Streptococcosis a Re-Emerging Disease in Aquaculture: Significance and Phytotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Disease
2.1. Pathogenesis
2.2. Disease Significance in Aquaculture
3. Phytotherapy
3.1. Rosemary (Rosmarinus officinalis)
3.2. Shirazi Thyme (Zataria multiflora), Garden Thyme (Thymus vulgaris), Avishan-e-Denaii (Thymus daenensis)
3.3. Cumin (Cuminum cyminum, Nigella sativa)
3.4. Savory (Satureja bachtiarica, S. khuzistanica, S. montana)
3.5. Aloe (Aloe vera)
3.6. Sage (Salvia officinalis, S. tomentosa, S. verticillate, Phlomis pungens)
3.7. Myrtle (Myrtus communis, Rhodomyrtus tomentosa)
3.8. Clove Oil (Eucalyptus sp.)
3.9. Lavender (Lavendula angustifolia)
3.10. Moshkoorak (Oliveria decumbens)
3.11. Garlic (Allium sativum)
3.12. Cinnamon (Cinnamomum spp.)
3.13. Milletia Dielsiana (Spatholobus suberectus)
3.14. Allspice (Pimenta dioica)
3.15. Ginger (Zingiber officinale, Tetradenia riparia)
3.16. Oregano (Origanum vulgare)
3.17. Pomegranate (Punica granatum)
3.18. Isothiocyanates in Cruciferous Vegetables
3.19. Algae
3.20. Miscellaneous Plants
3.20.1. In Vitro Anti-S. iniae and Anti-S. parauberis Bioassays
3.20.2. In Vivo Anti-S. iniae Bioassay
3.20.3. In Vitro Anti-S. agalactiae Bioassay
3.20.4. In Vivo Anti-S. agalactiae Bioassay
3.20.5. In Vitro Anti-S. dysgalactiae Bioassay
3.20.6. In Vitro Anti-S. uberis Bioassays
Bacterial Origin/Source | Medicinal Herb/Plant | Extraction/Essence Method | Inhibitory Method | MIC or Zone of Inhibition | MBC | Temp (°C) | Ref. |
---|---|---|---|---|---|---|---|
Tilapia | Rosmarinus officinalis | Methanolic extract | Disk diffusion | 4.3–17.1 mm/mg | Unknown | 25 | [155] |
Tilapia | Rosmarinus officinalis | Ethanolic extract | Disk diffusion | 5.7–19.7 mm/mg | Unknown | 25 | [155] |
Tilapia | Rosmarinus officinalis | Methanol/ethyl acetate (1:1) | Disk diffusion | 3.1–23.8 mm/mg | Unknown | 25 | [155] |
Tilapia | Rosmarinus officinalis | Ethyl acetate | Disk diffusion | 9.38–37.5 m/mg | Unknown | 25 | [155] |
Rainbow trout | Rosmarinus officinalis | Essential oil | Microdilution | 0.12–0.25 µL/mL | 0.5–1.0 µL/mL | 25 | [157] |
Rainbow trout | Eucalyptus camaldulensis | Essential oil | Microdilution | 160–320 µL/mL | >320 µL/mL | 25 | [175] |
Rainbow trout | Mentha pulegium | Essential oil | Microdilution | 40–320 µL/mL | >320 µL/mL | 25 | [175] |
Rainbow trout | Aloe vera | Essential oil | Microdilution | >320 µL/mL | >640 µL/mL | 25 | [175] |
Rainbow trout | Zataria multiflora | Essential oil | Microdilution | 0.06 µL/mL | 0.12–0.5 µL/mL | 25 | [157] |
Rainbow trout | Zataria multiflora | Ethanolic extract | Microdilution | 0.125 mg/mL | Unknown | Unknown | [162] |
Rainbow trout | Punica granatum | Ethanolic extract | Microdilution | 0.125 mg/mL | Unknown | Unknown | [162] |
Rainbow trout | Nigella sativa | Ethanolic extract | Microdilution | <2 mg/mL | <2 mg/mL | Unknown | [162] |
Rainbow trout | Scutellaria radix | Ethanolic extract | Microdilution | <2 mg/mL | <2 mg/mL | Unknown | [162] |
Rainbow trout | Olea europaea | Ethanolic extract | Microdilution | <2 mg/mL | <2 mg/mL | Unknown | [162] |
S. iniae KCTC 3657 | Agrimonia pilosa | Water extract | Disk diffusion | 29–34 mm (1000 ppm) | Unknown | 25 | [198] |
S. iniae KCTC 3657 | Aralia cordat | Water extract | Disk diffusion | 9–14 mm (3000 ppm) | Unknown | 25 | [198] |
S. iniae KCTC 3657 | Quercus mongolica | Water extract | Disk diffusion | 9–14 mm | Unknown | 25 | [198] |
S. iniae KCTC 3657 | Phtheirospermum japonicum | Water extract | Disk diffusion | 9–14 mm (4000 ppm) | Unknown | 25 | [198] |
S. iniae KCTC 3657 | Geranium wilfordi | Water extract | Disk diffusion | 9–14 mm | Unknown | 25 | [198] |
S. iniae KCTC 3657 | Carpinus laxiflora | Water extract | Disk diffusion | 9–14 mm | Unknown | 25 | [198] |
S. iniae KCTC 3657 | Sedum takesimens | Water extract | Disk diffusion | 9–14 mm | Unknown | 25 | [198] |
S. iniae KCTC 3657 | Dystaenia takesimana | Water extract | Disk diffusion | 24–29 mm (3000 ppm) | Unknown | 25 | [198] |
Marine fish | Rubus coreanus | Ethanolic extract | Disk diffusion | 7.2 ± 0.07 mm (100 µg/mL) | Unknown | 35–37 | [199] |
Rainbow trout | Punica granatum (flower) | Ethanolic extract | Microdilution | >1000 μg/mL | Unknown | 37 | [166] |
Rainbow trout | Quercus branti (seed) | Ethanolic extract | Microdilution | 625 μg/mL | Unknown | 37 | [166] |
Rainbow trout | Glycyrrhiza glabra (root) | Ethanolic extract | Microdilution | >1000 μg/mL | Unknown | 37 | [166] |
Rainbow trout | Heracleum lasiopetalum (fruit) | Essential oil | Microdilution | 78 μg/mL | Unknown | 37 | [166] |
Rainbow trout | Satureja bachtiarica (aerial) | Essential oil | Microdilution | 39 μg/mL | Unknown | 37 | [166] |
Rainbow trout | Thymus daenensis (aerial plant) | Essential oil | Microdilution | 312 μg/mL | Unknown | 37 | [166] |
Rainbow trout | Myrtus communis (leaf) | Essential oil | Microdilution | >1000 μg/mL | Unknown | 37 | [166] |
Rainbow trout | Echinophora platyloba (aerial) | Essential oil | Microdilution | 312 μg/mL | Unknown | 37 | [166] |
Rainbow trout | Kelussia odoratissima (leaf) | Essential oil | Microdilution | >1000 μg/mL | Unknown | 37 | [166] |
Rainbow trout | Stachys lavandulifolia (flower) | Ethanolic extract | Microdilution | >1000 μg/mL | Unknown | 37 | [166] |
Rainbow trout | Rosmarinus officinalis | Essential oil | Microdilution | 0.06 μL/mL | 0.5 μL/mL | 25 | [158] |
Olive flounder | Cruciferous vegetables | Sulforaphane | Microdilution | 0.09 ± 0.03 mg/mL | 0.28 ± 0.15 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Sulforaphane | Microdilution | 0.25 mg/mL | 1 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Iberin | Microdilution | 0.25 mg/mL | 1 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Erucin isothiocyanates | Microdilution | 0.09 ± 0.03 mg/mL | 0.5 ± 0.3 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Allyl isothiocyanates | Microdilution | >4 mg/mL | >4 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Hexyl isothiocyanates | Microdilution | 4 mg/mL | >4 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Phenylethyl isothiocyanates | Microdilution | 0.625 ± 0.25 mg/mL | 1.125 ± 0.629 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Benzyl isothiocyanates | Microdilution | 0.219 ± 0.06 mg/mL | 0.25 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Phenyl isothiocyanates | Microdilution | 2 mg/mL | >4 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Indole-3-carbinol | Microdilution | 0.125 mg/mL | 0.25 mg/mL | 37 | [191] |
Olive flounder | Radish root | Hydrolysate of radish root | Microdilution | 0.25 mg/mL | 0.25 mg/mL | 37 | [191] |
Marine fish | Ecklonia cava | Methanolic extract | Disk diffusion | 14.5 mm | Unknown | Unknown | [192] |
Marine fish | Ecklonia cava | Butanol fraction | Disk diffusion | 7 mm | Unknown | Unknown | [192] |
Marine fish | Ecklonia cava | Water fraction | Disk diffusion | 10 mm | Unknown | Unknown | [192] |
Marine fish | Ecklonia cava | Ethyl acetate soluble fraction | Microdilution | 256 μL/mL | Unknown | Unknown | [192] |
Marine fish | Ecklonia stolonifera | Methanolic extract | Disk diffusion | 11 mm | Unknown | Unknown | [192] |
Rainbow trout | Zataria multiflora | Essential oil | Microdilution | 0.12 μL/mL | 0.25 μL/mL | 25 | [158] |
Tilapia | Rhodomyrtus tomentos | Ethanolic extract | Microdilution | 7.8 μg/mL | 15.2–31.2 μg/mL | 37 | [179] |
S. iniae ATCC2917 | Urtica dioica | Ethanolic extract | Microdilution | 200 μg/mL | Unknown | 37 | [195] |
Unknown | Carthamus tinctorius | Ethanolic extract | Microdilution | Bactericidal effect | Unknown | 37 | [197] |
African catfish | Azadirachta indica leaf | Aqueous extract | Well diffusion | 25 mm | Unknown | 37 | [194] |
African catfish | Azadirachta indica leaf | Ethanolic extract | Well diffusion | 25 mm | Unknown | 37 | [194] |
African catfish | Azadirachta indica leaf | Methanolic extract | Well diffusion | 15 mm | Unknown | 37 | [194] |
African catfish | Turmeric rhizome | Aqueous extract | Well diffusion | 25 mm | Unknown | 37 | [194] |
African catfish | Turmeric rhizome | Ethanolic extract | Well diffusion | 15 mm | Unknown | 37 | [194] |
African catfish | Turmeric rhizome | Methanolic extract | Well diffusion | 20 mm | Unknown | 37 | [194] |
African catfish | Azadirachta indica leaf | Methanolic extract | Microdilution | 1000 μg/mL | Unknown | 37 | [194] |
African catfish | Turmeric rhizome | Methanolic extract | Microdilution | 1000 μg/mL | Unknown | 37 | [194] |
Marine fish | Origanum vulgare | Essential oil | Microdilution | 25 μg/mL | 25 μg/mL | 24 | [182] |
Marine fish | Eucalyptus globulus | Essential oil | Microdilution | 100 μg/mL | 100 μg/mL | 24 | [182] |
Marine fish | Melaleuca alternifolia | Essential oil | Microdilution | 100 μg/mL | 100 μg/mL | 24 | [182] |
Marine fish | Lavendula angustifolia | Essential oil | Microdilution | 100 μg/mL | 100 μg/mL | 24 | [182] |
Marine fish | Origanum vulgare | Nano-emulsion of essential oil | Microdilution | 12.5 μg/mL | 12.5 μg/mL | 24 | [182] |
Marine fish | Eucalyptus globulus | Nano-emulsion of essential oil | Microdilution | 100 μg/mL | 100 μg/mL | 24 | [182] |
Marine fish | Melaleuca alternifolia | Nano-emulsion of essential oil | Microdilution | 50 μg/mL | 50 μg/mL | 24 | [182] |
Marine fish | Lavendular angustifolia | Nano-emulsion of essential oil | Microdilution | 100 μg/mL | 100 μg/mL | 24 | [182] |
Olive flounder | Lavendular angustifolia | essential oil | Microdilution | 0.06–0.12% (v/v) | 0.5–4.0% (v/v) | 27 | [183] |
Olive flounder | Syzygium aromaticum | essential oil | Microdilution | 0.25–0.5% v/v | 0.25–1% v/v | 27 | [181] |
Olive flounder | Syzygium aromaticum | Eugenol | Microdilution | 0.125–0.5% v/v | 0.5–1% v/v | 27 | [181] |
Unknown | Oliveria decumbens | Ethanolic extract | Microdilution | 18.75 mg/mL | 75 mg/mL | 25 | [40] |
Unknown | Oliveria decumbens | Essential oil | Microdilution | 0.5 mg/mL | 2 mg/mL | 25 | [40] |
Unknown | Oliveria decumbens | Aromatic water | Microdilution | 4 mg/mL | 16 mg/mL | 25 | [40] |
Tilapia | Allium sativum | Ethanolic extract | Disk diffusion | 13 mm | Unknown | Unknown | [42] |
Tilapia | Phyllanthus emblica | Ethanolic extract | Disk diffusion | 9 mm | Unknown | Unknown | [42] |
Tilapia | Terminalia bellirica | Ethanolic extract | Disk diffusion | 7 mm | Unknown | Unknown | [42] |
Tilapia | Syzygium aromaticum | Ethanolic extract | Disk diffusion | 7 mm | Unknown | Unknown | [42] |
Tilapia | Arjun coomaraswamy | Ethanolic extract | Disk diffusion | 7 mm | Unknown | Unknown | [42] |
Tilapia | Cinnamomum tamala | Ethanolic extract | Disk diffusion | 7 mm | Unknown | Unknown | [42] |
S. iniae ATCC29178 | Ferula asafoetida | Powder | Disk diffusion | 9 mm | Unknown | 37 | [196] |
Olive flounder | Cymbopogon flexuosus | Essential oil | Microdilution | 0.03–0.12% (v/v) | 0.125–0.5% v/v | 27 | [200] |
Unknown | Mentha piperita | Ethanolic extract | Disk diffusion | 18.5 mg/mL | 18.5 mg/mL | 37 | [159] |
Unknown | Satureja khuzistanica | Ethanolic extract | Disk diffusion | 10.8 mg/mL | 10.8 mg/mL | 37 | [159] |
Unknown | Matricaria recutica | Ethanolic extract | Disk diffusion | 8.2 mg/mL | 16.5 mg/mL | 37 | [159] |
Unknown | Zataria multiflora | Ethanolic extract | Disk diffusion | 4.8 mg/mL | 9.7 mg/mL | 37 | [159] |
Unknown | Rosmarinus officinalis | Ethanolic extract | Disk diffusion | 16.8 mg/mL | 33.6 mg/mL | 37 | [159] |
S. inaie BCG/LMG 3740 | Aloe vera | Essential oil | Disk diffusion | 4.06 mg/mL | 4.06 mg/mL | 37 | [159] |
S. inaie BCG/LMG 3740 | Salvia officinalis | Ethanolic extract | Disk diffusion | 2.59 mg/mL | 5.18 mg/mL | 37 | [139] |
Medicinal Herb/Plant | Extraction Method | Fish Species | Dosage and Duration | Water Temp. (°C) | Challenge Route | Survival Rate (%) | Ref. |
---|---|---|---|---|---|---|---|
Rosmarinus officinalis | Leaves | Tilapia | 3:17 w/w (leaf/feed), 5 days | 26 ± 1 | IP | 75 | [155] |
Rosmarinus officinalis | Ethyl acetate extract | Tilapia | 1:24 w/w (extract/feed), 5 days | 26 ± 1 | IP | 80 | [155] |
Rosmarinus officinalis | Leaves | Tilapia | 4%, 5 days | 26 ± 1 | IP | 35 | [156] |
Rosmarinus officinalis | Leaves | Tilapia | 8%, 5 days | 26 ± 1 | IP | 56 | [156] |
Rosmarinus officinalis | Leaves | Tilapia | 16%, 5 days | 26 ± 1 | IP | 50 | [156] |
Cuminum cyminum | Seed meal | Tilapia | 0.5–2% feed, 75 days | 28.6 ± 0.1 | Bath | 62.5–89.5 | [21] |
Trigonella foenum graecum | Powder | Tilapia | 1% in feed, 45 days | 28.4 ± 0.1 | Bath | 84.72 | [160] |
Thymus vulgaris | Powder | Tilapia | 1% in feed, 45 days | 28.4 ± 0.1 | Bath | 86.11 | [160] |
Rosmarinus officinalis | Powder | Tilapia | 1% in feed, 45 days | 28.4 ± 0.1 | Bath | 83.37 | [160] |
Cuminum cyminum | Seed meal | Tilapia | 1–2% in feed, 45 days | 28.3 ± 0.1 | Bath | 61–84 | [173] |
Thymus vulgaris | Powder | Tilapia | 1% in feed, 45 days | 28.4 ± 0.6 | IP | 78 | [161] |
Rosmarinus officinalis | Powder | Tilapia | 1% in feed, 45 days | 28.4 ± 0.6 | IP | 73 | [161] |
Trigonella foenum graecum | Powder | Tilapia | 1% in feed, 45 days | 28.4 ± 0.6 | IP | 69 | [161] |
Pimenta dioica | Seed meal powder | Tilapia | 5, 10, 15, 20 g/kg feed, 50 days | 28.4 ± 0.7 | Bath | 49–80% | [30] |
Citrus sinensis | Essential oil | Tilapia | 0.1%, 0.3%, 0.5%, 90 days | 28 | Bath | 46.7–58.3 | [37] |
Virgin coconut oil | Coconut oil | Tilapia | 3% in feed, 8 weeks | 28–29 | IP | about 73 | [48] |
Virgin coconut oil | Coconut oil | Tilapia | 0.75% in feed, 8 weeks | 28–29 | IP | about 60 | [48] |
Virgin coconut oil | Coconut oil | Tilapia | 1.5% in feed, 8 weeks | 28–29 | IP | about 67 | [48] |
Virgin coconut oil | Coconut oil | Tilapia | 2.25% in feed, 8 weeks | 28–29 | IP | about 54 | [48] |
Aloe vera (Barbados aloe) | Ethanolic extract | Rainbow trout | 1%, 1.5%, 30 days | 14 ± 1 | IP | 76 | [39] |
Salvia officinalis (Sage) | Ethanolic extract | Rainbow trout | 1.5%, 30 days | 14 ± 1 | IP | 65 | [39] |
Yacon (Smallanthus sonchifolius) | Powder | Olive flounder | 1%, 56 days | 18 ± 3 | IP | 76.7 | [41] |
Ginger Zingiber officinale | Powder | Olive flounder | 1%, 56 days | 18 ± 3 | IP | 66.7 | [41] |
Blueberry (Cyanococcus) | Powder | Olive flounder | 1%, 56 days | 18 ± 3 | IP | 85 | [41] |
Oliveria decumbens | Essential oil | Tilapia | 0.01%, 60 days | Unknown | Oral | 57 | [40] |
Oliveria decumbens | Ethanolic extract | Tilapia | 0.01%, 60 days | Unknown | Oral | 57.14 | [40] |
Oliveria decumbens | Aromatic water | Tilapia | 0.125%, 60 days | Unknown | Oral | 64.28 | [40] |
Oliveria decumbens | Extract + essential oil | Tilapia | 0.1%, 60 days | Unknown | Oral | 64.28 | [40] |
Allium sativum | Ethanolic extract | Tilapia | 0.5 g/100 g feed, | Unknown | IM | ~54 | [42] |
Allium sativum | Ethanolic extract | Tilapia | 1 g/100 g feed, | Unknown | IM | ~84 | [42] |
Eichhornia crassipes | Aqueous extract | Rainbow trout | 0.25, 0.5, 1% in feed, 56 days | 15 ± 1.1 | IP | 21.8 ± 6.5–34.7 ± 14.3 | [205] |
Eichhornia crassipes | Methanolic extract | Rainbow trout | 0.25, 0.5, 1%, in feed, 56 days | 15 ± 1.1 | IP | 24.8 ± 7.3–49.6 ± 4.7 | [205] |
Salvia officinalis | Ethanolic extract | Rainbow trout | 0.5, 1, 1.5% in feed, 10 days | 14 ± 1 | IP | 48–58 | [176] |
S. agalactiae Origin/Source | Medicinal Herb/Plant | Extraction Method | Inhibitory Method | MIC | MBC | Temp (°C) | Ref. |
---|---|---|---|---|---|---|---|
Strain ATCC 13813 | Cestrum auriculatum | Ethanol extract | Agar diffusion | >0.7 cm | Unknown | 37 | [212] |
Strain ATCC 13813 | Krameria triandra | Ethanol extract of root/ stem | Agar diffusion | >0.7 cm | Unknown | 37 | [212] |
Strain ATCC 13813 | Sambucus peruviana | Ethanol extract of leaf/shoot | Agar diffusion | >0.7 cm | Unknown | 37 | [212] |
Strain ATCC 13813 | Anredera diffusa | Methanol | Agar diffusion | >0.7 cm | Unknown | 37 | [212] |
Tilapia | Cassia fistula | Methanol | Microdilution | 24.9 mg/mL | 99.6 mg/mL | 37 | [213] |
Freshwater fish | Psidium guajava | Methanol (morin flavonoid) | Microdilution | 300 μg/mL | 37 | [209] | |
Freshwater fish | Psidium guajava | Methanol (morin-3-O-lyxoside flavonoid) | Microdilution | 200 μg/mL | Unknown | 37 | [209] |
Freshwater fish | Psidium guajava | Methanol (morin-3-O-arabinoside flavonoid) | Microdilution | 150 μg/mL | Unknown | 37 | [209] |
Freshwater fish | Psidium guajava | Methanol (quercetin flavonoid) | Microdilution | 200 μg/mL | Unknown | 37 | [209] |
Freshwater fish | Psidium guajava | Methanol (quercetin-3-O-Arabinoside flavonoid) | Microdilution | 200 μg/mL | Unknown | 37 | [209] |
Tilapia | Hibiscus sabdariffa | Water and methanol extract | Microdilution | 4.7 mg/mL | 9.4 mg/mL | 37 | [213] |
Tilapia | Allium sativum | Water extract | Swab paper disc | >500 μg/mL | Unknown | 25 | [210] |
Tilapia | Allium sativum | Ethanol extract | Swab paper disc | 125 μg/mL | Unknown | 25 | [210] |
Tilapia | Allium sativum | Methanol extract | Swab paper disc | 500 μg/mL | Unknown | 25 | [210] |
Tilapia | Andrographis paniculata | Water extract | Swab paper disc | 31.25 μg/mL | Unknown | 25 | [216] |
Tilapia | Andrographis paniculata | Ethanol extract | Swab paper disc | 250 μg/mL | Unknown | 25 | [216] |
Tilapia | Andrographis paniculata | Methanol extract | Swab paper disc | 250 μg/mL | Unknown | 25 | [216] |
Tilapia | Cassia alata | Water extract | Swab paper disc | 500 μg/mL | Unknown | 25 | [216] |
Tilapia | Cassia alata | Ethanol extract | Swab paper disc | 250 μg/mL | Unknown | 25 | [216] |
Tilapia | Cassia alata | Methanol extract | Swab paper disc | 500 μg/mL | Unknown | 25 | [216] |
Tilapia | Garcinia mangostana | Water extract | Swab paper disc | 500 μg/mL | Unknown | 25 | [216] |
Tilapia | Garcinia mangostana | Ethanol extract | Swab paper disc | 250 μg/mL | Unknown | 25 | [216] |
Tilapia | Garcinia mangostana | Methanol extract | Swab paper disc | 500 μg/mL | Unknown | 25 | [216] |
Tilapia | Psidium guajava | Water extract | Swab paper disc | 500 μg/mL | Unknown | 25 | [216] |
Tilapia | Psidium guajava | Ethanol extract | Swab paper disc | 62.5 μg/mL | Unknown | 25 | [216] |
Tilapia | Psidium guajava | Methanol extract | Swab paper disc | 500 μg/mL | Unknown | 25 | [216] |
Tilapia | Streblus asper | Water extract | Swab paper disc | 125 μg/mL | Unknown | 25 | [216] |
Tilapia | Streblus asper | Ethanol extract | Swab paper disc | 250 μg/mL | Unknown | 25 | [216] |
Tilapia | Streblus asper | Methanol extract | Swab paper disc | 250 μg/mL | Unknown | 25 | [216] |
Strain 55118 | Helichrysum plicatum | Ethanolic extract | Disk diffusion | >13 mm | Unknown | 37 | [178] |
Strain 55118 | Nuphar lutea | Water and ethanolic extracts | Disk diffusion | Moderate | Unknown | 37 | [178] |
Strain 55118 | Salvia tomentosa | Water extract | Disk diffusion | Moderate | Unknown | 37 | [178] |
Strain 55118 | Genista lydia | Ethanolic extract | Disk diffusion | Moderate | Unknown | 37 | [178] |
Strain 55118 | Nymphaea alba | Water, ethanol, methanol | Disk diffusion | Weak | Unknown | 37 | [178] |
Strain 55118 | Salvia verticillata | Methanol and ethanol extracts | Disk diffusion | Moderate | Unknown | 37 | [178] |
Strain 55118 | Phlomis pungens | Water extract | Disk diffusion | Moderate | Unknown | 37 | [178] |
Strain 55118 | Vinca minor | Ethanolic extract | Disk diffusion | Strong | Unknown | 37 | [178] |
Strain 55118 | Filipendula ulmaria | Water extract | Disk diffusion | Weak | Unknown | 37 | [178] |
Hybrid striped bass | Rosmarinus officinalis | Ethyl acetate | Disk diffusion | 17 mm | Unknown | 25 | [156] |
Tilapia | Cinnamomum verum | Water extract | Well diffusion | 0.15 mg/mL | Unknown | 35 | [167] |
Tilapia | Allium sativum | Water extract | Well diffusion | 2.50 mg/mL | Unknown | 35 | [167] |
Tilapia | Eugenia caryophyllus | Water extract | Well diffusion | 0.3 mg/mL | Unknown | 35 | [167] |
Tilapia | Thymus vulgaris | Water extract | Well diffusion | 0.6 mg/mL | Unknown | 35 | [167] |
Strain RITCC1913 | Papaver chelidonium folium | Ethanol extract | Well diffusion | 6.25 mg/mL | Unknown | 37 | [211] |
Strain RITCC1913 | Papaver armeniacus microstigma | Ethanol extract | Well diffusion | 6.25 mg/mL | Unknown | 37 | [211] |
Strain RITCC1913 | Papaver bracteatum | Ethanol extract | Well diffusion | 6.25 mg/mL | Unknown | 37 | [211] |
Strain RITCC1913 | Papaver argemone | Ethanol extract | Well diffusion | 0.75 mg/mL | Unknown | 37 | [211] |
Strain RITCC1913 | Papaver dubium | Ethanol extract | Well diffusion | 3.125 mg/mL | Unknown | 37 | [211] |
Strain RITCC1913 | Papaver macrostomum | Ethanol extract | Well diffusion | 1.56 mg/mL | Unknown | 37 | [211] |
Unknown | Dactyloctenium indicum | Methanol at 100 mg/mL | Disk diffusion | 10 mm | Unknown | 37 | [214] |
Unknown | Dactyloctenium indicum | Aqueous extract at 100 mg/mL | Disk diffusion | 9.7 mm | Unknown | 37 | [214] |
Unknown | Trichodesma indicum | Methanol at 100 mg/mL | Disk diffusion | 15.8 mm | Unknown | 37 | [214] |
Unknown | Asteracantha longifolia | Methanol at 200 mg/mL | Disk diffusion | 9 mm | Unknown | 37 | [214] |
Unknown | Murraya koeinigii | Methanol extract | Microdilution | 0.39 mg mL | Unknown | Unknown | [180] |
Biotype 2 (Unknown) | Aegle marmelos | Water extract | Well diffusion | 5 mg/mL | Unknown | 35 | [215] |
Biotype (Unknown) | Emblica officinalis | Water extract | Well diffusion | 0.6 mg/mL | Unknown | 35 | [215] |
Biotype 2 (Unknown) | Moringa oleifera | Water extract | Well diffusion | 0.6 mg/mL | Unknown | 35 | [215] |
Biotype 2 (Unknown) | Azadirachta indica | Chloroform extract | Well diffusion | 10 mg/mL | Unknown | 35 | [215] |
Biotype 2-Unknown | Azadirachta indica | Ethanol extract | Well diffusion | 1.25 mg/mL | Unknown | 35 | [215] |
Biotype 2 (Unknown) | Toona sinensis | Chloroform extract | Well diffusion | 0.15 mg/mL | Unknown | 35 | [215] |
Biotype 2 (Unknown) | Toona sinensis | Ethanol extract | Well diffusion | 0.6 mg/mL | Unknown | 35 | [215] |
Strain DMST 17129 | Rhodomyrtus tomentosa | Ethanol extract | Microdilution | 62.5 μg/mL | 250 μg/mL | 37 | [179] |
Tilapia | Rhodomyrtus tomentosa | Ethanol extract | Microdilution | 31.2–62.5 μg/mL | 1000 μg/mL | 37 | [179] |
Medicinal Herb/Plant | Extraction Method | Fish Species | Dosage and Duration | Water Temp. (°C) | Route of Challenge | Survival Rate (%) | Ref. |
---|---|---|---|---|---|---|---|
Andrographis paniculata | Aqueous | Tilapia | At ratios of 4:36 and 5:35 (w/w) in feed, | 25 | IP | 100 | [210] |
Rosmarinus officinalis | Leaves | Tilapia | 8% in feed, 8 days | 26 ± 1 | IP | 27 | [156] |
Rosmarinus officinalis | Leaves | 16% in feed, 8 days | 26 ± 1 | IP | 38 | [156] | |
Cinnamomum verum | Powder | Tilapia | In ratios of 1:20, 2:18, 3:316 in feed, 7 days | Unknown | IP | 68.7 | [167] |
C. verum | Aqueous | Tilapia | In ratios of 1:30, 2:28, 3:16 (w/w) in feed, 7 days | Unknown | IP | 60.5 | [167] |
Cratoxylum formosum | Aqueous | Tilapia | 0.5–1.5% in feed, 30 days | 56 ± 2 | IP | 44–90 | [216] |
Sophora flavescens | Ethanol | Tilapia | 0.025–0.4% in feed, 30 days | 28 ± 2 | IP | 47.8–79.9 | [217] |
Cinnamomum camphora | Methanol | Tilapia | 2 g/kg feed, 90 days | 27–29 | IM | 80 | [185] |
Carica papaya seed | Methanol | Tilapia | 2 g/kg feed, 90 days | 27–29 | IM | 70 | [185] |
Euphorbia hirta | Methanol | Tilapia | 2 g/kg feed, 90 days | 27–29 | IM | 70 | [185] |
Zingiber officinale | Essential oil | Tilapia | 0.5% in feed, 55 days | 26.70 ± 1.17 | Gavage | 100 | [38] |
Rhodomyrtus tomentosa | Ethanol | Tilapia | Pre-treated S. agalactiae at 0.25 × MIC (31.2–62.5 μg mL) | 30 | IP | 90 | [179] |
R. tomentosa | Ethanol | Tilapia | Pre-treated S. agalactiae at 0.125 × MIC (31.2–62.5 μg/mL) | 30 | IP | 55 | [179] |
R. tomentosa | Ethanol | Tilapia | Pre-treated S. agalactiae at 0.25 × MIC | 30 | IP | 50 | [179] |
Camellia sinensis | Ethanol | Tilapia | 1 g/kg feed, 56 days | 28 ± 1 | IP | 60 | [218] |
C. sinensis | Ethanol | Tilapia | 2 g/kg feed, 56 days | 28 ± 1 | IP | 83.33 | |
C. sinensis | Ethanol | Tilapia | 4 g/kg feed, 56 days | 28 ± 1 | IP | 76.68 | [218] |
C. sinensis | Ethanol | Tilapia | 8 g/kg feed, 56 days | 28 ± 1 | IP | 66.68 | [218] |
Bacterial Origin/Source | Medicinal Herb/Plant | Extraction/Essence Method | Inhibitory Method | MIC or Zone of Inhibition | MBC | Temp (°C) | Ref. |
---|---|---|---|---|---|---|---|
Cow mastitis | Portulaca oleracea | Aqueous extract | Disk diffusion | 13.8–18 mm at 0.12–0.5 g/mL | Unknown | 37 | [226] |
Cow mastitis | Portulaca oleracea | Ethanolic extract | Disk diffusion | 14.8–19.6 mm at 0.12–0.5 g/mL | Unknown | 37 | [226] |
Cow mastitis | Taraxacum mongolicum | Aqueous extract | Disk diffusion | 13.8–18 at 0.12–0.5 g/mL | Unknown | 37 | [226] |
Cow mastitis | Cinnamomum verum | Trans-cinnamaldehyde | Broth dilution | 0.05% | 0.4% | 37 | [225] |
Cow mastitis | Eugenia caryophillis | Eugenol | Broth dilution | 0.4% | 0.4% | 37 | [225] |
Cow mastitis | Origanum glandulosum | Carvacrol | Broth dilution | 0.4% | 0.8% | 37 | [225] |
Cow mastitis | Origanum glandulosum | Thymol | Broth dilution | 0.4% | 0.9% | 37 | [225] |
Cow mastitis | Taraxacum mongolicum | Ethanolic extract | Disk diffusion | 14.8–19.6 mm at 0.12–0.5 g/mL | Unknown | 37 | [226] |
Bovine mastitis | Piper betle | Ethanol | Well diffusion | 22–26 cm at 12.5–100 mg/mL | Unknown | 37 | [229] |
Bovine mastitis | Ageratum conyzoides | Ethanol | Well diffusion | 14–17 cm at 12.5–100 mg/l | Unknown | 37 | [229] |
Bovine mastitis | Curcuma domestica | Ethanol | Well diffusion | 18–21 cm at 12.5–100 mg/mL | Unknown | 37 | [229] |
Bovine mastitis | Withania somnifera (root) | Methanol | Well diffusion | 8.86–17.5 mm at 31.25–250 mg/mL | Unknown | 37 | [227] |
Bovine mastitis | Citrullus colocynthis pulp of fruit | Methanol | Well diffusion | 8.83–17.33 mm at 31.25–250 mg/mL | Unknown | 37 | [227] |
Bovine mastitis | Piper nigrum (fruit) | Methanol | Well diffusion | 7.7–11.4 mm at 15.6–250 mg/mL | Unknown | 37 | [227] |
Bacterial Origin/Source | Medicinal Herb/Plant | Extraction/Essence Method | Inhibitory Method | MIC or Zone of Inhibition | MBC | Temp (°C) | Ref. |
---|---|---|---|---|---|---|---|
S. parauberis KCTC 3651 | Epilobium pyrricholophum | Water extract | Disk diffusion | 9–14 mm | Unknown | 25 | [198] |
S. parauberis KCTC 3651 | Aralia cordat | Water extract | Disk diffusion | 9–14 mm (4000 ppm) | Unknown | 25 | [198] |
S. parauberis KCTC 3651 | Quercus mongolic | Water extract | Disk diffusion | 9–14 mm | Unknown | 25 | [198] |
S. parauberis KCTC 3651 | Phtheirospermum japonicum | Water extract | Disk diffusion | 29–34 mm (4000 ppm) | Unknown | 25 | [198] |
S. parauberis KCTC 3651 | Geranium wilfordi | Water extract | Disk diffusion | 9–14 mm | Unknown | 25 | [198] |
S. parauberis KCTC 3651 | Carpinus laxiflora | Water extract | Disk diffusion | 9–14 mm | Unknown | 25 | [198] |
S. parauberis KCTC 3651 | Sedum takesimense | Water extract | Disk diffusion | 9–14 mm | Unknown | 25 | [198] |
S. parauberis KCTC 3651 | Dystaenia takesimana | Water extract | Disk diffusion | 19–24 mm (>5000 ppm) | Unknown | 25 | [198] |
Marine fish | Rubus coreanus | Ethanol extract | Disk diffusion | 7.2 ± 0.07 mm at 100 µg/mL | Unknown | 35–37 | [199] |
Olive flounder | Ecklonia cava | Methanol extract | Microdilution | 1024 μg/mL (11 strains) | Unknown | 25 | [193] |
Olive flounder | Ecklonia cava | n-hexane soluble (Hexane) fraction | Microdilution | 256–1024 μg/mL (11 strains) | Unknown | 25 | [193] |
Olive flounder | Ecklonia cava | Dichloromethane fraction | Microdilution | 512- > 1024 μg/mL (11 strains) | Unknown | 25 | [193] |
Olive flounder | Ecklonia cava | Ethyl acetate fraction | Microdilution | 512–1024 μg/mL (11 strains) | Unknown | 25 | [193] |
Olive flounder | Cruciferous vegetables | Sulforaphane | Microdilution | 0.5 mg/mL | 0.87 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Sulforaphene | Microdilution | 0.125 mg/mL | 1 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Iberin | Microdilution | 0.156 mg/mL | 1 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Erucin isothiocyanates | Microdilution | 0.75 mg/mL | 0.75 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Allyl isothiocyanates | Microdilution | 0.75 mg/mL | 4 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Hexyl isothiocyanates | Microdilution | >4 mg/mL | >4 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Phenylethyl isothiocyanates | Microdilution | 0.188 mg/mL | 0.31 ± 0.12 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Benzyl isothiocyanates | Microdilution | 0.5 mg/mL | 0.62 ± 0.25 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetable | Phenyl isothiocyanates | Microdilution | 1.5 ± 0.5 mg/mL | 2 ± 1.4 mg/mL | 37 | [191] |
Olive flounder | Cruciferous vegetables | Indole-3-carbinol | Microdilution | 0.375 ± 0.14 mg/mL | 0.375 ± 0.14 mg/mL | 37 | [191] |
Olive flounder | Radish root | Hydrolysate of radish root | Microdilution | 0.44 ± 0.13 mg/mL | 0.5 mg/mL | 37 | [191] |
Marine fish | Ecklonia cava | Methanol extract | Disk diffusion | 17 mm | Unknown | Unknown | [192] |
Marine fish | Ecklonia stolonifera | Methanol extract | Disk diffusion | 11 mm | Unknown | Unknown | [192] |
Marine fish | Ecklonia cava | Ethyl acetate fraction | Microdilution | 256 μg/mL | Unknown | Unknown | [192] |
Marine fish | Ecklonia cava | Butanol fraction | Disk diffusion | 9 mm | Unknown | Unknown | [192] |
Olive flounder | Lavendular angustifolia | Essential oil | Microdilution | 0.063–0.5% (v/v) | 0.5–2.0% (v/v) | 27 | [183] |
Olive flounder | Syzygium aromaticum | Essential oil | Microdilution | 0.25–0.5% (v/v) | 0.5 (v/v) | 27 | [181] |
Olive flounder | Syzygium aromaticum | Eugenol | Microdilution | 0.125–1.0% (v/v) | 0.5–1.0% (v/v) | 27 | [181] |
Olive flounder | Cymbopogon flexuosus | Essential oil | Microdilution | 0.016–0.125% (v/v) | 0.03–0.5% (v/v) | 27 | [200] |
S. parauberis FP3287 | Abies holophylla, | Essential oil | Disk diffusion | 11 mm | Unknown | 28 | [201] |
S. parauberis FP3287 | Pinus thunbergii | Essential oil | Disk diffusion | 14 mm | Unknown | 28 | [201] |
S. parauberis FP3287 | Tsuga sieboldii | Essential oil | Disk diffusion | 9.75 ± 0.35 mm | Unknown | 28 | [201] |
S. parauberis FP3287 | Pinus rigitaeda | Essential oil | Disk diffusion | 10.25 ± 1.77 mm | Unknown | 28 | [201] |
S. uberis Origin/Source | Medicinal Herb/Plant | Extraction/Essence | Inhibitory Method | MIC or Zone of Inhibition | MBC | Temp (°C) | Ref. |
---|---|---|---|---|---|---|---|
Human mouth (9 strains) | Cinnamomum cassia (Cinnamon bark) | Aqueous extract | Disk diffusion | 2–6 mm | Unknown | 37 | [225] |
Human mouth (9 strains) | Cinnamomum cassia (Cinnamon bark) | Essential oil | Disk diffusion | 9 mm | Unknown | 37 | [225] |
Cow mastitis | Cinnamomum verum | Trans-cinnamaldehyde | Broth dilution | 0.1% v/v | 0.45% v/v | 39 | [225] |
Cow mastitis | Eugenia caryophillis | Eugenol | Broth dilution | 0.5% v/v | 0.4% v/v | 39 | [225] |
Cow mastitis | Origanum glandulosum | Carvacrol | Broth dilution | 0.8% v/v | 1.2% v/v | 39 | [225] |
Cow mastitis | Origanum glandulosum | Thymol | Broth dilution | 0.6% v/v | 1.4% v/v | 39 | [225] |
Unknown | Acacia nilotica leaf | Hot aqueous extract | Disk diffusion | 9–22 mm at 21.25–20 mg/disk | Unknown | Unknown | [232] |
Cow mastitis | Minthostachys verticillata | Essential oil | Microdilution | 14.3–114.5 mg/mL | 114.5–229 mg/mL | 37 | [231] |
Cow mastitis | Limonene | Sigma aldrich | Microdilution | 3.3–52.5 mg/mL | 210 mg/mL | 37 | [231] |
Cow mastitis | Punica granatum | Aqueous extract | Disk diffusion | 25 mm | Unknown | 37 | [190] |
Cow mastitis | Punica granatum | Methanol extract | Disk diffusion | 25 mm | Unknown | 37 | [190] |
Pig | Usnea barbata | Supercritical carbon dioxide extraction | Microdilution | 5 µg/mL | Unknown | 37 | [230] |
Pig | Usnea barbata | Usnic acid | Microdilution | 10 µg/mL | Unknown | 37 | [230] |
4. Conclusions and Future Studies
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pradeep, P.J.; Suebsing, R.; Sirthammajak, S.; Kampeera, J.; Jitrakorn, S.; Saksmerprome, V.; Turner, W.; Palang, I.; Vanichviriyakit, R.; Senapin, S.; et al. Evidence of vertical transmission and tissue tropism of Streptococcosis from naturally infected red tilapia (Oreochromis spp.). Aquac. Rep. 2016, 3, 58–66. [Google Scholar] [CrossRef]
- Austin, B.; Austin, D.A. Bacterial Fish Pathogens: Disease of Farmed and Wild Fish; Springer International Publishing: Cham, Switzerland, 2016; pp. 48–66. [Google Scholar]
- Pereira, U.P.; Mian, G.F.; Oliveira, I.C.M.; Benchetrit, L.C.; Costa, G.M.; Figueiredo, H.C.P. Genotyping of Streptococcus agalactiae strains isolated from fish, human and cattle and their virulence potential in Nile tilapia. Vet. Microbiol. 2010, 140, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Delannoy, C.M.; Crumlish, M.; Fontaine, M.C.; Pollock, J.; Foster, G.; Dagleish, M.P.; Turnbull, J.F.; Zadoks, R.N. Human Streptococcus agalactiae strains in aquatic mammals and fish. BMC Microbiol. 2013, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.P.; Ke, H.; Liang, Z.L.; Liu, Z.X.; Hao, L.; Ma, J.Y.; Li, Y.G. Multiple evolutionary selections involved in synonymous codon usages in the Streptococcus agalactiae genome. Int. J. Mol. Sci. 2016, 17, 277. [Google Scholar] [CrossRef]
- Gauthier, D.T. Bacterial zoonoses of fishes: A review and appraisal of evidence for linkages between fish and human infections. Vet. J. 2015, 203, 27–35. [Google Scholar] [CrossRef]
- Caipang, C.M.A.; Lucanas, J.B.; Lay-yag, C.M. Updates on the vaccination against bacterial diseases in tilapia, Oreochromis spp. and Asian seabass, Lates calcarifer. Aquac. Aquar. Conserv. Legis. 2014, 7, 184–193. [Google Scholar]
- Darwish, A.M.; Hobbs, M.S. Laboratory efficacy of amoxicillin for the control of Streptococcus iniae infection in blue tilapia. J. Aquat. Anim. Health 2005, 17, 197–202. [Google Scholar] [CrossRef]
- Soltani, M.; Jamshidi, S.; Sharifpour, I. Streptococcosis caused by Streptococcus iniae in farmed rainbow trout (Oncorhynchys mykiss) in Iran: Biophysical characteristics and pathogenesis. Bull. Eur. Assoc. Fish Pathol. 2005, 25, 95–106. [Google Scholar]
- Soltani, M.; Pirali, E.; Rasoli, A.; Shams, G.; Shafiei, S. Antibiotic residuals in some farmed rainbow trout (Oncorhynchus mykiss) of market size in Iran. Iran. J. Aquat. Anim. Health 2014, 1, 71–77. [Google Scholar] [CrossRef]
- Miranda, C.D.; Godoy, F.A.; Lee, M.R. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Front. Microbiol. 2018, 9, 1284. [Google Scholar] [CrossRef]
- Heuer, O.E.; Kruse, H.; Grave, K.; Collignon, P.; Karunasagar, I.; Angulo, F.J. Human health consequences of use of antimicrobial agents in aquaculture. Clin. Infec. Dis. 2009, 49, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Hiney, M.P.; Samuelsen, O.B. Bacterial resistance to antimicrobial agents used in fish farming: A critical evaluation of method and meaning. Ann. Rev. Fish Dis. 1994, 4, 273–313. [Google Scholar] [CrossRef]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Amal, M.N.A.; Zamri-Saad, M. Streptococcosis in tilapia (Oreochromis niloticus): A review. Pertanika J. Trop. Agri. Sci. 2011, 34, 195–206. [Google Scholar]
- Bulfon, C.; Volpatti, D.; Galeotti, M. Current research on the use of plant-derived products in farmed fish. Aquac. Res. 2015, 46, 513–551. [Google Scholar] [CrossRef]
- Okocha, R.C.; Olatoye, I.O.; Adedeji, O.B. Food safety impacts of antimicrobial use and their residues in aquaculture. Publ. Health Rev. 2018, 39, 21. [Google Scholar] [CrossRef]
- Ji, S.C.; Jeong, G.S.; Gwang-Soon, I.M.; Lee, S.W.; Yoo, J.H.; Takii, K. Dietary medicinal herbs improve growth performance, fatty acid utilization, and stress recovery of Japanese flounder. Fish. Sci. 2007, 73, 70–76. [Google Scholar] [CrossRef]
- Gabriel, N.N. Review on the progress in the role of herbal extracts in tilapia culture. Cogent Food Agric. 2019, 5, 1619651. [Google Scholar] [CrossRef]
- Elumalai, P.; Kurian, A.; Lakshmi, S.; Faggio, C.; Esteban, M.Á.; Ringø, E. Herbal immunomodulators in aquaculture. Rev. Fish. Sci. Aquacul. 2020, 29, 33–57. [Google Scholar] [CrossRef]
- Yılmaz, S.; Ergün, S. Effects of garlic and ginger oils on hematological and biochemical variables of sea bass (Dicentrarchus labrax). J. Aquat. Anim. Health 2012, 24, 219–224. [Google Scholar] [CrossRef]
- Yılmaz, S.; Ergün, S.; Celik, E.Ş. Effects of herbal supplements on growth performance of sea bass (Dicentrarchus labrax): Change in body composition and some blood parameters. J. BioSci. Biotech. 2012, 1, 217–222. [Google Scholar]
- Yılmaz, S.; Ergün, S.; Çelik, E.Ş. Effect of dietary herbal supplements on some physiological conditions of sea bass Dicentrarchus labrax. J. Aquat. Anim. Health 2013, 25, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, S.; Ergün, S.; Çelik, E.Ş. Effect of dietary spice supplementations on welfare status of sea bass (Dicentrarchus labrax L). Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2016, 86, 229–237. [Google Scholar] [CrossRef]
- Mahdavi, M.; Hajimoradloo, A.; Ghorbani, R. Effect of Aloe vera extract on growth parameters of common carp (Cyprinus carpio). World J.Med. Sci. 2013, 9, 55–60. [Google Scholar] [CrossRef]
- Gabriel, N.N.; Qiang, J.; He, J.; Ma, X.Y.; Kpundeh, M.D.; Xu, P. Dietary Aloe vera supplementation on growth performance, some haemato-biochemical parameters and disease resistance against Streptococcus iniae in tilapia (GIFT). Fish Shellfish Immunoo. 2015, 44, 504–514. [Google Scholar] [CrossRef]
- Gabriel, N.N.; Qiang, J.; Ma, X.Y.; He, J.; Xu, P.; Liu, K. Dietary Aloe vera improves plasma lipid profile, antioxidant, and hepatoprotective enzyme activities in GIFT-tilapia (Oreochromis niloticus) after Streptococcus iniae challenge. Fish Physiolo. Biochem. 2015, 41, 1321–1332. [Google Scholar] [CrossRef]
- Yang, W.; Li, A. Isolation and characterization of Streptococcus dysgalactiae from diseased Acipenser schrenckii. Aquaculture 2009, 294, 14–17. [Google Scholar] [CrossRef]
- Soltani, M.; Lymbery, A.; Song, S.K.; Hosseini Shekarabi, P. Adjuvant effects of medicinal herbs and probiotics for fish vaccines. Rev. Aquac. 2019, 11, 1325–1341. [Google Scholar] [CrossRef]
- Yılmaz, S.; Ergün, S. Dietary supplementation with allspice Pimenta dioica reduces the occurrence of streptococcal disease during first feeding of Mozambique Tilapia Fry. J. Aquat. Anim. Health 2014, 26, 144–148. [Google Scholar] [CrossRef]
- Yilmaz, S.; Ergün, S.; Kaya, H.; Gürkan, M. Influence of Tribulus terrestris extract on the survival and histopathology of Oreochromis mossambicus (Peters, 1852) fry before and after Streptococcus iniae infection. J. Appl. Ichthyol. 2014, 30, 994–1000. [Google Scholar] [CrossRef]
- Yilmaz, S. Effects of dietary blackberry syrup supplement on growth performance, antioxidant, and immunological responses, and resistance of Nile tilapia, Oreochromis niloticus to Plesiomonas shigelloides. Fish Shellfish Immunol. 2019, 84, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S. Effects of dietary caffeic acid supplement on antioxidant, immunological and liver gene expression responses, and resistance of Nile tilapia, Oreochromis niloticus to Aeromonas veronii. Fish Shellfish Immunol. 2019, 86, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Gurkan, M.; Yilmaz, S.; Hasan, K.A.Y.A.; Ergun, S.; Alkan, S. Influence of three spice powders on the survival and histopathology of Oreochromis mossambicus before and after Streptococcus iniae infection. Mar. Sci. Technol. Bull. 2015, 4, 1–5. [Google Scholar]
- Olusola, S.E.; Emikpe, B.O.; Olaifa, F.E. The potentials of medicinal plant extracts as bio-antimicrobials in aquaculture. Int. Medic. Aromat. Plants 2013, 3, 404–412. [Google Scholar]
- Reverter, M.; Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture 2014, 433, 50–61. [Google Scholar] [CrossRef]
- Acar, Ü.; Kesbiç, O.S.; Yılmaz, S.; Gültepe, N.; Türker, A. Evaluation of the effects of essential oil extracted from sweet orange peel (Citrus sinensis) on growth rate of tilapia (Oreochromis mossambicus) and possible disease resistance against Streptococcus iniae. Aquaculture 2015, 437, 282–286. [Google Scholar] [CrossRef]
- Brum, A.; Pereira, S.A.; Owatari, M.S.; Chagas, E.C.; Chaves, F.C.M.; Mouriño, J.L.P.; Martins, M.L. Effect of dietary essential oils of clove basil and ginger on Nile tilapia (Oreochromis niloticus) following challenge with Streptococcus agalactiae. Aquaculture 2017, 468, 235–243. [Google Scholar] [CrossRef]
- Tafi, A.A.; Meshkini, S.; Tukmechi, A.; Alishahi, M.; Noori, F. Immunological and anti-streptococcal effects of Salvia officinalis and Aloe vera extracts supplemented feed in rainbow trout (Oncorhynchus mykiss). Kafkas Üniversitesi Vet. Fakültesi Derg. 2018, 24, 365–370. [Google Scholar] [CrossRef]
- Vazirzadeh, A.; Jalali, S.; Farhadi, A. Antibacterial activity of Oliveria decumbens against Streptococcus iniae in Nile tilapia (Oreochromis niloticus) and its effects on serum and mucosal immunity and antioxidant status. Fish Shellfish Immunol. 2019, 94, 407–416. [Google Scholar] [CrossRef]
- Kim, J.; Lee, K.W.; Jeong, H.S.; Ansary, M.W.R.; Kim, H.S.; Kim, T.; Kwon, M.G.; Cho, S.H. Oral administration effect of yacon, ginger and blueberry on the growth, body composition and plasma chemistry of juvenile olive flounder (Paralichthys olivaceus) and immunity test against Streptococcus iniae compared to a commercial probiotic, Lactobacillus fermentum. Aquac. Rep. 2019, 15, 100212. [Google Scholar] [CrossRef]
- Foysal, M.J.; Alam, M.; Momtaz, F.; Chaklader, M.R.; Siddik, M.A.; Cole, A.; Fotedar, R.; Rahman, M.M. Dietary supplementation of garlic (Allium sativum) modulates gut microbiota and health status of tilapia (Oreochromis niloticus) against Streptococcus iniae infection. Aquac. Res. 2019, 50, 2107–2116. [Google Scholar] [CrossRef]
- Wilkinson, H.W.; Thacker, L.G.; Facklam, R.R. Nonhemolytic group B streptococci of human, bovine, and ichthyic origin. Infect. Immun. 1973, 7, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.J.; Klesius, P.H.; Gilbert, P.M.; Shoemaker, C.A.; Al-Sarawi, M.A.; Landsberg, J.; Durendez, R.; Al-Marzouk, A.; Al-Zenki, S. Characterization of β-hemolytic group B Streptococcus agalactiae in cultured seabream, Sparus auratus and mullet, Liza klunzingeri, in Kuwait. J. Fish Dis. 2002, 25, 505–513. [Google Scholar] [CrossRef]
- Zappulli, V.; Mazzariol, S.; Cavicchioli, L.; Petterino, C.; Bargelloni, L.; Castagnaro, M. Fatal necrotizing fasciitis and myositis in a captive common bottlenose dolphin (Tursiops truncatus) associated with Streptococcus agalactiae. J. Vet. Diagn. Investig. 2005, 17, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Taurisano, N.D.; Butler, B.P.; Stone, D.; Hariharan, H.; Fields, P.J.; Ferguson, H.W.; Haulena, M.; Cotrell, P.; Nielsen, O.; Raverty, S. Streptococcus phocae in marine mammals of northeastern Pacific and Arctic Canada: A retrospective analysis of 85 postmortem investigations. J. Wildl. Dis. 2018, 54, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Agnew, W.; Barnes, A.C. Streptococcus iniae: An aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Vet. Microbiol. 2007, 122, 1–15. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, J.L.; Chen, K.M.; Gao, T.T.; Yao, H.C.; Liu, Y.J.; Zhang, W.; Lu, C.P. Development of Streptococcus agalactiae vaccines for tilapia. Dis. Aquat. Org. 2016, 122, 163–170. [Google Scholar] [CrossRef]
- Maekawa, S.; Wang, Y.-T.; Yoshida, T.; Wang, P.C.; Chen, S.-C. Group C Streptococcus dysgalactiae infection in fish. J. Fish Dis. 2020, 43, 963–970. [Google Scholar] [CrossRef]
- Eldar, A.; Bejerano, Y.; Livoff, A.; Horovitcz, A.; Bercovier, H. Experimental streptococcal meningoencephalitis in cultured fish. Vet. Microbiol. 1995, 43, 33–40. [Google Scholar] [CrossRef]
- Evans, J.J.; Klesius, P.H.; Shoemaker, C.A.; Pasnik, D.J. Identification and epidemiology of Streptococcus iniae and S. agalactiae in tilapias Oreochromis spp. In Proceedings of the 7th International Symposium on Tilapia in Aquaculture, American Tilapia Association, Vera Cruz, Mexico, 9 June 2006; pp. 25–42. [Google Scholar]
- Salvador, R.; Muller, E.E.; Freitas, J.C.; Leonhadt, J.H.; Giordano, L.G.P.; Dias, J.A. Isolation and characterization of Streptococcus spp. group B in Nile Tilapia (Oreochromis niloticus) reared in hapas nets and earth nurseries in the northern region of Parana State, Brazil. Ciência Rural. 2005, 35, 1374–1378. [Google Scholar] [CrossRef]
- Romalde, J.L.; Ravelo, C.; Valdés, I.; Magariños, B.; de la Fuente, E.; San Martín, C.; Avendaño-Herrera, R.; Toranzo, A.E. Streptococcus phocae, an emerging pathogen for salmonid culture. Vet. Microbiol. 2008, 130, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Netto, L.N.; Leal, C.A.G.; Figueiredo, H.C.P. Streptococcus dysgalactiae as an agent of septicaemia in Nile tilapia, Oreochromis niloticus (L.). J. Fish Dis. 2011, 34, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Sepahi, A.; Heidarieh, M.; Mirvaghefi, A.; Rafiee, G.R.; Farid, M.; Sheikhzadeh, N. Effects of water temperature on the susceptibility of rainbow trout to Streptococcus agalactiae. Acta Sci. Vet. 2013, 41, 1097. [Google Scholar]
- Iregui, C.A.; Comas, J.; Vasquez, G.M.; Verjan, N. Experimental early pathogenesis of Streptococcus agalactiae infection in red tilapia Oreochromis spp. J. Fish Dis. 2016, 39, 205–215. [Google Scholar] [CrossRef]
- Lazado, C.C.; Fridman, S.; Sinai, T.; Zilberg, D. First report of Streptococcus parauberis in a cultured freshwater ornamental fish, the ram cichlid Mikrogeophagus ramirezi (Myers & Harry, 1948). J. Fish Dis. 2017, 41, 161–164. [Google Scholar] [CrossRef]
- Luo, X.; Fu, X.; Liao, G.; Chang, O.; Huang, Z.; Li, N. Isolation, pathogenicity and characterization of a novel bacterial pathogen Streptococcus uberis from diseased mandarin fish (Siniperca chuatsi). Microb. Pathog. 2017, 107, 380–389. [Google Scholar] [CrossRef]
- Soltani, M.; Baldisserotto, B.; Hosseini Shekarabi, S.P.; Shafiei, S.; Bashiri, M. Lactococcosis a re-emerging disease in aquaculture: Disease significant and phytotherapy. Vet. Sci. 2021, 8, 181. [Google Scholar] [CrossRef]
- Haghighi Karsidani, S.; Soltani, M.; Nikbakhat-Brojeni, R.; Ghasemi, M.; Skall, S.F. Molecular epidemiology of zoonotic streptococcosis/lactococcosis in rainbow trout (Oncorhynchus mykiss) aquaculture in Iran. Iran. J. Microbiol. 2010, 2, 198–209. [Google Scholar]
- Eldar, A.; Bejerano, Y.; Bercovier, H. Streptococcus shiloi and Streptococcus difficile: Two new streptococcal species causing a meningoencephalitis in fish. Curr. Microbiol. 1994, 28, 139–143. [Google Scholar] [CrossRef]
- Delamare-Deboutteville, J.; Bowater, R.; Condon, K.; Reynolds, A.; Fisk, A.; Aviles, F.; Barnes, A.C. Infection and pathology in Queensland grouper, Epinephelus lanceolatus, (Bloch), caused by exposure to Streptococcus agalactiae via different routes. J. Fish Dis. 2015, 38, 1021–1035. [Google Scholar] [CrossRef]
- Roberts, R.J. Fish Pathology, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Gibello, A.; Mata, A.I.; Blanco, M.M.; Casamayor, A.; Domínguez, L.; Fernández-Garayzabal, J.F. First identification of Streptococcus phocae isolated from Atlantic salmon (Salmo salar). J. Clin. Microbiol. 2005, 43, 526–527. [Google Scholar] [CrossRef] [PubMed]
- Zlotkin, A.; Chilmonczyk, S.; Eyngor, M.; Hurvitz, A.; Ghittino, C.; Eldar, A. Trojan horse effect: Phagocyte-mediated Streptococcus iniae infection of fish. Infect. Immun. 2003, 71, 2318–2325. [Google Scholar] [CrossRef]
- Bromage, E.S.; Thomas, A.; Owens, L. Streptococcus iniae, a bacterial infection in barramundi Lates calcarifer. Dis. Aquat. Org. 1999, 36, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, J.T.; Stannard, J.A.; Lauth, X.; Ostland, V.E.; Powell, H.C.; Westerman, M.E.; Nizet, V.S. iniae phosphoglucomutase is a virulence factor and a target for vaccine development. Infect. Immun. 2005, 73, 6935–6944. [Google Scholar] [CrossRef] [PubMed]
- Lowe, B.A.; Miller, J.D.; Neely, M.N. Analysis of the polysaccharide capsule of the systemic pathogen Streptococcus iniae and its implications in virulence. Infect. Immun. 2007, 75, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Locke, J.B.; Colvin, K.M.; Datta, A.K.; Patel, S.K.; Naidu, N.N.; Neely, M.N.; Nizet, V.; Buchanan, J.T. Streptococcus iniae capsule impairs phagocytic clearance and contributes to virulence in fish. J. Bacteriol. 2007, 189, 1279–1287. [Google Scholar] [CrossRef]
- Baron, M.; Bolduc, G.; Goldberg, M.; Auperin, T.; Madoff, L. Alpha C protein of group B Streptococcus binds host cell surface glycosaminoglycan and enters cells by an action-dependent mechanism. J. Biol. Chem. 2004, 279, 24714–24723. [Google Scholar] [CrossRef]
- Baron, M.; Filman, D.; Prophete, G.; Hogle, J.; Madoff, L. Identification of a glycosaminoglycan binding region of the alpha C protein that mediates entry of group B Streptococci into host cells. J. Biol. Chem. 2007, 282, 10526–10536. [Google Scholar] [CrossRef] [Green Version]
- Barnes, A.C.; Young, F.M.; Horne, M.T.; Ellis, A.E. Streptococcus iniae: Serological differences, presence of capsule and resistance to immune serum killing. Dis. Aquat. Org. 2003, 53, 241–247. [Google Scholar] [CrossRef]
- Barnes, A.C.; Horne, M.T.; Ellis, A.E. Streptococcus iniae expresses a cell surface non-immune trout immunoglobulin binding factor when grown in normal trout serum. Fish Shellfish. Immunol. 2003, 15, 425–431. [Google Scholar] [CrossRef]
- Nizet, V. Streptococcal beta-hemolysins: Genetics and role in disease pathogenesis. Trends Microbiol. 2002, 10, 575–580. [Google Scholar] [CrossRef]
- Nizet, V.; Beall, B.; Bast, D.J.; Datta, V.; Kilburn, L.; Low, D.E.; De Azavedo, J.C. Genetic locus for streptolysin S production by group A streptococcus. Infect. Immun. 2000, 68, 4245–4254. [Google Scholar] [CrossRef] [PubMed]
- Fuller, J.D.; Camus, A.C.; Duncan, C.L.; Nizet, V.; Bast, D.J.; Thune, R.L.; Low, D.E.; de Azavedo, J.C. Identification of a streptolysin S-associated gene cluster and its role in the pathogenesis of S. iniae disease. Infect. Immun. 2002, 70, 5730–5739. [Google Scholar] [CrossRef] [PubMed]
- Locke, J.B.; Colvin, K.M.; Varki, N.; Vicknair, M.R.; Nizet, V.; Buchanan, J.T. Streptococcus iniae β-hemolysin streptolysin S is a virulence factor in fish infection. Dis. Aquat. Org. 2007, 76, 17–26. [Google Scholar] [CrossRef]
- Locke, J.B.; Aziz, R.K.; Vicknair, M.R.; Nizet, V.; Buchanan, J.T. Streptococcus iniae M-like protein contributes to virulence in fish and is a target for live attenuated vaccine development. PLoS ONE 2008, 3, e2824. [Google Scholar] [CrossRef]
- Aviles, F.; Zhang, M.M.; Chan, J.; Delamare-Deboutteville, J.; Green, T.J.; Dang, C.; Barnes, A.C. The conserved surface M-protein SiMA of Streptococcus iniae is not effective as a cross-protective vaccine against differing capsular serotypes in farmed fish. Vet. Microbiol. 2013, 162, 151–159. [Google Scholar] [CrossRef]
- Soh, K.Y.; Loh, J.M.S.; Hall, C.; Proft, T. Functional analysis of two novel Streptococcus iniae virulence factors using a zebrafish infection model. Microorganisms 2020, 8, 1361. [Google Scholar] [CrossRef]
- Baiano, J.C.; Tumbol, R.A.; Umapathy, A.; Barnes, A.C. Identification and molecular characterisation of a fibrinogen binding protein from Streptococcus iniae. BMC Microbiol. 2008, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Lang, S.; Palmer, M. Characterization of Streptococcus agalactiae CAMP factor as a pore-forming toxin. J. Biol. Chem. 2003, 278, 38167–38173. [Google Scholar] [CrossRef]
- Rajagopal, L. Understanding the regulation of Group B Streptococcal virulence factors. Future Microbiol. 2009, 4, 201–221. [Google Scholar] [CrossRef]
- Mishra, A.; Nam, G.H.; Gim, J.A.; Lee, H.E.; Jo, A.; Kim, H.S. Current challenges of Streptococcus infection and effective molecular, cellular, and environmental control methods in aquaculture. Mol. Cells 2018, 41, 495. [Google Scholar] [CrossRef] [PubMed]
- Ancona, R.J.; Ferrieri, P.; Williams, P.P. Maternal factors that enhance the acquisition of Group B streptococci by newborn infants. J. Med. Microbiol. 1980, 13, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Bisno, A.L.; Craven, D.E.; McCabe, W.R. M proteins of group G streptococci isolated from bacteremic human infections. Infect. Immun. 1987, 55, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Brandt, C.M.; Spellerberg, B. Human infections due to Streptococcus dysgalactiae subspecies equisimilis. Clin. Infect. Dis. 2009, 49, 766–772. [Google Scholar] [CrossRef]
- Lindgren, P.E.; McGavin, M.J.; Signäs, C.; Guss, B.; Gurusiddappa, S.; Höök, M.; Lindberg, M. Two different genes coding for fibronectin-binding proteins from Streptococcus dysgalactiae. The complete nucleotide sequences and characterization of the binding domains. Eur. J. Biochem. 1993, 214, 819–827. [Google Scholar] [CrossRef]
- Lindgren, P.E.; Signäs, C.; Rantamäki, L.; Lindberg, M. A fibronectin-binding protein from Streptococcus equisimilis: Characterization of the gene and identification of the binding domain. Vet. Microbiol. 1994, 41, 235–247. [Google Scholar] [CrossRef]
- Kline, J.B.; Xu, S.; Bisno, A.L.; Collins, C.M. Identification of a fibronectin-binding protein (GfbA) in pathogenic group G streptococci. Infect. Immun. 1996, 64, 2122–2129. [Google Scholar] [CrossRef]
- Lo, H.H.; Cheng, W.S. Distribution of virulence factors and association with emm polymorphism or isolation site among beta-hemolytic group G Streptococcus dysgalactiae subspecies equisimilis. APMIS 2015, 123, 45–52. [Google Scholar] [CrossRef]
- Rohde, M.; Talay, S.R.; Rasmussen, M. Molecular mechanisms of Streptococcus dysgalactiae subsp equisimilis enabling intravascular persistence. Microbes Infect. 2012, 14, 329–334. [Google Scholar] [CrossRef]
- Gherardi, G.; Imperi, M.; Palmieri, C.; Magi, G.; Facinelli, B.; Baldassarri, L.; Pataracchia, M.; Creti, R. Genetic diversity and virulence properties of Streptococcus dysgalactiae subsp. equisimilis from different sources”. J. Med. Microbiol. 2014, 63, 90–98. [Google Scholar] [CrossRef]
- Sjöbring, U.; Björck, L.; Kastern, W. Streptococcal protein G. Gene structure and protein binding properties. J. Biol. Chem. 1991, 266, 399–405. [Google Scholar] [CrossRef]
- Watanabe, S.; Shimomura, Y.; Ubukata, K.; Krikae, T.; Tohru, M.A. Concomitant regulation of host tissue-destroying virulence factors and carbohydrate metabolism during invasive diseases induced by group g streptococci. J. Infect. Dis. 2013, 208, 1482–1493. [Google Scholar] [CrossRef] [PubMed]
- Smyth, D.; Cameron, A.; Davies, M.R.; McNeilly, C.; Hafner, L.; Sriprakash, K.S.; McMillan, D.J. DrsG from Streptococcus dysgalactiae subsp. equisimilis inhibits the antimicrobial peptide LL-37. Infect. Immun. 2014, 82, 2337–2344. [Google Scholar] [CrossRef] [PubMed]
- Sachse, S.; Seidel, P.; Gerlach, D.; Günther, E.; Rödel, J.; Straube, E.; Schmidt, K.H. Superantigen-like gene(s) in human pathogenic Streptococcus dysgalactiae, subsp equisimilis: Genomic localisation of the gene encoding streptococcal pyrogenic exotoxin G (speG(dys)). FEMS Immunol. Med. Microbiol. 2002, 34, 159–167. [Google Scholar] [CrossRef]
- Oliver, S.P.; Almeida, R.A.; Calvinho, L.F. Virulence factors of Streptococcus uberis isolated from cows with mastitis. Zent. Vet. B 1998, 45, 461–471. [Google Scholar] [CrossRef]
- Kaczorek, E.; Malaczewska, J.; Wojcik, R.; Siwicki, A.K. Biofilm production and other virulence factors in Streptococcus spp. isolated from clinical cases of bovine mastitis in Poland. BMC Vet. Res. 2017, 13, 398. [Google Scholar] [CrossRef]
- Reinoso, E.B.; Lasagno, M.C.; Dieser, S.A.; Odierno, L.M. Distribution of virulence-associated genes in Streptococcus uberis isolated from bovine mastitis. FEMS Microbiol. Lett. 2011, 318, 183–188. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Wang, P.; Mo, Z.; Li, J.; Liu, S.; Li, G.; Zhu, M.; Li, G. Isolation, identification and vaccine development of serotype III Streptococcus parauberis in turbot (Scophthalmus maximus) in China. Aquaculture 2021, 538, 736525. [Google Scholar] [CrossRef]
- Silayeva, O.; Engelstädter, J.; Barnes, A.C. Evolutionary epidemiology of Streptococcus iniae: Linking mutation rate dynamics with adaptation to novel immunological landscapes. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2020, 85, 104435. [Google Scholar] [CrossRef]
- Genteluci, G.L.; Silva, L.G.; Souza, M.C.; Glatthardt, T.; de Mattos, M.C.; Ejzemberg, R.; Alviano, C.S.; Figueiredo, A.M.S.; Bernadete, T.F.C. Assessment and characterization of biofilm formation among human isolates of Streptococcus dysgalactiae subsp. equisimilis. Int. J. Med. Microbiol. 2015, 305, 937–947. [Google Scholar] [CrossRef]
- Martin, M.C.-S.; González-Contreras, A.; Avendaño-Herrera, R. Infectivity study of Streptococcus phocae to seven fish and mammalian cell lines by confocal microscopy. J. Fish Dis. 2012, 35, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Salazar, S.; Oliver, C.; Yáñez, A.J.; Avendaño-Herrera, R. Comparative analysis of innate immune responses to Streptococcus phocae strains in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Fish Shellfish. Immunol. 2016, 51, 97–103. [Google Scholar] [CrossRef]
- González-Contreras, A.; Magariños, B.; Godoy, M.; Irgang, R.; Toranzo, A.E.; Avendaño-Herrera, R. Surface properties of Streptococcus phocae strains isolated from diseased Atlantic salmon, Salmo salar L. J. Fish Dis. 2011, 34, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Soltani, M.; Alishahi, M.; Mirzargar, S.; Nikbakht, G. Vaccination of rainbow trout against Streptococcus iniae infection comparison of different routes of administration and different vaccine. Iran. J. Fish. Sci. 2007, 7, 129–140. [Google Scholar]
- Soltani, M.; Pirali Kheirabadi, A.; Taherimirkahead, E.; Shafie, S.; Mohamadian, S.; Roholahi, S. Molecular study of streptococcosis/lactococcosis distribution in farmed rainbow trout in Charmahal–va-Bakhteyari and Kohgiloyeh-va-Boyerahmad provinces, Iran. Iran. J. Epidemiol. 2013, 9, 59–68. [Google Scholar]
- Bromage, E.S.; Owens, L. Infection of barramundi Lates calcarifer with Streptococcus iniae: Effects of different routes of exposure. Dis. Aquat. Org. 2002, 52, 199–205. [Google Scholar] [CrossRef]
- Klesius, P.; Evans, J.; Shoemaker, C.; Yeh, H.; Goodwin, A.; Adams, A.; Thompson, K. Rapid detection and identification of Streptococcus iniae using a monoclonal antibody-based indirect fluorescent antibody technique. Aquaculture 2006, 258, 180–186. [Google Scholar] [CrossRef]
- Suanyuk, N.; Kong, F.; Ko, D.; Gilbert, G.; Supamattaya, K. Occurrence of rare genotypes of Streptococcus agalactiae in cultured red tilapia Oreochromis sp. and Nile tilapia O. niloticus in Thailand-relationship to human isolates? Aquaculture 2008, 284, 35–40. [Google Scholar] [CrossRef]
- Suanyuk, N.; Sukkasame, N.; Tanmark, N.; Yoshida, T.; Itami, T.; Thune, R.L.; Tantikitti, C.; Supamattaya, K. Streptococcus iniae infection in cultured Asian sea bass (Lates calcarifer) and red tilapia (Oreochromis sp.) in southern Thailand. Songklanakarin J. Sci. Technol. 2010, 32, 341–348. [Google Scholar]
- Duremdez, R.; Al-Marzouk, A.; Qasem, J.A.; Al-Harbi, A.; Gharabally, H. Isolation of Streptococcus agalactiae from cultured silver pomfret, Pampus argenteus (Euphrasen), in Kuwait. J. Fish Dis. 2004, 27, 307–310. [Google Scholar] [CrossRef]
- Kim, J.H.; Gomez, D.K.; Choresca, C.H.; Park, S.C. Detection of major bacterial and viral pathogens in trash fish used to feed cultured flounder in Korea. Aquaculture 2007, 272, 105–110. [Google Scholar] [CrossRef]
- Garcia, J.C.; Klesius, P.H.; Evans, J.J.; Shoemaker, C.A. Non infectivity of cattle S. agalactiae in Nile tilapia (O. niloticus) and channel catfsh (Ictalurus ounctatus). Aquaculture 2008, 281, 151–154. [Google Scholar] [CrossRef]
- Nomoto, R.; Munasinghe, L.I.; Jin, D.H.; Shimahara, Y.; Yasuda, H.; Nakamura, A.; Misawa, N.; Itami, T.; Yoshida, T. Lancefield group C Streptococcus dysgalactiae infection responsible for fish mortalities in Japan. J. Fish Dis. 2004, 27, 679–686. [Google Scholar] [CrossRef]
- Zhou, S.M.; Li, A.X.; Ma, Y.; Liu, R.M. Isolation, identification and characteristics of 16S rDNA gene sequences of the pathogens responsible for the Streptococcicosis in cultured fish. Acta Sci. Nat. Univ. Sunyatseni 2007, 46, 68–71. [Google Scholar]
- Abdelsalam, M.; Chen, S.C.; Yoshida, T. Phenotypic and genetic characterizations of Streptococcus dysgalactiae strains isolated from fish collected in Japan and other Asian countries. FEMS Microbiol. Lett. 2010, 302, 32–38. [Google Scholar] [CrossRef]
- Pourgholam, R.; Laloei, F.; Saeidi, A.A.; Ghoroghi, A.; Taghavi, M.J.; Zahedi, A.; Safari, R.; Sharifpour, E.; Sepahdari, A. Molecular identification of some causative agents of streptococcosis isolated in farmed rainbow trout (Oncorhynchus mykiss, walbaum) in Iran. Iran. J. Fish. Sci. 2011, 10, 109–122. [Google Scholar]
- Williams, A.M.; Collins, M.D. Molecular taxonomic studies on Streptococcus uberis types I and II. Description of Streptococcus parauberis sp. nov. J. Appl. Microbiol. 1990, 68, 485–490. [Google Scholar] [CrossRef]
- Domeénech, A.; Derenaáandez-Garayzábal, J.F.; Pascual, C.; Garcia, J.A.; Cutuli, M.T.; Moreno, M.A.; Collins, M.D.; Dominguez, L. Streptococcosis in cultured turbot, Scopthalmus maximus (L.), associated with Streptococcus parauberis. J. Fish Dis. 1996, 19, 33–38. [Google Scholar] [CrossRef]
- Haines, A.N.; Gauthier, D.T.; Nebergall, E.E.; Cole, S.D.; Nguyen, K.M.; Rhodes, M.W.; Vogelbein, W.K. First report of Streptococcus parauberis in wild finfish from North America. Vet. Microbiol. 2013, 166, 270–275. [Google Scholar] [CrossRef]
- Haines, A.; Nebergall, E.; Besong, E.; Council, K.; Lambert, O.; Gauthier, D. Draft genome sequences for seven Streptococcus parauberis isolates from wild fish in the Chesapeake Bay. Genome Announc. 2016, 4, e00741-16. [Google Scholar] [CrossRef]
- Baeck, G.W.; Kim, J.H.; Gomez, D.K.; Park, S.C. Isolation and characterization of Streptococcus sp. from diseased flounder (Paralichthys olivaceus) in Jeju Island. J. Vet. Sci. 2006, 7, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Oguro, K.; Yamane, J.; Yamamoto, T.; Ohnishi, K.; Oshima, S.I.; Imajoh, M. Draft genome sequence of Streptococcus parauberis strain SK-417, isolated from diseased Sebastes ventricosus in Kagoshima Japan. Genome Announc. 2014, 2, e00453-14. [Google Scholar] [CrossRef] [PubMed]
- Al Bulushi, I.M.; Poole, S.E.; Barlow, R.; Deeth, H.C.; Dykes, G.A. Speciation of Gram-positive bacteria in fresh and ambient-stored sub-tropical marine fish. Int. J. Food Microbiol. 2010, 138, 32–38. [Google Scholar] [CrossRef]
- Skaar, I.; Gaustad, P.; Tønjum, T.; Holm, B.; Stenwig, H. Streptococcus phocae sp. nov., a new species isolated from clinical specimens from seals. Int. J. Syst. Evol. Microbiol. 1994, 44, 646–650. [Google Scholar] [CrossRef]
- Henton, M.M.; Zapke, O.; Basson, P.A. Streptococcus phocae infections associated with starvation in Cape fur seals: Case report. J. S. Afr. Vet. Assoc. 1999, 70, 98–99. [Google Scholar] [CrossRef] [PubMed]
- Vossen, A.; Abdulmawjood, A.; Lämmler, C.; Weiss, R.; Siebert, U. Identification and molecular characterization of beta-hemolytic streptococci isolated from harbor seals (Phoca vitulina) and grey seals (Halichoerus grypus) of the German North and Baltic seas. J. Clin. Microbiol. 2004, 42, 469–473. [Google Scholar] [CrossRef]
- Kuiken, T.; Kennedy, S.; Barrett, T.; Van de Bildt, M.W.G.; Borgsteede, F.H.; Brew, S.D.; Codd, G.A.; Duck, C.; Deaville, R.; Eybatov, T.; et al. The 2000 canine distemper epidemic in Caspian seals (Phoca caspica): Pathology and analysis of contributory factors. Vet. Pathol. 2006, 43, 321–338. [Google Scholar] [CrossRef]
- Imai, D.; Jang, S.; Miller, M.; Conrad, P.A. Characterization of beta-hemolytic streptococci isolated from southern sea otters (Enhydra lutris nereis) stranded along the California coast. Vet. Microbiol. 2009, 136, 378–381. [Google Scholar] [CrossRef]
- Johnson, S.; Lowenstine, L.; Gulland, F.; Jang, S.; Imai, D.; Almy, F.; DeLong, R.; Gardner, I. Aerobic bacterial flora of the vagina and prepuce of California sea lions (Zalophus californianus) and investigation of associations with urogenital carcinomas. Vet. Microbiol. 2006, 114, 94–103. [Google Scholar] [CrossRef]
- Bartlett, G.; Smith, W.; Dominik, C.; Batac, F.; Dodd, E.; Byrne, B.A.; Jang, S.; Jessup, D.; Chantrey, J.; Miller, M. Prevalence, pathology, and risk factors associated with Streptococcus phocae infection in southern sea otters (Enhydra lutris nereis), 2004–2010. J. Wildl. Dis. 2016, 52, 1–9. [Google Scholar] [CrossRef]
- Facklam, R.; Elloitt, J.; Shewmaker, L.; Reingold, A. Identification and characterization of sporadic isolates of S. iniae from human. J. Clin. Microbiol. 2005, 43, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Nitzan, Y.; Maayan, M.; Wajsman, C. Streptococcus group B isolates in a regional hospital area. Med. Microbiol. Immunol. 1980, 169, 21–30. [Google Scholar] [CrossRef]
- Tenenbaum, T.; Spellerberg, B.; Adam, R.; Vogel, M.; Kim, K.S.; Schroten, H. Streptococcus agalactiae invasion of human brain microvascular endothelial cells are promoted by the laminin-binding protein Lmb. Microbes Infect. 2007, 9, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Oppegaard, O.; Mylvaganam, H.; Skrede, S.; Langeland, N.; Kittang, B.R. Sequence diversity of sicG among group C and G Streptococcus dysgalactiae subspecies equisimilis isolates associated with human infections in western Norway. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Chennapragada, S.S.; Ramphul, K.; Barnett, B.J.; Mejias, S.G.; Lohana, P. A rare case of Streptococcus dysgalactiae subsp. dysgalactiae human zoonotic infection. Cureu 2018, 10, e2901. [Google Scholar] [CrossRef]
- Koh, T.H.; Sng, L.H.; Yuen, S.M.; Thomas, C.K.; Tan, P.L.; Tan, S.H.; Wong, N.S. Streptococcal cellulitis following preparation of fresh raw seafood. Zoonoses Public Health 2009, 56, 206–208. [Google Scholar] [CrossRef]
- Bert, F.; Lambert-Zechovsky, N. A case of bacteremia caused by Streptococcus dysgalactiae. Eur. J. Clin. Microbiol. Infect. Dis. 1997, 16, 324–326. [Google Scholar] [CrossRef]
- Woo, P.C.; Teng, J.L.; Lau, S.K.; Lum, P.N.; Leung, K.W.; Wong, K.L.; Li, K.W.; Lam, K.C.; Yuen, K.Y. Analysis of a viridans group strain reveals a case of bacteremia due to Lancefield group G alpha-hemolytic Streptococcus dysgalactiae subsp. equisimilis in a patient with pyomyositis and reactive arthritis. J. Clin. Microbiol. 2003, 41, 613–618. [Google Scholar] [CrossRef]
- Fernández-Aceñero, M.J.; Fernández-López, P. Cutaneous lesions associated with bacteremia by Streptococcus dysgalactiae. J. Am. Acad. Dermatol. 2006, 55, S91–S92. [Google Scholar] [CrossRef]
- Di Domenico, E.G.; Toma, L.; Prignano, G.; Pelagalli, L.; Police, A.; Cavallotti, C.; Torelli, R.; Sanguinetti, M.; Ensoli, F. Misidentification of Streptococcus uberis as a human pathogen: A case report and literature review. Int. J. Infect. Dis. 2015, 33, 79–81. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chao, C.-B.; Bowser, P.R. Comparative histopathology of Streptococcus iniae and Streptococcus agalactiae-infected tilapia. Bull. Eur. Assoc. Fish Pathol. 2007, 27, 2–9. [Google Scholar]
- Martos-Sitcha, J.A.; Mancera, J.M.; Prunet, P.; Magnoni, L.J. Welfare and stressors in fish: Challenges facing aquaculture. Front. Physiol. 2020, 11, 162. [Google Scholar] [CrossRef]
- Shoemaker, C.A.; Evans, J.J.; Klesius, P.H. Density and dose: Factors affecting mortality of Streptococcus iniae infected tilapia (Oreochromis niloticus). Aquaclture 2000, 188, 229–235. [Google Scholar] [CrossRef]
- Alsaid, M.; Hassan, H.M.D.; Noordin, N.M.; Khairani Bejo, S.; Mohamed, Y.; Abuseliana, A.F. Environmental factors influencing the susceptibility of red hybrid tilapia (Oreochromis sp.) to Streptococcus agalactiae infection. Adv. Sci. Lett. 2013, 19, 3600–3604. [Google Scholar] [CrossRef]
- Chang, P.; Plumb, J. Effects of salinity on Streptococcus infection of Nile tilapia, Oreochromis niloticus. J. Appl. Aquac. 1996, 6, 39–45. [Google Scholar] [CrossRef]
- Bunch, E.C.; Bajerano, Y. The effect of environmental factors on the susceptibility of hybrid tilapia Oreochromis niloticus x Oreochromis aureus to streptococcosis. Isr. J. Aquac. 1997, 49, 56–61. [Google Scholar]
- Anshary, H.; Kurniawan, R.A.; Sriwulan, S.; Ramli, R.; Baxa, D.V. Isolation and molecular identification of the etiological agents of streptococcosis in Nile tilapia (Oreochromis niloticus) cultured in net cages in Lake Sentani, Papua, Indonesia. SpringerPlus 2014, 3, 627. [Google Scholar] [CrossRef]
- Chang, P.H.; Plumb, J.A. Histopathology of experimental Streptococcus sp. infection in tilapia, O. niloticus and channel catfish, Ictalarus punctatus. J. Fish Dis. 1996, 19, 235–241. [Google Scholar] [CrossRef]
- Hernández, E.; Figueroa, J.; Iregui, C. Streptococcosis on a red tilapia, Oreochromis sp., farm: A case study. J. Fish Dis. 2009, 32, 247–252. [Google Scholar] [CrossRef]
- Karamanoli, K.; Vokou, D.; Menkissoglu, U.; Constantinidou, H.I. Bacterial colonization of phyllosphere of Mediterranean aromatic plants. J. Chem. Ecol. 2000, 26, 2035–2048. [Google Scholar] [CrossRef]
- Inouye, S.; Takizawa, T.; Yamaguchi, H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother. 2001, 47, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Abutbul, S.; Golan-Goldhirsh, A.; Barazani, O.; Zilberg, D. Use of Rosmarinus officinalis as a treatment against Streptococcus iniae in tilapia (Oreochromis sp.). Aquaculture 2004, 238, 97–105. [Google Scholar] [CrossRef]
- Zilberg, D.; Tal, A.; Froyman, N.; Abutbul, S.; Dudai, N.; Golan-Goldhirsh, A. Dried leaves of Rosmarinus officinalis as a treatment for streptococcosis in tilapia. J. Fish Dis. 2010, 33, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Soltani, M.; Ghodratnama, M.; Taheri Mirghaed, A.; Zargar, A.; Rouhollahi, S.H. The effect of Zataria multiflora Boiss. and Rosmarinus officinalis essential oil on Streptococcus iniae isolated from rainbow trout farms. Vet. Microbiol. 2013, 9, 1–13. Available online: https://civilica.com/doc/646018/ (accessed on 11 September 2022).
- Soltani, M.; Ghodratnama, M.; Ebrahimzadeh-Mosavi, H.A.; Nikbakht-Brujeni, G.; Mohamadian, S.; Ghasemian, M. Shirazi thyme (Zataria multiflora Boiss) and Rosemary (Rosmarinus officinalis) essential oils repress expression of sagA, a streptolysin S-related gene in Streptococcus iniae. Aquaculture 2014, 430, 248–252. [Google Scholar] [CrossRef]
- Tafi, A.A.; Meshkini, S.; Tukmechi, A.; Alishahi, M.; Noori, F. Determination of component and in vitro anti streptococcal properties of Mentha piperita L.; Satureja khuzistanica Jamzad, Matricaria recutica L.; Zataria multiflora Boiss and Rosmarinus officinalis L. ethanolic extracts. Iran. J. Fish. Sci. 2020, 19, 1373–1383. [Google Scholar] [CrossRef]
- Yılmaz, S.; Ergün, S.; Soytaş, N. Herbal supplements are useful for preventing streptococcal disease during first feeding of tilapia fry, Oreochromis mossambicus. Isr. J. Aquac. 2013, 833, 195–204. [Google Scholar]
- Gültepe, N.; Bilen, S.; Yılmaz, S.; Güroy, D.; Aydın, S. Effects of herbs and spice on health status of tilapia (Oreochromis mossambicus) challenged with Streptococcus iniae. Acta Vet. 2014, 83, 125–131. [Google Scholar] [CrossRef]
- Alishahi, M.; Ghorbanpoor, M.; Najafzadeh, H.; Pashmforoosh, M. Antibacterial effects of some medical plant extracts on Aeromonas hydrophila, Yersinia ruckeri and Streptococcus iniae. Sci-Res. Iran. Vet. J. 2010, 6, 21–30. [Google Scholar]
- Owlia, P.; Rasooli, I.; Saderi, H. Antistreptococcal and antioxidant of essential oil from Matricaria chamomilla. Res. J. Biol. Sci. 2007, 2, 155–160. Available online: https://medwelljournals.com/abstract/?doi=rjbsci.2007.155.160 (accessed on 11 September 2022).
- Issabeagloo, E.; Kermanizadeh, P.; Taghizadieh, M.; Forughi, R. Antimicrobial effects of rosemary (Rosmarinus officinalis L.) essential oils against Staphyloccus spp. Afr. J. Microbiol. Res. 2012, 6, 5039–5042. [Google Scholar] [CrossRef]
- Tepe, B. Inhibitory effect of Satureja on certain types of organisms. Rec. Nat. Prod. 2015, 9, 1–18. [Google Scholar]
- Ghasemi Pirbalouti, A.; Nourafcan, H.; Solyamani-Babadi, E. Variation in chemical composition and antibacterial activity of essential oils from Bakhtiari Savory (Satureja bachtiarica Bunge.). J. Essent. Oil-Bear. Plants 2017, 20, 474–484. [Google Scholar] [CrossRef]
- Alsaid, M.; Daud, H.; Bejo, S.K.; Abuseliana, A. Antimicrobial activities of some culinary spice extracts against Streptococcus agalactiae and its prophylactic uses to prevent streptococcal infection in red hybrid tilapia (Oreochromis sp.). World J. Fish Mar. Sci. 2010, 2, 532–538. [Google Scholar]
- Bababaalian Amiri, A.; Azari Takami, G.; Afsharnasab, M.; Zargar, A. Effects of commercial herbal oil mixture on some hematological, biochemical and immunological parameters of rainbow trout (Oncorhynchus mykiss) and its preventive efficacy against Yersinia ruckeri infection. Iran. J. Fish. Sci. 2020, 19, 1304–1318. [Google Scholar] [CrossRef]
- Şimşek, M.; Duman, R. Investigation of effect of 1, 8-cineole on antimicrobial activity of chlorhexidine gluconate. Pharmacogn. Res. 2017, 9, 234–237. [Google Scholar] [CrossRef]
- Pamfil, D.; Vasile, C.; Tarţău, L.; Vereştiuc, L.; Poiată, A. pH-Responsive 2-hydroxyethyl methacrylate/citraconic anhydride–modified collagen hydrogels as ciprofloxacin carriers for wound dressings. J. Bioact. Compat. Polym. 2017, 32, 355–381. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, F.; Ji, B.P.; Pei, R.S.; Xu, N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 2008, 47, 174–179. [Google Scholar] [CrossRef]
- Yılmaz, S.; Ergün, S.; Soytaş, N. Dietary supplementation of cumin (Cuminum cyminum) preventing streptococcal disease during first feeding of Mozambique tilapia (Oreochromis mossambicus). J. Biosci. Biotechnol. 2013, 2, 117–124. [Google Scholar]
- Yilmaz, S.; Ergün, S.; Turk, N. Effects of cumin-supplemented diets on growth and disease (Streptococcus iniae) resistance of tilapia (Oreochromis mossambicus). Isr. J. Aquac. 2012, 64, 768–772. [Google Scholar] [CrossRef]
- Gachkar, L.; Yadegari, D.; Rezaei, M.B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem. 2007, 102, 898–904. [Google Scholar] [CrossRef]
- Moghimi, S.M.; Soltani, M.; Mirzargar, S.S.; Ghodratnama, M. Effects of Eucalyptus camaldulensis, Mentha pulegium and Aloe vera essences and chloramine T on growth behavior of Streptococcus iniae and Lactococcus garvieae the causes of streptococcosis/ lactococcosis in farmed rainbow trout (Onchorhynchus mykiss). J. Fish. 2013, 66, 106–118. [Google Scholar] [CrossRef]
- Tafi, A.A.; Meshkini, S.; Tukmechi, A.; Alishahi, M.; Noori, F. Therapeutic and histopathological effect of Aloe vera and Salvia officinalis hydroethanolic extracts against Streptococcus iniae in rainbow trout. Arch. Razi Inst. 2020, 75, 275–287. [Google Scholar] [CrossRef]
- Sserunkuma, P.; McGaw, L.J.; Nsahlai, I.V.; Van Staden, J. Selected southern African medicinal plants with low cytotoxicity and good activity against bovine mastitis pathogens. S. Afr. J. Bot. 2017, 111, 242–247. [Google Scholar] [CrossRef]
- Turker, H.; Yıldırım, A.B.; Karakaş, F.P. Sensitivity of bacteria isolated from fish to some medicinal plants. Turk. J. Fish. Aquat. Sci. 2009, 9, 181–186. [Google Scholar] [CrossRef]
- Na-Phatthalung, P.; Chusri, S.; Suanyuk, N.; Voravuthikunchai, S.P. In vitro and in vivo assessments of Rhodomyrtus tomentosa leaf extract as an alternative anti-streptococcal agent in Nile tilapia (Oreochromis niloticus L.). J. Med. Microbiol. 2017, 66, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Najiah, M.; Nadirah, M.; Arief, Z.; Zahrol, S.; Tee, L.W.; Ranzi, A.D.; Amar, A.S.; Laith, A.A.; Mariam, M.; Suzana, S.; et al. Antibacterial activity of Malaysian edible herbs extracts on fish pathogenic bacteria. Res. J. Med. Plant 2011, 5, 772–778. [Google Scholar] [CrossRef]
- Pathirana, H.N.K.S.; Wimalasena, S.H.M.P.; De Silva, B.C.J.; Hossain, S.; Gang-Joon, H. Antibacterial activity of clove essential oil and eugenol against fish pathogenic bacteria isolated from cultured olive flounder (Paralichthys olivaceus). Slov. Vet. Res. 2019, 56, 31–38. [Google Scholar] [CrossRef]
- Gholipourkanani, H.; Buller, N.; Lymbery, A. In vitro antibacterial activity of four nano-encapsulated herbal essential oils against three bacterial fish pathogens. Aquac. Res. 2019, 50, 871–875. [Google Scholar] [CrossRef]
- Wimalasena, S.H.; Pathirana, H.N.; De Silva, B.C.; Hossain, S.; Heo, G.J. Antimicrobial activity of lavender (Lavendula rangustifolia) oil against fish pathogenic bacteria isolated from cultured olive flounder (Paralichthys olivaceus) in Korea. Indian J. Fish. 2018, 65, 52–56. [Google Scholar] [CrossRef]
- Chaudhry, N.M.A.; Tariq, P. Anti-microbial activity of Cinnamomum cassia against diverse microbial flora with its nutritional and medicinal impacts. Pak. J. Bot. 2006, 38, 169–174. [Google Scholar]
- Kareem, Z.H.; Abdelhadi, Y.M.; Christianus, A.; Karim, M.; Romano, N. Effects of some dietary crude plant extracts on the growth and gonadal maturity of Nile tilapia (Oreochromis niloticus) and their resistance to Streptococcus agalactiae infection. Fish Physiol. Biochem. 2016, 42, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.L.; Wang, W.H.; Hu, W.T.; Zhou, Y.C. Antibacterial synergisms of Ji Xue Teng, Spatholobus suberectus, extract and selected antibiotics against Streptococcus agalactiae from Nile tilapia, Oreochromis niloticus (L.), in Vitro and in Vivo. J. World Aquac. Soc. 2018, 49, 1002–1013. [Google Scholar] [CrossRef]
- Nayak, Y.; Abhilash, D. Protection of cyclophosphamide induced myelosuppression by alcoholic extract of Pimenta dioica leaves in mice. Pharmacologyonline 2008, 3, 719–723. [Google Scholar]
- Krishnamoorthy, B.; Rema, J. Allspice. In Handbook of Herbs and Spices; Peter, K.V., Ed.; Woodhead Publishing: Boca Raton, FL, USA, 2004; pp. 117–139, 391–416. [Google Scholar]
- Shylaja, M.R.; Peter, K.V. The functional role of herbal spices. In Handbook of Herbs and Spices (Peter editor); Woodhead Publishing Limited: Boca Raton, FL, USA, 2004; pp. 26–45. [Google Scholar]
- Gopinath, S.M.; Suneetha, T.B.; Mruganka, V.D.; Ananda, S. Chemical profiling and antibacterial activity of Punica granatum L. against pathogens causing bovine mastitis. J. Chem. Pharm. Res. 2011, 3, 514–518. [Google Scholar]
- Ko, M.O.; Ko, J.Y.; Kim, M.B.; Lim, S.B. Antibacterial activity of isothiocyanates from cruciferous vegetables against pathogenic bacteria in olive flounder. Korean J. Food Preserv. 2015, 22, 886–892. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.B.; Hwang, H.J.; Kim, Y.M.; Lee, M.S. Antibacterial property of Ecklonia cava extract against marine bacterial pathogens. J. Food Hyg. Saf. 2016, 31, 380–385. [Google Scholar] [CrossRef]
- Eom, S.H.; Santos, J.A.; Kim, J.H.; Jung, W.K.; Kim, D.H.; Kim, Y.M. In vitro antibacterial and synergistic activity of an Ecklonia cava extract against antibiotic-resistant Streptococcus parauberis. Fish. Aquat. Sci. 2015, 18, 241–247. [Google Scholar] [CrossRef]
- Olusola, S.E.; Fakoya, S.; Omage, I.B. Antimicrobial activity of leaf extracts of Neem (Azadrichta indica) and Tumeric (Curcuma longa) rhizome against some pathogens isolated from Clarias gariepinus. J. Adv. Microbiol. 2017, 3, 238–245. [Google Scholar]
- Saeidi asl, M.R.; Adel, M.; Caipang, C.M.A.; Dawood, M.A.O. Immunological responses and disease resistance of rainbow trout (Oncorhynchus mykiss) juveniles following dietary administration of stinging nettle (Urtica dioica). Fish Shellfish. Immunol. 2017, 71, 230–238. [Google Scholar] [CrossRef]
- Safari, O.; Sarkheil, M.; Paolucci, M. Dietary administration of ferula (Ferula asafoetida) powder as a feed additive in diet of koi carp, Cyprinus carpio koi: Effects on hemato-immunological parameters, mucosal antibacterial activity, digestive enzymes, and growth performance. Fish Physiol. Biochem. 2019, 45, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Zargar, A.; Mazandarani, M.; Hoseini, S.M. Effects of safflower (Carthamus tinctorius) extract on serum antibacterial activity of rainbow trout (Oncorhynchus mykiss) against Aeromonas hydrophila, Streptococcus iniae and Yersinia ruckeri. Int. J. Aquat. Biol. 2018, 6, 1–7. [Google Scholar] [CrossRef]
- Kang, M.; Kim, M.B.; Kim, J.H.; Ko, Y.H.; Lim, S.B. Integral antioxidative capacity and antimicrobial activity of pressurized liquid extracts from 40 selected plant species. J. Korean Soc. Food Sci. Nutr. 2010, 39, 1249–1256. [Google Scholar] [CrossRef]
- Dharaneedharan, S.; Harikrishanan, R.; Balasundaram, C.; Heo, M.S. In vitro antioxidant and antimicrobial activity of Rubus coreanus ethanolic extract, a potent biotherapeutic component for aquaculture. Isr. J. Aquac. 2013, 9, 1–7. [Google Scholar]
- Pathirana, H.N.K.S.; Wimalasena, S.H.M.P.; De Silva, B.C.J.; Hossain, S.; Gang-Joon, H. Determination of the in vitro effect of lemongrass (Cymbopogon flexuosus) oil against fish pathogenic bacteria isolated from cultured olive flounder (Paralichthys olivaceus). Slov. Vet. Res. 2019, 56, 125–131. [Google Scholar] [CrossRef]
- Ham, Y.; Yang, J.; Choi, W.S.; Ahn, B.J.; Park, M.J. Antibacterial activity of essential oils from Pinaceae leaves against fish pathogens. J. Korean Wood Sci. Technol. 2020, 48, 527–547. [Google Scholar] [CrossRef]
- Apraku, A.; Liu, L.; Leng, X.; Rupia, E.J.; Ayisi, C.L. Evaluation of blended virgin coconut oil and fish oil on growth performance and resistance to Streptococcus iniae challenge of Nile tilapia (Oreochromis niloticus). Egypt. J. Basic Appl. Sci. 2017, 4, 175–184. [Google Scholar] [CrossRef] [Green Version]
- DebMandal, M.; Mandal, S. Coconut (Cocos nucifera L.: Arecaceae): In health promotion and disease prevention. Asian Pac. J. Trop. Med. 2011, 4, 241–247. [Google Scholar] [CrossRef]
- Sharif Rohani, M.; Pourgholam, R.; Haghighi, M. Evaluation the effects of different levels of Echinacea purpurea extract on the immunity responses, biochemical and hematological indices and disease resistance against Streptococcus iniae in rainbow trout (Oncorhynchus mykiss). Iran. J. Aquat. Anim. Health 2016, 2, 1–13. [Google Scholar] [CrossRef]
- Rufchaei, R.; Mirvaghefi, A.; Hoseinifar, S.H.; Valipour, A.; Nedaei, S. Effects of dietary administration of water hyacinth (Eichhornia crassipes) leaves extracts on innate immune parameters, antioxidant defence and disease resistance in rainbow trout (Oncorhynchus mykiss). Aquaculture 2019, 515, 734533. [Google Scholar] [CrossRef]
- Aboul-Enein, A.M.; Shanab, S.M.; Shalaby, E.A.; Zahran, M.M.; Lightfoot, D.A.; El-Shemy, H.A. Cytotoxic and antioxidant properties of active principals isolated from water hyacinth against four cancer cells lines. BMC Complement. Altern. Med. 2014, 14, 397. [Google Scholar] [CrossRef] [PubMed]
- Chantiratikul, P.; Meechai, P.; Nakbanpotec, W. Antioxidant activities and phenolic contents of extracts from Salvinia molesta and Eichornia crassipes. Res. J. Biol. Sci. 2009, 4, 1113–1117. [Google Scholar]
- Surendraraj, A.; Farvin, K.S.; Anandan, R. Antioxidant potential of water hyacinth (Eichornia crassipes): In vitro antioxidant activity and phenolic composition. J. Aquat. Food Prod. Technol. 2013, 22, 11–26. [Google Scholar] [CrossRef]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Bacteriostatic effect of flavonoids isolated from leaves of Psidium guajava on fish pathogens. Fitoterapia 2007, 78, 434–436. [Google Scholar] [CrossRef] [PubMed]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Prophylactic effect of Andrographis paniculata extracts against Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus). J. Biosci. Bioeng. 2009, 107, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Chalabian, F.; Sharif-Nia, F.; Katouzian, F. Antimicrobial effects of methanol, ethanol and water of six species of Papaver Iran on a number of pathogenic bacteria. J. Sci. 2009, 19, 74. [Google Scholar]
- Neto, C.C.; Owens, C.W.; Langfield, R.D.; Comeau, A.B.; Onge, J.S.; Vaisberg, A.J.; Hammond, G.B. Antibacterial activity of some Peruvian medicinal plants from the Callejon de Huaylas. J. Ethnopharmacol. 2002, 79, 133–138. [Google Scholar] [CrossRef]
- Borisutpeth, P.; Kanbutra, P.; Weerakhun, S.; Sarachoo, K.; Porntrakulpipat, S. Antibacterial activity of Thai medicinal plant extracts on Aeromonas hydrophila and Streptococcus agalactiae isolated from diseased tilapia (Oreochromis niloticus). In Proceedings of the Abstracts of 31st Congress on Science and Technology of Thailand at Suranaree University of Technology, Khon Kaen, Thailand, 18–20 October 2005. [Google Scholar]
- Mubarack, H.M.; Doss, A.; Dhanabalan, R.; Venkataswamy, R. In vitro antimicrobial effects of some selected plants against bovine mastitis pathogens. Hygeia J. Drugs Med. 2011, 3, 71–75. [Google Scholar]
- Kamble, M.T.; Gallardo, W.; Yakuitiyage, A.; Chavan, B.R.; Rusydi, R.; Rahma, A. Antimicrobial activity of bioactive herbal extracts against Streptococcus agalactiae biotype 2. Int. J. Basic Appl. Biol. 2014, 2, 152–155. [Google Scholar]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Effect of Cratoxylum formosum on innate immune response and disease resistance against Streptococcus agalactiae in tilapia Oreochromis niloticus. Fish. Sci. 2010, 76, 653–659. [Google Scholar] [CrossRef]
- Wu, Y.R.; Gong, Q.F.; Fang, H.; Liang, W.W.; Chen, M.; He, R.J. Effect of Sophora flavescens on non-specific immune response of tilapia (GIFT Oreochromis niloticus) and disease resistance against Streptococcus agalactiae. Fish Shellfish Immunol. 2013, 34, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Van Doan, H.; Hoseinifar, S.H.; Sringarm, K.; Jaturasitha, S.; Yuangsoi, B.; Dawood, M.A.; Esteban, M.Á.; Ringø, E.; Faggio, C. Effects of Assam tea extract on growth, skin mucus, serum immunity and disease resistance of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae. Fish Shellfish Immunol. 2019, 93, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Park, H.R.; Hwang, D.; Suh, H.J.; Yu, K.W.; Kim, T.Y.; Shin, K.S. Antitumor and antimetastatic activities of rhamnogalacturonan-II-type polysaccharide isolated from mature leaves of green tea via activation of macrophages and natural killer cells. Int. J. Biol. Macromol. 2017, 99, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Jeszka-Skowron, M.; Zgoła-Grześkowiak, A.; Frankowski, R. Cistus incanus a promising herbal tea rich in bioactive compounds: LC–MS/MS Determination of catechins, flavonols, phenolic acids and alkaloids—A comparison with Camellia sinensis, Rooibos and Hoan ngoc herbal tea. J. Food Compos. Anal. 2018, 74, 71–81. [Google Scholar] [CrossRef]
- Lee, M.K.; Kim, H.W.; Lee, S.H.; Kim, Y.J.; Asamenew, G.; Choi, J.; Lee, J.W.; Jung, H.A.; Yoo, S.M.; Kim, J.B. Characterization of catechins, theaflavins, and flavonols by leaf processing step in green and black teas (Camellia sinensis) using UPLC-DAD-QToF/MS. Eur. Food Res. Technol. 2019, 245, 997–1010. [Google Scholar] [CrossRef]
- Pereira, V.P.; Knor, F.J.; Vellosa, J.C.R.; Beltrame, F.L. Determination of phenolic compounds and antioxidant activity of green, black and white teas of Camellia sinensis (L.) Kuntze, Theaceae. Rev. Bras. De Plantas Med. 2014, 16, 490–498. [Google Scholar] [CrossRef]
- Abarike, E.D.; Jian, J.; Tang, J.; Cai, J.; Yu, H.; Chen, L. Traditional Chinese medicine enhances growth, immune response, and resistance to Streptococcus agalactiae in Nile tilapia. J. Aquat. Anim. Health 2019, 31, 46–55. [Google Scholar] [CrossRef]
- Guo, W.L.; Deng, H.W.; Wang, S.F.; Zhou, Z.H.; Sun, Y.; Chen, X.F.; Wang, J.H.; Zhou, Y.C. In vitro and in vivo screening of herbal extracts against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). Aquaculture 2019, 503, 412–421. [Google Scholar] [CrossRef]
- Baskaran, S.A.; Kazmer, G.W.; Hinckley, L.; Andrew, S.M.; Venkitanarayanan, K. Antibacterial effect of plant-derived antimicrobials on major bacterial mastitis pathogens in vitro. J. Dairy Sci. 2009, 92, 1423–1429. [Google Scholar] [CrossRef]
- Peng, S.; Dai, W.; Yu, H.; Wang, Y.; Wang, X.; Sun, S. Antibacterial activity of aqueous and ethanolic extracts of Portulaca oleracea L. and Taraxacum mongolicum against pathogenic bacteria of cow mastitis. Int. J. Appl. Res. Vet. Med. 2014, 12, 210–213. [Google Scholar] [CrossRef]
- Kachhawa, J.P.; Singh, A.P.; Chahar, A.; Dadhich, H.; Marwaha, S.; Savita Kumar, S. In vitro antibacterial activities of Withania somnifera, Citrullus colocynthis and Piper nigrum against subclinical mastitis bacterial pathogens of cows. J. Entomol. Zool. Stud. 2019, 7, 950–955. [Google Scholar]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem. 2015, 170, 378–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harjanti, D.W.; Ciptaningtyas, R.; Wahyono, F. Phytochemical properties and antibacterial activity of Ageratum conyzoides, Piper betle, Muntinga calabura and Curcuma domestica against mastitis bacteria isolates. IOP Conf. Ser. Earth Environ. Sci. 2019, 247. [Google Scholar] [CrossRef]
- Zizovic, I.; Ivanovic, J.; Misic, D.; Stamenic, M.; Djordjevic, S.; Kukic-Markovic, J.; Petrovic, S.D. SFE as a superior technique for isolation of extracts with strong antibacterial activities from lichen Usnea barbata L. J. Supercrit. Fluids 2012, 72, 7–14. [Google Scholar] [CrossRef]
- Montironi, I.D.; Cariddi, L.N.; Reinoso, E.B. Evaluation of the antimicrobial efficacy of Minthostachys verticillata essential oil and limonene against Streptococcus uberis strains isolated from bovine mastitis. Rev. Argent. De Microbiol. 2016, 48, 210–216. [Google Scholar] [CrossRef]
- Sharma, A.K.; Kumar, A.; Yadav, S.K.; Rahal, A. Studies on antimicrobial and immunomodulatory effects of hot aqueous extract of Acacia nilotica L. leaves against common veterinary pathogens. Vet. Med. Int. 2014, 9, 747042. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Doan, H.; Soltani, M.; Leitão, A.; Shafiei, S.; Asadi, S.; Lymbery, A.J.; Ringø, E. Streptococcosis a Re-Emerging Disease in Aquaculture: Significance and Phytotherapy. Animals 2022, 12, 2443. https://doi.org/10.3390/ani12182443
Van Doan H, Soltani M, Leitão A, Shafiei S, Asadi S, Lymbery AJ, Ringø E. Streptococcosis a Re-Emerging Disease in Aquaculture: Significance and Phytotherapy. Animals. 2022; 12(18):2443. https://doi.org/10.3390/ani12182443
Chicago/Turabian StyleVan Doan, Hien, Mehdi Soltani, Alexandra Leitão, Shafigh Shafiei, Sepideh Asadi, Alan J. Lymbery, and Einar Ringø. 2022. "Streptococcosis a Re-Emerging Disease in Aquaculture: Significance and Phytotherapy" Animals 12, no. 18: 2443. https://doi.org/10.3390/ani12182443
APA StyleVan Doan, H., Soltani, M., Leitão, A., Shafiei, S., Asadi, S., Lymbery, A. J., & Ringø, E. (2022). Streptococcosis a Re-Emerging Disease in Aquaculture: Significance and Phytotherapy. Animals, 12(18), 2443. https://doi.org/10.3390/ani12182443