Small Rumin. Res. 2015, 129, 77–83. [Google Scholar] [CrossRef]
- Kotrba, R.M. Game management under ranching and farming condition in the Czech Republic and Europe. In Proceedings of the 9th International Wildlife Ranching Symposium, Windhoek, Namibia, 12–16 September 2016. [Google Scholar]
- Florek, M.; Drozd, L. Związki bioaktywne w mięsie jeleniowatych. Med. Wet. 2013, 69, 535–539. [Google Scholar]
- Kożuch, A. Analiza strategiczna rynku dziczyzny w Polsce. Sylwan 2020, 164, 254–264. [Google Scholar] [CrossRef]
- Serrano, M.P.; Maggiolino, A.; Pateiro, M.; Landete-Castillejos, T.; Domínguez, R.; García, A.; Franco, D.; Gallego, L.; De Palo, P.; Lorenzo, J.M. Carcass characteristics and meat quality of deer. In More than Beef, Pork and Chicken—The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet; Springer: Cham, Switzerland, 2019; pp. 227–268. [Google Scholar]
- Razmaitė, V.; Pileckas, V.; Šiukščius, A.; Juškiene, V. Fatty acid composition of meat and edible offal from free-living red deer (Cervus elaphus). Foods 2020, 9, 923. [Google Scholar] [CrossRef]
- Chiari, M.; Cortinovis, C.; Bertoletti, M.; Alborali, L.; Zanoni, M.; Ferreti, E. Lead, cadmium and orgaochlorine pesticide residues in hunted red deer and wild boar from northern Italy. Food Addit. Contam. 2015, 32, 1867–1874. [Google Scholar] [CrossRef]
- Pilarczyk, B.; Tomza-Marciniak, A.; Pilarczyk, R.; Udała, J.; Kruzhel, B.; Ligocki, M. Content of essential and non-essential elements in wild animals from western Ukraine and the health risks associated with meat and liver consumption. Chemosphere 2020, 244, 125506. [Google Scholar] [CrossRef]
- Álvarez, R.; Meléndez-Martínez, A.J.; Vicario, I.M.; Alcalde, M.J. Carotenoid and vitamin A contents in biological fluids and tissues of animals as an effect of the diet: A review. Food Rev. Int. 2015, 31, 319–340. [Google Scholar] [CrossRef]
- Steiner-Bogdaszewska, Ż.; Tajchman, K.; Domaradzki, P.; Florek, M. Composition and Fatty Acid Profile of Bone Marrow in Farmed Fallow Deer (Dama dama) Depending on Diet. Animals 2022, 12, 941. [Google Scholar] [CrossRef] [PubMed]
- Janiszewski, P.; Bogdaszewski, M.; Murawska, D.; Tajchman, K. Dobrostan fermowych jeleniowatych-aspekty praktyczne. Pol. J. Nat. Sci. 2016, 3, 345–361. [Google Scholar]
- Act of 15 January 2015 on the protection of animals used for scientific or educational purposes. J. Laws 2015, 266.
- Regulation of the Minister of Agriculture and Rural Development of 9 September, 2004 on the qualifications of persons qualified for professional slaughter and the conditions and methods of animal slaughter and killing. J. Laws 2004, 205, 2102.
- AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Washington, DC, USA, 2016. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Högberg, A.; Pickova, J.; Babol, J.; Andersson, K.; Dutta, P.C. Muscle lipids, vitamins E and A, and lipid oxidation as affected by diet and RN genotype in female and castrated male Hampshire crossbreed pigs. Meat Sci. 2002, 60, 411–420. [Google Scholar] [CrossRef]
- Eriksson, S.F.; Pickova, J. Fatty acids and tocopherol levels in M. Longissimus dorsi of beef cattle in Sweden-A comparison between seasonal diets. Meat Sci. 2007, 76, 746–754. [Google Scholar] [CrossRef]
- Xu, Z. Comparison of extraction methods for quantifying vitamin E from animal tissues. Bioresour. Technol. 2008, 99, 8705–8709. [Google Scholar] [CrossRef]
- Polish Standard PN-EN ISO 6867; Feedstuffs. Determination of vitamin E by high-performance liquid chromatography. Polish Committee for Standardization: Warsaw, Poland, 2002.
- Polish Standard PN-EN ISO 14565; Feedstuffs. Determination of vitamin A by high-performance liquid chromatography. Polish Committee for Standardization: Warsaw, Poland, 2002.
- De Quirós, A.R.B.; Costa, H.S. Analysis of carotenoids in vegetable and plasma samples: A review. J. Food Compos. Anal. 2006, 19, 97–111. [Google Scholar] [CrossRef]
- Florek, M.; Litwińczuk, Z.; Skałecki, P.; Kędzierska-Matysek, M.; Grodzicki, T. Chemical composition and inherent properties of offal from calves maintained under two production systems. Meat Sci. 2012, 90, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Biel, W.; Czerniawska-Piątkowska, E.; Kowalczyk, A. Offal chemical composition from veal, beef, and lamb maintained in organic production systems. Animals 2019, 9, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowiec, F.; Micek, P.; Marciński, M.; Barteczko, J.; Zając, T. Linseed-based diets for sheep. 2. Performance and chemical composition of meat and liver. J. Anim. Feed Sci. 2004, 13, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Estival, J.; Taggart, M.A.; Mateo, R. Alterations in vitamin A and E levels in liver and testis of wild ungulates from a lead mining area. Arch. Environ. Contam. Toxicol. 2011, 60, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Brigelius-Flohe, R.; Traber, M. Vitamin E: Function and metabolism. FASEB J. 1999, 13, 1145–1155. [Google Scholar] [CrossRef]
- Puls, R. Mineral levels in Animal Health. Diagnostic Data; Sherpa International: Clearbrook, BC, Canada, 1988. [Google Scholar]
- Humann-Ziehank, E.; Ganter, M.; Hennig-Pauka, I.; Binder, A. Trace mineral status and liver and blood parameters in sheep without mineral supply compared to local roe deer (Capreolus capreolus) populations. Small Rum. Res. 2008, 75, 185–191. [Google Scholar] [CrossRef]
- Yang, A.; Brewster, M.J.; Lanari, M.C.; Tume, R.K. Effect of vitamin E supplementation on α-tocopherol and β-carotene concentrations in tissues from pasture-and grain-fed cattle. Meat Sci. 2002, 60, 35–40. [Google Scholar] [CrossRef]
- Darwish, W.S.; Ikenaka, Y.; Morshdy, A.E.; Eldesoky, K.I.; Nakayama, S.; Mizukawa, H.; Ishizuka, M. β-carotene and retinol contents in the meat of herbivorous ungulates with a special reference to their public health importance. J. Vet. Med. Sci. 2016, 78, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Schweigert, F.J. Metabolism of carotenoids in mammals. In Carotenoids. Volume 3: Biosynthesis; Britton, G., Liaaen-Jensen, S., PFander, H., Eds.; Birkhäuser, Verlag Basel: Berlin, Germany, 1998; pp. 249–284. [Google Scholar]
- Majchrzak, D.; Fabian, E.; Elmadfa, I. Vitamin A content (retinol and retinyl esters) in livers of different animals. Food Chem. 2006, 98, 704–710. [Google Scholar] [CrossRef]
- Yang, A.; Larsen, T.W.; Tume, R.K. Carotenoid and retinol concentrations in serum, adipose tissue and liver and carotenoid transport in sheep, goats and cattle. Aust. J. Agric. Res. 1992, 43, 1809–1817. [Google Scholar] [CrossRef]
- Švrčula, V.; Košinová, K.; Okrouhlá, M.; Chodová, D.; Hart, V. The effect of sex on meat quality of fallow deer (Dama dama) from the farm located in the Middle Bohemia. Ital. J. Anim. Sci. 2019, 18, 498–504. [Google Scholar] [CrossRef] [Green Version]
- Cawthorn, D.M.; Fitzhenry, L.B.; Kotrba, R.; Bureš, D.; Hoffman, L.C. Chemical composition of wild fallow deer (Dama dama) meat from South Africa: A preliminary evaluation. Foods. 2020, 9, 598. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, C.L.; Mulley, R.C.; Wiklund, E.; Flesch, J.S. Effect of concentrate feeding on instrumental meat quality and sensory characteristics of fallow deer venison. Meat Sci. 2012, 90, 801–806. [Google Scholar] [CrossRef]
- Purchas, R.W.; Triumf, E.; Egelandsdal, B. Quality characteristics and composition of the longissimus muscle in the short-loin male and female farmed red deer in New Zealand. Meat Sci. 2010, 86, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Sampels, S. Fatty acids and antioxidants in Reindeer and Red deer. Doctoral Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2005. [Google Scholar]
- Bellés, M.; Leal, L.N.; Díaz, V.; Alonso, V.; Roncalés, P.; Beltrán, J.A. Effect of dietary vitamin E on physicochemical and fatty acid stability of fresh and thawed lamb. Food Chem. 2018, 239, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalam, E.N.; Plozza, T.; Kerr, M.G.; Linden, N.; Mitchell, M.; Bekhit, A.E.-D.A.; Jacobs, J.L.; Hopkins, D.L. Interaction of diet and long ageing period on lipid oxidation and colour stability of lamb meat. Meat Sci. 2017, 129, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Jose, C.G.; Jacob, R.H.; Pethick, D.W.; Gardner, G.E. Short term supplementation rates to optimise vitamin E concentration for retail colour stability of Australian lamb meat. Meat Sci. 2016, 111, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, R.; Meléndez-Martínez, A.J.; Vicario, I.M.; Alcalde, M.J. Carotenoids and fat-soluble vitamins in horse tissues: A comparison with cattle. Animal 2015, 9, 1230–1238. [Google Scholar] [CrossRef] [Green Version]
- Jin, Q.; Cheng, H.; Wan, F.; Bi, Y.; Liu, G.; Liu, X.; Zhao, H.; You, W.; Liu, Y.; Tan, X. Effects of feeding β-carotene on levels of β-carotene and vitamin A in blood and tissues of beef cattle and the effects on beef quality. Meat Sci. 2015, 110, 293–301. [Google Scholar] [CrossRef]
- Alosilla, C.E.; McDowell, L.R.; Wilkinson, N.S.; Staples, C.R.; Thatcher, W.W.; Martin, F.G.; Blair, M. Bioavailability of vitamin A sources for cattle. J. Anim. Sci. 2007, 85, 1235–1238. [Google Scholar] [CrossRef] [Green Version]
- Dannenberger, D.; Nuernberg, G.; Nuernberg, K.; Hagemann, E. The effects of gender, age and region on macro-and micronutrient contents and fatty acid profiles in the muscles of roe deer and wild boar in Mecklenburg-Western Pomerania (Germany). Meat Sci. 2013, 94, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Osorio, M.T.; Zumalacárregui, J.M.; Cabeza, E.A.; Figueira, A.; Mateo, J. Effect of rearing system on some meat quality traits and volatile compounds of suckling lamb meat. Small Rum. Res. 2008, 78, 3142. [Google Scholar] [CrossRef]
- Chauveau-Duriot, B.; Doreau, M.; Noziere, P.; Graulet, B. Simultaneous quantification of carotenoids, retinol, and tocopherols in forages, bovine plasma, and milk: Validation of a novel UPLC method. Anal. Bioanal. Chem. 2010, 397, 777–790. [Google Scholar] [CrossRef] [PubMed]
- Röhrle, F.T.; Moloney, A.P.; Osorio, M.T.; Luciano, G.; Priolo, A.; Caplan, P.; Monahan, F.J. Carotenoid, colour and reflectance measurements in bovine adipose tissue to discriminate between beef from different feeding systems. Meat Sci. 2011, 88, 347–353. [Google Scholar] [CrossRef]
- Jin, Q.; Zhao, H.B.; Liu, X.M.; Wan, F.C.; Liu, Y.F.; Cheng, H.J.; You, W.; Liu, G.F.; Tan, X.W. Effect of β-carotene supplementation on the expression of lipid metabolism-related genes and the deposition of back fat in beef cattle. Anim. Prod. Sci. 2016, 57, 513–519. [Google Scholar] [CrossRef]
- Walshe, B.E.; Sheehan, E.M.; Delahunty, C.M.; Morrissey, P.A.; Kerry, J.P. Composition, sensory and shelf life stability analyses of Longissimus dorsi muscle from steers reared under organic and conventional production systems. Meat Sci. 2006, 73, 319–325. [Google Scholar] [CrossRef]
Specification | Group | ||
---|---|---|---|
HO | HOP | HP | |
Ingredients, % DM | |||
Hay | 40 | 40 | 40 |
Oat grain | 60 | 40 | - |
Protein concentrate | - | 20 | - |
Pellets | - | - | 60 |
Mineral–vitamin premix (g/d, head) | 20 | 20 | 20 |
Item | Feed | Group | |||||
---|---|---|---|---|---|---|---|
Hay | Oat | Concentrate | Pellets | HO | HOP | HP | |
Dry matter-DM (g kg−1) | 866.4 | 905.1 | 898.7 | 906.7 | 888.5 | 887.8 | 891.6 |
CA | 46.2 | 24.9 | 44.1 | 80.1 | 33.4 | 37.2 | 66.5 |
CP | 91.0 | 122.1 | 190.4 | 170.3 | 109.6 | 123,3 | 138,6 |
EE | 15.9 | 36.2 | 31.9 | 33.4 | 28.0 | 27.2 | 26.4 |
CF | 347.3 | 106.6 | 114.3 | 147.9 | 202.9 | 204.4 | 227.6 |
NDF | 286.5 | 356.8 | 281.3 | 347.0 | 328.7 | 313.6 | 322.8 |
α-tocopherol | 1.53 | 2.81 | 3.26 | 5.16 | 1.93 | 3.28 | 4.08 |
β-tocopherol | 1.00 | 1.11 | 2.22 | 8.10 | 1.40 | 1.92 | 6.06 |
γ-tocopherol | 0.66 | 1.83 | 4.80 | 1.16 | 1.96 | 3.29 | 3.23 |
δ-tocopherol | 0.59 | 0.73 | 0.80 | 0.69 | 1.39 | 2.00 | 3.65 |
Total tocopherols | 3.78 | 6.48 | 11.08 | 15.11 | 6.68 | 10.49 | 17.02 |
Retinol | - | - | 150.0 | 150.0 | 3.00 | 3.00 | 3.00 |
β-carotene | 54.24 | 0.60 | 2.57 | 23.88 | 22.54 | 23.50 | 43.39 |
Item | Group | SEM | p-Value | ||
---|---|---|---|---|---|
HO | HOP | HP | |||
DM | 291.1 | 302.0 | 290.5 | 0.311 | 0.264 |
CA | 14.03 | 13.97 | 13.83 | 0.016 | 0.898 |
CP | 218.1 | 229.6 | 222.0 | 0.227 | 0.092 |
EE | 15.33 | 16.10 | 13.33 | 0.060 | 0.148 |
α-tocopherol | 0.41 | 0.34 | 0.65 | 0.061 | 0.081 |
β-tocopherol | 0.15 | 0.05 | 0.09 | 0.020 | 0.123 |
γ-tocopherol | 0.04 | 0.06 | Nd | 0.012 | 0.098 |
δ-tocopherol | Nd | Nd | Nd | - | - |
Total tocopherols | 0.60 | 0.45 | 0.74 | 0.064 | 0.189 |
β-carotene | Nd | Nd | Nd | - | - |
Retinol | 49.12 A | 85.89 B | 96.59 B | 6.584 | 0.002 |
Item | Group | SEM | p-Value | ||
---|---|---|---|---|---|
HO | HOP | HP | |||
DM | 234.5 | 226.9 | 225.5 | 0.227 | 0.239 |
CA | 11.03 | 10.87 | 10.70 | 0.008 | 0.278 |
CP | 214.30 | 210.27 | 199.53 | 0.404 | 0.347 |
EE | 8.60 B | 3.03 A | 2.30 A | 0.106 | 0.002 |
α-tocopherol | 0.98 | 0.83 | 1.03 | 0.073 | 0.253 |
β-tocopherol | 0.13 | 0.10 | 0.11 | 0.009 | 0.369 |
γ-tocopherol | Nd | 0.01 | 0.01 | 0.005 | 0.215 |
δ-tocopherol | Nd | Nd | Nd | - | - |
Total tocopherols | 1.11 | 0.94 | 1.15 | 0.081 | 0.289 |
β-carotene | Nd | Nd | Nd | - | - |
Retinol | 0.08 | 0.31 | 2.43 | 0.466 | 0.066 |
Item | α-Tocopherol | β-Tocopherol | γ-Tocopherol | δ-Tocopherol | Total Tocopherols | β-Carotene | Retinol |
---|---|---|---|---|---|---|---|
α-tocopherol | 1.00 | ||||||
β-tocopherol | 0.10 | 1.00 | |||||
γ-tocopherol | −0.99 * | −0.22 | 1.00 | ||||
δ-tocopherol | - | - | - | 1.00 | |||
Total tocopherols | 0.95 * | 0.42 | −0.98 * | - | 1.00 | ||
β-carotene | - | - | - | - | - | 1.00 | |
Retinol | 0.50 * | −0.81 * | −0.40 | - | 0.20 | - | 1.00 |
Item | α-Tocopherol | β-Tocopherol | γ-Tocopherol | δ-Tocopherol | Total Tocopherols | β-Carotene | Retinol |
---|---|---|---|---|---|---|---|
α-tocopherol | 1.00 | ||||||
β-tocopherol | 0.58 * | 1.00 | |||||
γ-tocopherol | −0.28 | −0.95 | 1.00 | ||||
δ-tocopherol | - | - | - | 1.00 | |||
Total tocopherols | 0.99 * | 0.63 * | −0.34 | - | 1.00 | ||
β-carotene | - | - | - | - | - | 1.00 | |
Retinol | 0.63 * | −0.28 * | 0.57 | - | 0.58 * | - | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czurgiel, S.; Antoszkiewicz, Z.; Mazur-Kuśnirek, M.; Bogdaszewski, M. The Effect of the Inclusion of Different Concentrates in Feed Rations on the Contents of Tocopherols, β-Carotene and Retinol in the Livers and Longissimus dorsi Muscles of Farm-Raised Fallow Deer (Dama dama L.). Animals 2022, 12, 3311. https://doi.org/10.3390/ani12233311
Czurgiel S, Antoszkiewicz Z, Mazur-Kuśnirek M, Bogdaszewski M. The Effect of the Inclusion of Different Concentrates in Feed Rations on the Contents of Tocopherols, β-Carotene and Retinol in the Livers and Longissimus dorsi Muscles of Farm-Raised Fallow Deer (Dama dama L.). Animals. 2022; 12(23):3311. https://doi.org/10.3390/ani12233311
Chicago/Turabian StyleCzurgiel, Sylwia, Zofia Antoszkiewicz, Magdalena Mazur-Kuśnirek, and Marek Bogdaszewski. 2022. "The Effect of the Inclusion of Different Concentrates in Feed Rations on the Contents of Tocopherols, β-Carotene and Retinol in the Livers and Longissimus dorsi Muscles of Farm-Raised Fallow Deer (Dama dama L.)" Animals 12, no. 23: 3311. https://doi.org/10.3390/ani12233311
APA StyleCzurgiel, S., Antoszkiewicz, Z., Mazur-Kuśnirek, M., & Bogdaszewski, M. (2022). The Effect of the Inclusion of Different Concentrates in Feed Rations on the Contents of Tocopherols, β-Carotene and Retinol in the Livers and Longissimus dorsi Muscles of Farm-Raised Fallow Deer (Dama dama L.). Animals, 12(23), 3311. https://doi.org/10.3390/ani12233311