Effect of Sperm Cryopreservation in Farm Animals Using Nanotechnology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Cell Membrane Changes after Sperm Cryopreservation
3. Molecular Changes after Sperm Cryopreservation
4. Effect of Sperm Cryopreservation on Embryo
5. Redox Imbalance and Mitochondria
6. Effect on Sperm Motility
7. Markers of Freezability
8. Role of Cryoprotectants
9. Addition of Seminal Plasma Components and Other Supplements
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akhtar, M.F.; Shafiq, M.; Ali, I. Improving Gander Reproductive Efficacy in the Context of Globally Sustainable Goose Production. Animals 2021, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Sherman, J. Low temperature research on spermatozoa and eggs. Cryobiology 1964, 1, 103–129. [Google Scholar] [CrossRef]
- Phillips, P.H.; Lardy, H.A. A yolk-buffer pabulum for the preservation of bull sperm. J. Dairy Sci. 1940, 23, 399–404. [Google Scholar] [CrossRef]
- Polge, C.; Smith, A.U.; Parkes, A.S. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 1949, 164, 666. [Google Scholar] [CrossRef] [PubMed]
- Loomis, P.; Graham, J. Commercial semen freezing: Individual male variation in cryosurvival and the response of stallion sperm to customized freezing protocols. Anim. Reprod. Sci. 2008, 105, 119–128. [Google Scholar] [CrossRef]
- Salamon, S.; Maxwell, W. Frozen storage of ram semen I. Processing, freezing, thawing and fertility after cervical insemination. Anim. Reprod. Sci. 1995, 37, 185–249. [Google Scholar] [CrossRef]
- Nijs, M.; Creemers, E.; Cox, A.; Janssen, M.; Vanheusden, E.; Castro-Sanchez, Y.; Thijs, H.; Ombelet, W. Influence of freeze-thawing on hyaluronic acid binding of human spermatozoa. Reprod. Biomed. Online 2009, 19, 202–206. [Google Scholar] [CrossRef]
- Noda, T.; Blaha, A.; Fujihara, Y.; Gert, K.R.; Emori, C.; Deneke, V.E.; Oura, S.; Panser, K.; Lu, Y.; Berent, S. Sperm membrane proteins DCST1 and DCST2 are required for sperm-egg interaction in mice and fish. Commun. Biol. 2022, 5, 332. [Google Scholar] [CrossRef]
- Sieme, H.; Harrison, R.; Petrunkina, A. Cryobiological determinants of frozen semen quality, with special reference to stallion. Anim. Reprod. Sci. 2008, 107, 276–292. [Google Scholar] [CrossRef]
- Morris, G.J.; Acton, E.; Murray, B.J.; Fonseca, F. Freezing injury: The special case of the sperm cell. Cryobiology 2012, 64, 71–80. [Google Scholar] [CrossRef]
- Yeste, M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 2016, 85, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Pommer, A.C.; Rutllant, J.; Meyers, S.A. The role of osmotic resistance on equine spermatozoal function. Theriogenology 2002, 58, 1373–1384. [Google Scholar] [CrossRef]
- Mazur, P.; Leibo, S.; Chu, E. A two-factor hypothesis of freezing injury: Evidence from Chinese hamster tissue-culture cells. Exp. Cell Res. 1972, 71, 345–355. [Google Scholar] [CrossRef]
- Hammerstedt, R.H.; Graham, J.K. Cryopreservation of poultry sperm: The enigma of glycerol. Cryobiology 1992, 29, 26–38. [Google Scholar] [CrossRef]
- Brillard, J.; Bakst, M. Quantification of spermatozoa in the sperm-storage tubules of turkey hens and the relation to sperm numbers in the perivitelline layer of eggs. Biol. Reprod. 1990, 43, 271–275. [Google Scholar] [CrossRef]
- Flores, E.; Ramió-Lluch, L.; Bucci, D.; Fernández-Novell, J.; Peña, A.; Rodríguez-Gil, J. Freezing-thawing induces alterations in histone H1-DNA binding and the breaking of protein-DNA disulfide bonds in boar sperm. Theriogenology 2011, 76, 1450–1464. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; Garcia-Bonavila, E.; Hidalgo, C.O.; Catalán, J.; Miró, J.; Yeste, M. Species-specific differences in sperm chromatin decondensation between eutherian mammals underlie distinct lysis requirements. Front. Cell Dev. Biol. 2021, 9, 1143. [Google Scholar] [CrossRef]
- Gosálvez, J.; López-Fernández, C.; Fernández, J.L.; Gouraud, A.; Holt, W.V. Relationships between the dynamics of iatrogenic DNA damage and genomic design in mammalian spermatozoa from eleven species. Mol. Reprod. Dev. 2011, 78, 951–961. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Baumber, J.; Kass, P.H.; Meyers, S.A. Osmotic stress induces oxidative cell damage to rhesus macaque spermatozoa. Biol. Reprod. 2010, 82, 644–651. [Google Scholar] [CrossRef]
- Kopeika, J.; Thornhill, A.; Khalaf, Y. The effect of cryopreservation on the genome of gametes and embryos: Principles of cryobiology and critical appraisal of the evidence. Hum. Reprod. Update 2015, 21, 209–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoeckius, M.; Grün, D.; Rajewsky, N. Paternal RNA contributions in the Caenorhabditis elegans zygote. EMBO J. 2014, 33, 1740–1750. [Google Scholar] [CrossRef] [PubMed]
- Kasimanickam, V.; Kasimanickam, R.; Arangasamy, A.; Saberivand, A.; Stevenson, J.; Kastelic, J. Association between mRNA abundance of functional sperm function proteins and fertility of Holstein bulls. Theriogenology 2012, 78, 2007–2019.e2. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, Y.-F.; Wang, H.; Wang, C.-W.; Zan, L.-S.; Hu, J.-H.; Li, Q.-W.; Jia, Y.-H.; Ma, G.-J. HSP90 expression correlation with the freezing resistance of bull sperm. Zygote 2014, 22, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Rodriguez, J.M.; Balao da Silva, C.; Masot, J.; Redondo, E.; Gazquez, A.; Tapia, J.A.; Gil, C.; Ortega-Ferrusola, C.; Peña, F.J. Rosiglitazone in the thawing medium improves mitochondrial function in stallion spermatozoa through regulating Akt phosphorylation and reduction of caspase 3. PLoS ONE 2019, 14, e0211994. [Google Scholar] [CrossRef]
- Urrego, R.; Rodriguez-Osorio, N.; Niemann, H. Epigenetic disorders and altered gene expression after use of assisted reproductive technologies in domestic cattle. Epigenetics 2014, 9, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Peng, W.; Ding, L.; He, L.; Zhang, Y.; Fang, D.; Tang, K. A preliminary study on epigenetic changes during boar spermatozoa cryopreservation. Cryobiology 2014, 69, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Capra, E.; Turri, F.; Lazzari, B.; Cremonesi, P.; Gliozzi, T.; Fojadelli, I.; Stella, A.; Pizzi, F. Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High-and Low-motile sperm populations. BMC Genom. 2017, 18, 1–12. [Google Scholar] [CrossRef]
- Dai, D.-H.; Qazi, I.H.; Ran, M.-X.; Liang, K.; Zhang, Y.; Zhang, M.; Zhou, G.-B.; Angel, C.; Zeng, C.-J. Exploration of miRNA and mRNA profiles in fresh and frozen-thawed boar sperm by transcriptome and small RNA sequencing. Int. J. Mol. Sci. 2019, 20, 802. [Google Scholar] [CrossRef]
- Said, T.M.; Gaglani, A.; Agarwal, A. Implication of apoptosis in sperm cryoinjury. Reprod. Biomed. Online 2010, 21, 456–462. [Google Scholar] [CrossRef]
- Shangguan, A.; Zhou, H.; Sun, W.; Ding, R.; Li, X.; Liu, J.; Zhou, Y.; Chen, X.; Ding, F.; Yang, L. Cryopreservation induces alterations of miRNA and mRNA fragment profiles of bull sperm. Front. Genet. 2020, 11, 419. [Google Scholar] [CrossRef]
- Benchaib, M.; Ajina, M.; Lornage, J.; Niveleau, A.; Durand, P.; Guérin, J.F. Quantitation by image analysis of global DNA methylation in human spermatozoa and its prognostic value in in vitro fertilization: A preliminary study. Fertil. Steril. 2003, 80, 947–953. [Google Scholar] [CrossRef]
- Aurich, C.; Schreiner, B.; Ille, N.; Alvarenga, M.; Scarlet, D. Cytosine methylation of sperm DNA in horse semen after cryopreservation. Theriogenology 2016, 86, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Van der Heijden, G.W.; Ramos, L.; Baart, E.B.; van den Berg, I.M.; Derijck, A.A.; van der Vlag, J.; Martini, E.; de Boer, P. Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev. Biol. 2008, 8, 34. [Google Scholar] [CrossRef]
- Jia, G.; Fu, X.; Cheng, K.; Yue, M.; Jia, B.; Hou, Y.; Zhu, S. Spermatozoa cryopreservation alters pronuclear formation and zygotic DNA demethylation in mice. Theriogenology 2015, 83, 1000–1006. [Google Scholar] [CrossRef]
- Ortiz-Rodríguez, J.M.; FE, F.E.M.-C.; Gaitskell-Phillips, G.; Rodríguez-Martínez, H.; Gil, M.C.; Ortega-Ferrusola, C.; Peña, F.J. Sperm cryopreservation impacts the early development of equine embryos by downregulating specific transcription factors. bioRxiv 2021. [Google Scholar] [CrossRef]
- Wang, M.; Gao, Y.; Qu, P.; Qing, S.; Qiao, F.; Zhang, Y.; Mager, J.; Wang, Y. Sperm-borne miR-449b influences cleavage, epigenetic reprogramming and apoptosis of SCNT embryos in bovine. Sci. Rep. 2017, 7, 13403. [Google Scholar] [CrossRef] [PubMed]
- Braga, D.; Setti, A.; Figueira, R.; Iaconelli, A., Jr.; Borges, E., Jr. The negative influence of sperm cryopreservation on the quality and development of the embryo depends on the morphology of the oocyte. Andrology 2015, 3, 723–728. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, D.; Chang, Y.; Li, Y.; Zhang, M.; Zhou, G.; Peng, Z.; Zeng, C. Cryopreservation of boar sperm induces differential microRNAs expression. Cryobiology 2017, 76, 24–33. [Google Scholar] [CrossRef]
- Martinez-Cayuela, M. Oxygen free radicals and human disease. Biochimie 1995, 77, 147–161. [Google Scholar] [CrossRef]
- Dutta, S.; Majzoub, A.; Agarwal, A. Oxidative stress and sperm function: A systematic review on evaluation and management. Arab J. Urol. 2019, 17, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Januskauskas, A.; Johannisson, A.; Rodriguez-Martinez, H. Subtle membrane changes in cryopreserved bull semen in relation with sperm viability, chromatin structure, and field fertility. Theriogenology 2003, 60, 743–758. [Google Scholar] [CrossRef]
- Flores, E.; Cifuentes, D.; Fernández-Novell, J.; Medrano, A.; Bonet, S.; Briz, M.; Pinart, E.; Peña, A.; Rigau, T.; Rodríguez-Gil, J. Freeze-thawing induces alterations in the protamine-1/DNA overall structure in boar sperm. Theriogenology 2008, 69, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Kadirvel, G.; Kumar, S.; Kumaresan, A. Lipid peroxidation, mitochondrial membrane potential and DNA integrity of spermatozoa in relation to intracellular reactive oxygen species in liquid and frozen-thawed buffalo semen. Anim. Reprod. Sci. 2009, 114, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Rarani, F.Z.; Golshan-Iranpour, F.; Dashti, G.R. Correlation between sperm motility and sperm chromatin/DNA damage before and after cryopreservation and the effect of folic acid and nicotinic acid on post-thaw sperm quality in normozoospermic men. Cell Tissue Bank. 2019, 20, 367–378. [Google Scholar] [CrossRef]
- Ugur, M.R.; Saber Abdelrahman, A.; Evans, H.C.; Gilmore, A.A.; Hitit, M.; Arifiantini, R.I.; Purwantara, B.; Kaya, A.; Memili, E. Advances in cryopreservation of bull sperm. Front. Vet. Sci. 2019, 6, 268. [Google Scholar] [CrossRef]
- Holt, W.V.; O’Brien, J.; Abaigar, T. Applications and interpretation of computer-assisted sperm analyses and sperm sorting methods in assisted breeding and comparative research. Reprod. Fertil. Dev. 2007, 19, 709–718. [Google Scholar] [CrossRef]
- Yániz, J.L.; Silvestre, M.A.; Santolaria, P.; Soler, C. CASA-Mot in mammals: An update. Reprod. Fertil. Dev. 2018, 30, 799–809. [Google Scholar] [CrossRef]
- Martínez-Pastor, F.; Tizado, E.J.; Garde, J.J.; Anel, L.; de Paz, P. Statistical Series: Opportunities and challenges of sperm motility subpopulation analysis. Theriogenology 2011, 75, 783–795. [Google Scholar] [CrossRef]
- Ibanescu, I.; Siuda, M.; Bollwein, H. Motile sperm subpopulations in bull semen using different clustering approaches–Associations with flow cytometric sperm characteristics and fertility. Anim. Reprod. Sci. 2020, 215, 106329. [Google Scholar] [CrossRef]
- Bompart, D.; García-Molina, A.; Valverde, A.; Caldeira, C.; Yániz, J.; de Murga, M.N.; Soler, C. CASA-Mot technology: How results are affected by the frame rate and counting chamber. Reprod. Fertil. Dev. 2018, 30, 810–819. [Google Scholar] [CrossRef]
- Soler, C.; Picazo-Bueno, J.Á.; Micó, V.; Valverde, A.; Bompart, D.; Blasco, F.J.; Alvarez, J.G.; García-Molina, A. Effect of counting chamber depth on the accuracy of lensless microscopy for the assessment of boar sperm motility. Reprod. Fertil. Dev. 2018, 30, 924–934. [Google Scholar] [CrossRef] [PubMed]
- Khalil, W.A.; El-Harairy, M.A.; Zeidan, A.E.; Hassan, M.A.; Mohey-Elsaeed, O. Evaluation of bull spermatozoa during and after cryopreservation: Structural and ultrastructural insights. Int. J. Vet. Sci. Med. 2018, 6, S49–S56. [Google Scholar] [CrossRef] [PubMed]
- Roca, J.; Hernández, M.; Carvajal, G.; Vázquez, J.; Martinez, E. Factors influencing boar sperm cryosurvival. J. Anim. Sci. 2006, 84, 2692–2699. [Google Scholar] [CrossRef] [PubMed]
- García, W.; Tabarez, A.; Palomo, M.J. Effect of the type of egg yolk, removal of seminal plasma and donor age on ram sperm cryopreservation. Anim. Reprod. 2018, 14, 1124–1132. [Google Scholar] [CrossRef]
- Ferrer, M.; Canisso, I.; Ellerbrock, R.; Podico, G.; Lister, B.; Hurley, D.; Kline, K.; Palomares, R. Optimization of cryopreservation protocols for cooled-transported stallion semen. Anim. Reprod. Sci. 2020, 221, 106581. [Google Scholar] [CrossRef]
- Rehman, A.; Ahmad, E.; Sattar, A.; Riaz, A.; Khan, J.A.; Naseer, Z.; Akhtar, M.F.; Abbas, M.; Shi, Z. Long term effects of immunization against inhibin on fresh and post-thawed semen quality and sperm kinematics during low and peak breeding seasons in Beetal bucks. Small Rumin. Res. 2021, 201, 106442. [Google Scholar] [CrossRef]
- Yánez-Ortiz, I.; Catalán, J.; Rodríguez-Gil, J.E.; Miró, J.; Yeste, M. Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep. Anim. Reprod. Sci. 2021, 106904. [Google Scholar] [CrossRef]
- Moura, A.; Memili, E. Functional aspects of seminal plasma and sperm proteins and their potential as molecular markers of fertility. Anim. Reprod. 2018, 13, 191–199. [Google Scholar] [CrossRef]
- Mostek, A.; Dietrich, M.A.; Słowińska, M.; Ciereszko, A. Cryopreservation of bull semen is associated with carbonylation of sperm proteins. Theriogenology 2017, 92, 95–102. [Google Scholar] [CrossRef]
- F. Riesco, M.; Anel-Lopez, L.; Neila-Montero, M.; Palacin-Martinez, C.; Montes-Garrido, R.; Alvarez, M.; de Paz, P.; Anel, L. ProAKAP4 as novel molecular marker of sperm quality in ram: An integrative study in fresh, cooled and cryopreserved sperm. Biomolecules 2020, 10, 1046. [Google Scholar] [CrossRef]
- Zhang, X.-G.; Hu, S.; Han, C.; Zhu, Q.-C.; Yan, G.-J.; Hu, J.-H. Association of heat shock protein 90 with motility of post-thawed sperm in bulls. Cryobiology 2015, 70, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Holt, W.; Del Valle, I.; Fazeli, A. Heat shock protein A8 stabilizes the bull sperm plasma membrane during cryopreservation: Effects of breed, protein concentration, and mode of use. Theriogenology 2015, 84, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Agre, P.; King, L.S.; Yasui, M.; Guggino, W.B.; Ottersen, O.P.; Fujiyoshi, Y.; Engel, A.; Nielsen, S. Aquaporin water channels–from atomic structure to clinical medicine. J. Physiol. 2002, 542, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Yeste, M.; Morató, R.; Rodríguez-Gil, J.; Bonet, S.; Prieto-Martínez, N. Aquaporins in the male reproductive tract and sperm: Functional implications and cryobiology. Reprod. Domest. Anim. 2017, 52, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Vilagran, I.; Yeste, M.; Sancho, S.; Casas, I.; del Álamo, M.M.R.; Bonet, S. Relationship of sperm small heat-shock protein 10 and voltage-dependent anion channel 2 with semen freezability in boars. Theriogenology 2014, 82, 418–426. [Google Scholar] [CrossRef]
- Llavanera, M.; Delgado-Bermúdez, A.; Fernandez-Fuertes, B.; Recuero, S.; Mateo, Y.; Bonet, S.; Barranco, I.; Yeste, M. GSTM3, but not IZUMO1, is a cryotolerance marker of boar sperm. J. Anim. Sci. Biotechnol. 2019, 10, 61. [Google Scholar] [CrossRef]
- Vilagran, I.; Yeste, M.; Sancho, S.; Castillo, J.; Oliva, R.; Bonet, S. Comparative analysis of boar seminal plasma proteome from different freezability ejaculates and identification of Fibronectin 1 as sperm freezability marker. Andrology 2015, 3, 345–356. [Google Scholar] [CrossRef]
- Rickard, J.; Leahy, T.; Soleilhavoup, C.; Tsikis, G.; Labas, V.; Harichaux, G.; Lynch, G.; Druart, X.; de Graaf, S. The identification of proteomic markers of sperm freezing resilience in ram seminal plasma. J. Proteom. 2015, 126, 303–311. [Google Scholar] [CrossRef]
- AbdelHafez, F.; Bedaiwy, M.; El-Nashar, S.A.; Sabanegh, E.; Desai, N. Techniques for cryopreservation of individual or small numbers of human spermatozoa: A systematic review. Hum. Reprod. Update 2009, 15, 153–164. [Google Scholar] [CrossRef]
- Bergeron, A.; Manjunath, P. New insights towards understanding the mechanisms of sperm protection by egg yolk and milk. Mol. Reprod. Dev. 2006, 73, 1338–1344. [Google Scholar] [CrossRef]
- Amirat, L.; Tainturier, D.; Jeanneau, L.; Thorin, C.; Gérard, O.; Courtens, J.L.; Anton, M. Bull semen in vitro fertility after cryopreservation using egg yolk LDL: A comparison with Optidyl®, a commercial egg yolk extender. Theriogenology 2004, 61, 895–907. [Google Scholar] [CrossRef]
- Jiang, Z.-L.; Li, Q.-W.; Li, W.-Y.; Hu, J.-H.; Zhao, H.-W.; Zhang, S.-S. Effect of low density lipoprotein on DNA integrity of freezing–thawing boar sperm by neutral comet assay. Anim. Reprod. Sci. 2007, 99, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Tonieto, R.A.; Goularte, K.; Gastal, G.D.A.; Schiavon, R.S.; Deschamps, J.C.; Lucia, T., Jr. Cryoprotectant effect of trehalose and low-density lipoprotein in extenders for frozen ram semen. Small Rumin. Res. 2010, 93, 206–209. [Google Scholar] [CrossRef]
- Pillet, E.; Duchamp, G.; Batellier, F.; Beaumal, V.; Anton, M.; Desherces, S.; Schmitt, E.; Magistrini, M. Egg yolk plasma can replace egg yolk in stallion freezing extenders. Theriogenology 2011, 75, 105–114. [Google Scholar] [CrossRef]
- Murphy, E.M.; O’Meara, C.; Eivers, B.; Lonergan, P.; Fair, S. Comparison of plant-and egg yolk-based semen diluents on in vitro sperm kinematics and in vivo fertility of frozen-thawed bull semen. Anim. Reprod. Sci. 2018, 191, 70–75. [Google Scholar] [CrossRef]
- Vidal, A.H.; Batista, A.M.; da Silva, E.C.B.; Gomes, W.A.; Pelinca, M.A.; Silva, S.V.; Guerra, M.M.P. Soybean lecithin-based extender as an alternative for goat sperm cryopreservation. Small Rumin. Res. 2013, 109, 47–51. [Google Scholar] [CrossRef]
- Aires, V.A.; Hinsch, K.-D.; Mueller-Schloesser, F.; Bogner, K.; Mueller-Schloesser, S.; Hinsch, E. In vitro and in vivo comparison of egg yolk-based and soybean lecithin-based extenders for cryopreservation of bovine semen. Theriogenology 2003, 60, 269–279. [Google Scholar] [CrossRef]
- Crespilho, A.; Sá Filho, M.; Dell’Aqua Jr, J.; Nichi, M.; Monteiro, G.; Avanzi, B.; Martins, A.; Papa, F.O. Comparison of in vitro and in vivo fertilizing potential of bovine semen frozen in egg yolk or new lecithin based extenders. Livest. Sci. 2012, 149, 1–6. [Google Scholar] [CrossRef]
- Luna-Orozco, J.; González-Ramos, M.; Calderón-Leyva, G.; Gaytán-Alemán, L.; Arellano-Rodríguez, F.; Ángel-García, O.; Véliz-Deras, F. Comparison of different diluents based on liposomes and egg yolk for ram semen cooling and cryopreservation. Iran. J. Vet. Res. 2019, 20, 126. [Google Scholar]
- Medina-León, A.Z.; Domínguez-Mancera, B.; Cazalez-Penino, N.; Cervantes-Acosta, P.; Jácome-Sosa, E.; Romero-Salas, D.; Barrientos-Morales, M. Cryopreservation of horse semen with a liposome and trehalose added extender. Austral J. Vet. Sci. 2019, 51, 119–123. [Google Scholar] [CrossRef]
- Röpke, T.; Oldenhof, H.; Leiding, C.; Sieme, H.; Bollwein, H.; Wolkers, W. Liposomes for cryopreservation of bovine sperm. Theriogenology 2011, 76, 1465–1472. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, M.A.; Papa, F.O.; Landim-Alvarenga, F.; Medeiros, A. Amides as cryoprotectants for freezing stallion semen: A review. Anim. Reprod. Sci. 2005, 89, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Buhr, M.M.; Fiser, P.; Bailey, J.L.; Curtis, E.F. Cryopreservation in different concentrations of glycerol alters boar sperm and their membranes. J. Androl. 2001, 22, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Macías García, B.; Ortega Ferrusola, C.; Aparicio, I.; Miró-Morán, A.; Morillo Rodriguez, A.; Gallardo Bolanos, J.; González Fernández, L.; Balao da Silva, C.M.; Rodríguez Martínez, H.; Tapia, J.A.; et al. Toxicity of glycerol for the stallion spermatozoa: Effects on membrane integrity and cytoskeleton, lipid peroxidation and mitochondrial membrane potential. Theriogenology 2012, 77, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- De Mercado, E.; Hernandez, M.; Sanz, E.; Rodriguez, A.; Gomez, E.; Vazquez, J.; Martinez, E.; Roca, J. Evaluation of l-glutamine for cryopreservation of boar spermatozoa. Anim. Reprod. Sci. 2009, 115, 149–157. [Google Scholar] [CrossRef]
- Gutiérrez-Pérez, O.; de Lourdes Juárez-Mosqueda, M.; Carvajal, S.U.; Ortega, M.E.T. Boar spermatozoa cryopreservation in low glycerol/trehalose enriched freezing media improves cellular integrity. Cryobiology 2009, 58, 287–292. [Google Scholar] [CrossRef]
- Özmen, M.F.; Cirit, Ü.; Arıcı, R.; Demir, K.; Kurt, D.; Pabuccuoğlu, S.; Ak, K. Evaluation of synergic effects of iodixanol and trehalose on cryosurvival of electroejaculated ram semen. Andrologia 2020, 52, e13656. [Google Scholar] [CrossRef]
- Büyükleblebici, S.; Tuncer, P.B.; Bucak, M.N.; Eken, A.; Sarıözkan, S.; Taşdemir, U.; Endirlik, B.Ü. Cryopreservation of bull sperm: Effects of extender supplemented with different cryoprotectants and antioxidants on sperm motility, antioxidant capacity and fertility results. Anim. Reprod. Sci. 2014, 150, 77–83. [Google Scholar] [CrossRef]
- Wu, Z.; Zheng, X.; Luo, Y.; Huo, F.; Dong, H.; Zhang, G.; Yu, W.; Tian, F.; He, L.; Chen, J. Cryopreservation of stallion spermatozoa using different cryoprotectants and combinations of cryoprotectants. Anim. Reprod. Sci. 2015, 163, 75–81. [Google Scholar] [CrossRef]
- Forero-Gonzalez, R.; Celeghini, E.; Raphael, C.; Andrade, A.; Bressan, F.; Arruda, R. Effects of bovine sperm cryopreservation using different freezing techniques and cryoprotective agents on plasma, acrosomal and mitochondrial membranes. Andrologia 2012, 44, 154–159. [Google Scholar] [CrossRef]
- Ashworth, P.; Harrison, R.; Miller, N.; Plummer, J.; Watson, P. Survival of ram spermatozoa at high dilution: Protective effect of simple constituents of culture media as compared with seminal plasma. Reprod. Fertil. Dev. 1994, 6, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.; Roca, J.; Calvete, J.J.; Sanz, L.; Muiño-Blanco, T.; Cebrián-Pérez, J.A.; Vázquez, J.M.; Martínez, E.A. Cryosurvival and in vitro fertilizing capacity postthaw is improved when boar spermatozoa are frozen in the presence of seminal plasma from good freezer boars. J. Androl. 2007, 28, 689–697. [Google Scholar] [CrossRef]
- Ramírez-Vasquez, R.; Cesari, A.; Greco, M.B.; Cano, A.; Hozbor, F. Extenders modify the seminal plasma ability to minimize freeze-thaw damage on ram sperm. Reprod. Domest. Anim. 2019, 54, 1621–1629. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, H.; Kvist, U.; Ernerudh, J.; Sanz, L.; Calvete, J.J. Seminal plasma proteins: What role do they play? Am. J. Reprod. Immunol. 2011, 66 (Suppl. 1), 11–22. [Google Scholar] [CrossRef] [PubMed]
- Dostàlovà, Z.; Calvete, J.J.; Töpfer-Petersen, E. Interaction of non-aggregated boar AWN-1 and AQN-3 with phospholipid matrices. A model for coating of spermadhesins to the sperm surface. Biol. Chem. Hoppe-Seyler 1995, 376, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Vadnais, M.L.; Roberts, K.P. Seminal plasma proteins inhibit in vitro-and cooling-induced capacitation in boar spermatozoa. Reprod. Fertil. Dev. 2010, 22, 893–900. [Google Scholar] [CrossRef]
- Manjunath, P.; Bergeron, A.; Lefebvre, J.; Fan, J. Seminal plasma proteins: Functions and interaction with protective agents during semen preservation. Soc. Reprod. Fertil. Suppl. 2007, 65, 217. [Google Scholar] [PubMed]
- Muiño-Blanco, T.; Pérez-Pé, R.; Cebrián-Pérez, J. Seminal plasma proteins and sperm resistance to stress. Reprod. Domest. Anim. 2008, 43, 18–31. [Google Scholar] [CrossRef]
- Barrios, B.; Fernández-Juan, M.; Muiño-Blanco, T.; Cebrián-Pérez, J.A. Immunocytochemical localization and biochemical characterization of two seminal plasma proteins that protect ram spermatozoa against cold shock. J. Androl. 2005, 26, 539–549. [Google Scholar] [CrossRef]
- Bernardini, A.; Hozbor, F.; Sanchez, E.; Fornes, M.W.; Alberio, R.; Cesari, A. Conserved ram seminal plasma proteins bind to the sperm membrane and repair cryopreservation damage. Theriogenology 2011, 76, 436–447. [Google Scholar] [CrossRef]
- Rueda, F.; Garcés, T.; Herrera, R.; Arbeláez, L.; Peña, M.; Velásquez, H.; Hernández, A.; Cardozo, J. Las proteínas del plasma seminal incrementan la viabilidad espermática post-descongelación del semen de toros Sanmartinero. Rev. MVZ Córdoba 2013, 18, 3327–3335. [Google Scholar] [CrossRef] [Green Version]
- Susilowati, S.; Triana, I.N.; Sardjito, T.; Suprayogi, T.W.; Wurlina, W.; Mustofa, I. Effect of Simmental bull seminal plasma protein in egg yolk-citrate extender on Kacang buck semen fertility. Cryobiology 2020, 97, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Uysal, O.; Bucak, M. Effects of oxidized glutathione, bovine serum albumin, cysteine and lycopene on the quality of frozen-thawed ram semen. Acta Vet. Brno 2007, 76, 383–390. [Google Scholar] [CrossRef]
- Matsuoka, T.; Imai, H.; Kohno, H.; Fukui, Y. Effects of bovine serum albumin and trehalose in semen diluents for improvement of frozen-thawed ram spermatozoa. J. Reprod. Dev. 2006, 52, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Fukui, Y.; Kohno, H.; Togari, T.; Hiwasa, M. Fertility of ewes inseminated intrauterinally with frozen semen using extender containing bovine serum albumin. J. Reprod. Dev. 2007, 0704050070. [Google Scholar] [CrossRef]
- Kaewkesa, T.; Sathanawongs, A.; Oranratnachai, A.; Sumretprasong, J. The goat semen quality after being frozen using albumin and cholesterol substituted for egg yolk in semen extender. Thai J. Vet. Med. 2016, 46, 201. [Google Scholar]
- Aitken, R.J. Free radicals, lipid peroxidation and sperm function. Reprod. Fertil. Dev. 1995, 7, 659–668. [Google Scholar] [CrossRef]
- Ortega-Ferrusola, C.; Martin Muñoz, P.; Ortiz-Rodriguez, J.M.; Anel-López, L.; Balao da Silva, C.; Álvarez, M.; de Paz, P.; Tapia, J.A.; Anel, L.; Silva-Rodríguez, A. Depletion of thiols leads to redox deregulation, production of 4-hydroxinonenal and sperm senescence: A possible role for GSH regulation in spermatozoa. Biol. Reprod. 2019, 100, 1090–1107. [Google Scholar] [CrossRef]
- Papas, M.; Catalán, J.; Fernandez-Fuertes, B.; Arroyo, L.; Bassols, A.; Miró, J.; Yeste, M. Specific activity of superoxide dismutase in stallion seminal plasma is related to sperm cryotolerance. Antioxidants 2019, 8, 539. [Google Scholar] [CrossRef]
- Marti, E.; Mara, L.; Marti, J.; Muiño-Blanco, T.; Cebrián-Pérez, J. Seasonal variations in antioxidant enzyme activity in ram seminal plasma. Theriogenology 2007, 67, 1446–1454. [Google Scholar] [CrossRef]
- Papas, M.; Arroyo, L.; Bassols, A.; Catalán, J.; Bonilla-Correal, S.; Gacem, S.; Yeste, M.; Miró, J. Activities of antioxidant seminal plasma enzymes (SOD, CAT, GPX and GSR) are higher in jackasses than in stallions and are correlated with sperm motility in jackasses. Theriogenology 2019, 140, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Olfati Karaji, R.; Daghigh Kia, H.; Ashrafi, I. Effects of in combination antioxidant supplementation on microscopic and oxidative parameters of freeze–thaw bull sperm. Cell Tissue Bank. 2014, 15, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Soares, A.; Batista, A.; Almeida, F.; Nunes, J.; Peixoto, C.; Guerra, M. In vitro and in vivo evaluation of ram sperm frozen in tris egg-yolk and supplemented with superoxide dismutase and reduced glutathione. Reprod. Domest. Anim. 2011, 46, 874–881. [Google Scholar] [CrossRef]
- de Oliveira, R.A.; Wolf, C.A.; de Oliveira Viu, M.A.; Gambarini, M.L. Addition of glutathione to an extender for frozen equine semen. J. Equine Vet. Sci. 2013, 33, 1148–1152. [Google Scholar] [CrossRef]
- Gadea, J.; García-Vazquez, F.; Matás, C.; Gardón, J.C.; Cánovas, S.; Gumbao, D. Cooling and freezing of boar spermatozoa: Supplementation of the freezing media with reduced glutathione preserves sperm function. J. Androl. 2005, 26, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Al-Mutary, M.G. Use of antioxidants to augment semen efficiency during liquid storage and cryopreservation in livestock animals: A review. J. King Saud Univ.-Sci. 2021, 33, 101226. [Google Scholar] [CrossRef]
- Guthrie, H.; Welch, G. Effects of reactive oxygen species on sperm function. Theriogenology 2012, 78, 1700–1708. [Google Scholar] [CrossRef] [PubMed]
- Treulen, F.; Aguila, L.; Arias, M.E.; Jofré, I.; Felmer, R. Impact of post-thaw supplementation of semen extender with antioxidants on the quality and function variables of stallion spermatozoa. Anim. Reprod. Sci. 2019, 201, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Banday, M.N.; Lone, F.A.; Rasool, F.; Rashid, M.; Shikari, A. Use of antioxidants reduce lipid peroxidation and improve quality of crossbred ram sperm during its cryopreservation. Cryobiology 2017, 74, 25–30. [Google Scholar] [CrossRef]
- de Souza, C.V.; Brandão, F.Z.; Santos, J.D.R.; Alfradique, V.A.P.; Dos Santos, V.M.B.; da Cruz Morais, M.C.; Rangel, P.S.C.; da Silva, A.A.; Souza-Fabjan, J.M.G. Effect of different concentrations of L-carnitine in extender for semen cryopreservation in sheep. Cryobiology 2019, 89, 104–108. [Google Scholar] [CrossRef]
- Del Valle, I.; Souter, A.; Maxwell, W.; Muino-Blanco, T.; Cebrián-Pérez, J. Function of ram spermatozoa frozen in diluents supplemented with casein and vegetable oils. Anim. Reprod. Sci. 2013, 138, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Carrera-Chávez, J.M.; Jiménez-Aguilar, E.E.; Acosta-Pérez, T.P.; Núñez-Gastélum, J.A.; Quezada-Casasola, A.; Escárcega-Ávila, A.M.; Itza-Ortiz, M.F.; Orozco-Lucero, E. Effect of Moringa oleifera seed extract on antioxidant activity and sperm characteristics in cryopreserved ram semen. J. Appl. Anim. Res. 2020, 48, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Motlagh, M.K.; Sharafi, M.; Zhandi, M.; Mohammadi-Sangcheshmeh, A.; Shakeri, M.; Soleimani, M.; Zeinoaldini, S. Antioxidant effect of rosemary (Rosmarinus officinalis L.) extract in soybean lecithin-based semen extender following freeze–thawing process of ram sperm. Cryobiology 2014, 69, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Nouri, H.; Shojaeian, K.; Samadian, F.; Lee, S.; Kohram, H.; Lee, J.I. Using resveratrol and epigallocatechin-3-gallate to improve cryopreservation of stallion spermatozoa with low quality. J. Equine Vet. Sci. 2018, 70, 18–25. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, R.; Fan, X.; Lv, Y.; Zheng, Y.; Hoque, S.; Wu, D.; Zeng, W. Resveratrol improves Boar sperm quality via 5AMP-activated protein kinase activation during cryopreservation. Oxidative Med. Cell. Longev. 2019, 2019. [Google Scholar] [CrossRef]
- Robles, V.; Valcarce, D.G.; Riesco, M.F. The use of antifreeze proteins in the cryopreservation of gametes and embryos. Biomolecules 2019, 9, 181. [Google Scholar] [CrossRef]
- Payne, S.R.; Oliver, J.; Upreti, G. Effect of antifreeze proteins on the motility of ram spermatozoa. Cryobiology 1994, 31, 180–184. [Google Scholar] [CrossRef]
- Prathalingam, N.; Holt, W.; Revell, S.; Mirczuk, S.; Fleck, R.; Watson, P. Impact of antifreeze proteins and antifreeze glycoproteins on bovine sperm during freeze-thaw. Theriogenology 2006, 66, 1894–1900. [Google Scholar] [CrossRef]
- Kim, D. Evaluation of antifreeze proteins on miniature pig sperm viability, DNA damage, and acrosome status during cryopreservation. J. Embryo Transf. 2016, 31, 355–365. [Google Scholar] [CrossRef]
- Zandiyeh, S.; Shahverdi, A.; Ebrahimi, B.; Sabbaghian, M. A novel approach for human sperm cryopreservation with AFPIII. Reprod. Biol. 2020, 20, 169–174. [Google Scholar] [CrossRef]
- Marx, R.E. Platelet-rich plasma: Evidence to support its use. J. Oral Maxillofac. Surg. 2004, 62, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Zhang, Y.; Tian, S.; Hu, R.; Wu, B. Effect of autologous platelet-rich plasma on human sperm quality during cryopreservation. Cryobiology 2021, 98, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Corredor, L.; León-Restrepo, S.; Bustamante-Cano, J.; Báez-Sandoval, G.; Jaramillo, X. Effect of the incorporation of plasma rich of platelets on the spermatozoa physiology of ram semen. J. Dairy Vet. Anim. Res. 2020, 9, 34–38. [Google Scholar]
Specie | PM (%) | A.I (%) | MF (%) | ROS (%) | Sperm M & V (%) | Reference |
---|---|---|---|---|---|---|
Cattle | 40 | 10–19 | 15 | 48 | 50 | [52] |
Pig | 50 | 30 | 30 | 2 | 60 | [53] |
Sheep | 80 | 50 | 30 | 1.5 | 30–40 | [54] |
Horse | 70 | 12 | 35 | 1 | 30 | [55] |
Goat | 68–73 | 73–81 | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhtar, M.F.; Ma, Q.; Li, Y.; Chai, W.; Zhang, Z.; Li, L.; Wang, C. Effect of Sperm Cryopreservation in Farm Animals Using Nanotechnology. Animals 2022, 12, 2277. https://doi.org/10.3390/ani12172277
Akhtar MF, Ma Q, Li Y, Chai W, Zhang Z, Li L, Wang C. Effect of Sperm Cryopreservation in Farm Animals Using Nanotechnology. Animals. 2022; 12(17):2277. https://doi.org/10.3390/ani12172277
Chicago/Turabian StyleAkhtar, Muhammad Faheem, Qingshan Ma, Yan Li, Wenqiong Chai, Zhenwei Zhang, Liangliang Li, and Changfa Wang. 2022. "Effect of Sperm Cryopreservation in Farm Animals Using Nanotechnology" Animals 12, no. 17: 2277. https://doi.org/10.3390/ani12172277
APA StyleAkhtar, M. F., Ma, Q., Li, Y., Chai, W., Zhang, Z., Li, L., & Wang, C. (2022). Effect of Sperm Cryopreservation in Farm Animals Using Nanotechnology. Animals, 12(17), 2277. https://doi.org/10.3390/ani12172277