Effectiveness of Anthelmintic Treatments in Small Ruminants in Germany
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Coproscopical Methods
2.2. Anthelmintic Treatments and Post-Treatment Samples
2.3. Questionnaires
2.4. Assessment of Treatment Effectiveness
- FECR ≥ 95%: treatment effective, no evidence of resistance
- FECR ≥ 90% and < 95%: reduced efficacy, suspected resistance
- FECR ≥ 80% and < 90%: reduced efficacy, resistance is likely
- FECR < 80%: ineffective, resistance is highly likely
2.5. Statistical Analyses
3. Results
3.1. Sample and Flock Characteristics
3.2. Compliance with Inclusion Criteria, Anthelmintic Treatments, and Pre-Treatment Coproscopical Results
3.3. Post-Treatment Coproscopical Results and Assessment of Treatment Effectiveness
3.4. Assessment of Post-Treatment Survival of Haemonchus Contortus and Other GIN
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaplan, R.M. Drug resistance in nematodes of veterinary importance: A status report. Trends Parasitol. 2004, 20, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.M.; Vidyashankar, A.N. An inconvenient truth: Global worming and anthelmintic resistance. Vet. Parasitol. 2012, 186, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Gilleard, J.S.; Kotze, A.C.; Leathwick, D.; Nisbet, A.J.; McNeilly, T.N.; Besier, B. A journey through 50 years of research relevant to the control of gastrointestinal nematodes in ruminant livestock and thoughts on future directions. Int. J. Parasitol. 2021, 51, 1133–1151. [Google Scholar] [CrossRef] [PubMed]
- Rose, H.; Rinaldi, L.; Bosco, A.; Mavrot, F.; de Waal, T.; Skuce, P.; Charlier, J.; Torgerson, P.R.; Hertzberg, H.; Hendrickx, G.; et al. Widespread anthelmintic resistance in European farmed ruminants: A systematic review. Vet. Rec. 2015, 176, 546. [Google Scholar] [CrossRef] [Green Version]
- Rose Vineer, H.; Morgan, E.R.; Hertzberg, H.; Bartley, D.J.; Bosco, A.; Charlier, J.; Chartier, C.; Claerebout, E.; de Waal, T.; Hendrickx, G.; et al. Increasing importance of anthelmintic resistance in European livestock: Creation and meta-analysis of an open database. Parasite 2020, 27, 69. [Google Scholar] [CrossRef]
- Bauer, C. Multispecific resistance of trichostrongyles to benzimidazoles in a goat herd in Germany. Dtsch. Tierarztl. Wochenschr. 2001, 108, 49–50. [Google Scholar]
- Moritz, E. Endoparasites and Detection of Benzimidazole Resistance in Strongyles in Sheep in Lower Saxony, Germany. Ph.D. Thesis, University of Veterinary Medicine, Hannover, Germany, 25 November 2005. (In German). [Google Scholar]
- Perbix, C. The Development of Resistance to Moxidectin in Parasitic Nematodes in the German Sheep Population. Ph.D. Thesis, University of Veterinary Medicine, Hannover, Germany, 28 November 2008. (In German). [Google Scholar]
- Scheuerle, M.C.; Mahling, M.; Pfister, K. Anthelminthic resistance of Haemonchus contortus in small ruminants in Switzerland and Southern Germany. Wien. Klin. Wochenschr. 2009, 121, 46–49. [Google Scholar] [CrossRef]
- Voigt, K.; Scheuerle, M.; Hamel, D. Triple anthelmintic resistance in Trichostrongylus spp. in a German sheep flock. Small Rum. Res. 2012, 106, 30–32. [Google Scholar] [CrossRef]
- Düvel, S. Investigations on the Occurrence of Endoparasite Infections and the Prevalence of Anthelmintic Resistance in Gastro-intestinal Nematode Populations in Goat Herds in Germany. Ph.D. Thesis, Justus Liebig University Giessen, Giessen, Germany, 15 February 2016. (In German). [Google Scholar]
- Springer, A.; Kloene, P.; Strube, C. Benzimidazole resistant Haemonchus contortus in a wildlife park. Schweiz Arch. Tierheilkd 2022, 164, 51–59. [Google Scholar] [CrossRef]
- Hinney, B.; Schoiswohl, J.; Melville, L.; Ameen, V.J.; Wille-Piazzai, W.; Bauer, K.; Joachim, A.; Krücken, J.; Skuce, P.J.; Krametter-Frötscher, R. High frequency of benzimidazole resistance alleles in trichostrongyloids from Austrian sheep flocks in an alpine transhumance management system. BMC Vet. Res. 2020, 16, 132. [Google Scholar] [CrossRef]
- Emmerich, I.U.; Ganter, M.; Wittek, T. Dose Rate Recommendations for Small Ruminants and New World Camelids, 2nd ed.; Schattauer: Stuttgart, Germany, 2016. (In German) [Google Scholar]
- Hennessy, D.R.; Sangster, N.C.; Steel, J.W.; Collins, G.H. Comparative pharmacokinetic behaviour of albendazole in sheep and goats. Int. J. Parasitol. 1993, 23, 321–325. [Google Scholar] [CrossRef]
- Hennessy, D.R.; Sangster, N.C.; Steel, J.W.; Collins, G.H. Comparative pharmacokinetic disposition of closantel in sheep and goats. J. Vet. Pharmacol. Therap. 1993, 16, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Escudero, E.; Carceles, C.M.; Diaz, M.S.; Sutra, J.F.; Galtier, P.; Alvinerie, M. Pharmacokinetics of moxidectin and doramectin in goats. Res. Vet. Sci. 1999, 67, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Gokbulut, C.; Yalinkilinc, H.S.; Aksit, D.; Veneziano, V. Comparative pharmacokinetics of levamisole-oxyclozanide combination in sheep and goats following per os administration. Can. J. Vet. Res. 2014, 78, 316–320. [Google Scholar]
- Lecová, L.; Stuchlíková, L.; Prchal, L.; Skálová, L. Monepantel: The most studied new anthelmintic drug of recent years. Parasitology 2014, 141, 1686–1698. [Google Scholar] [CrossRef]
- Hamel, D.; Kvaternick, V.; Kellermann, M.; Visser, M.; Mayr, S.; Fankhauser, B.; Rehbein, S. Pour-on administration of eprinomectin to lactating dairy goats: Pharmacokinetics and anthelmintic efficacy. J. Vet. Pharmacol. Therap. 2021, 44, 952–960. [Google Scholar] [CrossRef]
- Myers, M.J.; Howard, K.D.; Kawalek, J.C. Pharmacokinetic comparison of six anthelmintics in sheep, goats, and cattle. J. Vet. Pharmacol. Therap. 2021, 44, 58–67. [Google Scholar] [CrossRef]
- Little, P.R.; Hodge, A.; Maeder, S.J.; Wirtherle, N.C.; Nicholas, D.R.; Cox, G.G.; Conder, G.A. Efficacy of a combined oral formulation of derquantel–abamectin against the adult and larval stages of nematodes in sheep, including anthelmintic-resistant strains. Vet. Parasitol. 2011, 181, 180–193. [Google Scholar] [CrossRef] [Green Version]
- Geurden, T.; Hodge, A.; Noé, L.; Winstanley, D.; Bartley, D.J.; Taylor, M.; Morgan, C.; Fraser, S.J.; Maeder, S.; Bartram, D. The efficacy of a combined oral formulation of derquantel–abamectin against anthelmintic resistant gastro-intestinal nematodes of sheep in the UK. Vet. Parasitol. 2012, 189, 308–316. [Google Scholar] [CrossRef]
- Kaplan, R.M.; Vidyashankar, A.N.; Howell, S.B.; Neiss, J.M.; Williamson, L.H.; Terrill, T.H. A novel approach for combining the use of in vitro and in vivo data to measure and detect emerging moxidectin resistance in gastrointestinal nematodes of goats. Int. J. Parasitol. 2007, 37, 795–804. [Google Scholar] [CrossRef]
- Stubbings, L.; Bartley, D.; Busin, V.; Lovatt, F.; Page, P.; Rose Vineer, H.; Skuce, P. SCOPS Technical Manual. 2020. Available online: https://www.scops.org.uk/advisers-technical-info/ (accessed on 21 April 2022). [CrossRef]
- Kaplan, R.M. Biology, epidemiology, diagnosis, and management of anthelmintic resistance in gastrointestinal nematodes of livestock. Vet. Clin. Food Anim. 2020, 36, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Sargison, N.D.; Jackson, F.; Bartley, D.J.; Moir, A.C.P. Failure of moxidectin to control benzimidazole-, levamisole- and ivermectin-resistant Teladorsagia circumcincta in a sheep flock. Vet. Rec. 2005, 156, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Prichard, R.; Ménez, C.; Lespine, A. Moxidectin and the avermectins: Consanguinity but not identity. Int. J. Parasitol. Drugs Drug. Resist. 2012, 2, 134–153. [Google Scholar] [CrossRef] [PubMed]
- Coles, G.C.; Bauer, C.; Borgsteede, F.H.M.; Geerts, S.; Klei, T.R.; Taylor, M.A.; Waller, P.J. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 1992, 44, 35–44. [Google Scholar] [CrossRef]
- Coles, G.C.; Jackson, F.; Pomroy, W.E.; Prichard, R.K.; von Samson-Himmelstjerna, G.; Silvestre, A.; Taylor, M.A.; Vercruysse, J. The detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 2006, 136, 167–185. [Google Scholar] [CrossRef]
- Charlier, J.; Bartley, D.J.; Sotiraki, S.; Martínez-Valladares, M.; Claerebout, E.; von Samson-Himmelstjerna, G.; Thamsborg, S.; Hoste, H.; Morgan, E.R.; Rinaldi, L. Chapter Three—Anthelmintic resistance in ruminants: Challenges and solutions. Adv. Parasitol. 2022, 115, 171–227. [Google Scholar] [CrossRef]
- Geurden, T.; Smith, E.R.; Vercruysse, J.; Yazwinski, T.; Settje, T.; Nielsen, M.K. World association for the advancement of veterinary parasitology (WAAVP) guideline for the evaluation of the efficacy of anthelmintics in food-producing and companion animals: General guidelines. Vet. Parasitol. 2022, 304, 109698. [Google Scholar] [CrossRef]
- Levecke, B.; Kaplan, R.M.; Thamsborg, S.K.; Torgerson, P.R.; Vercruysse, J.; Dobson, R.J. How to improve the standardization and the diagnostic performance of the faecal egg count reduction test? Vet. Parasitol. 2018, 253, 71–78. [Google Scholar] [CrossRef]
- Van Wyk, J.A.; Mayhew, E. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: A practical lab guide. Onderstepoort J. Vet. Res. 2013, 80, 539. [Google Scholar] [CrossRef]
- Jurasek, M.E.; Bishop-Stewart, J.K.; Storey, B.E.; Kaplan, R.M.; Kent, M.L. Modification and further evaluation of a fluorescein-labeled peanut agglutinin test for identification of Haemonchus contortus eggs. Vet. Parasitol. 2010, 169, 209–213. [Google Scholar] [CrossRef]
- Avramenko, R.W.; Redman, E.M.; Lewis, R.; Bichuette, M.A.; Palmeira, B.M.; Yazwinski, T.A.; Gilleard, J.S. The use of nemabiome metabarcoding to explore gastro-intestinal nematode species diversity and anthelmintic treatment effectiveness in beef calves. Int. J. Parasitol. 2017, 47, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, C.; Levy, M.; Avramenko, R.; Redman, E.; Kearns, K.; Swain, L.; Silas, H.; Uehlinger, F.; Gilleard, J.S. The use of ITS-2 rDNA nemabiome metabarcoding to enhance anthelmintic resistance diagnosis and surveillance of ovine gastrointestinal nematodes. Int. J. Parasitol. Drugs Drug Resist. 2020, 14, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, L.; Levecke, B.; Bosco, A.; Ianniello, D.; Pepe, P.; Charlier, J.; Cringoli, G.; Vercruysse, J. Comparison of individual and pooled faecal samples in sheep for the assessment of gastrointestinal strongyle infection intensity and anthelmintic drug efficacy using McMaster and Mini-FLOTAC. Vet. Parasitol. 2014, 205, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, F.; Rinaldi, L.; McBean, D.; Pepe, P.; Bosco, A.; Melville, L.; Devin, L.; Mitchell, G.; Ianniello, D.; Charlier, J.; et al. Pooling sheep faecal samples for the assessment of anthelmintic drug efficacy using McMaster and Mini-FLOTAC in gastrointestinal strongyle and Nematodirus infection. Vet. Parasitol. 2016, 225, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.R.; Lanusse, C.; Rinaldi, L.; Charlier, J.; Vercruysse, J. Confounding factors affecting faecal egg count reduction as a measure of anthelmintic efficacy. Parasite 2022, 29, 20. [Google Scholar] [CrossRef]
- Becker, A.-C.; Kraemer, A.; Epe, C.; Strube, C. Sensitivity and efficiency of selected coproscopical methods – sedimentation, combined zinc sulfate sedimentation-flotation, and McMaster method. Parasitol. Res. 2016, 115, 2581–2587. [Google Scholar] [CrossRef]
- R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 21 April 2022).
- Patil, I. Visualizations with statistical details: The ‘ggstatsplot’ approach. J. Open Source Softw. 2021, 6, 3167. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 4th ed.; Sage: London, UK, 2013. [Google Scholar]
- Funder, D.C.; Ozer, D.J. Evaluating effect size in psychological research: Sense and nonsense. Adv. Meth. Pr. Psychol. Sci. 2019, 2, 156–168. [Google Scholar] [CrossRef]
- Untersweg, F.; Ferner, V.; Wiedermann, S.; Göller, M.; Hörl-Rannegger, M.; Kaiser, W.; Joachim, A.; Rinaldi, L.; Krücken, J.; Hinney, B. Multispecific resistance of sheep trichostrongylids in Austria. Parasite 2021, 28, 50. [Google Scholar] [CrossRef]
- McIntyre, J.; Hamer, K.; Morrison, A.A.; Bartley, D.J.; Sargison, N.; Devaney, E.; Laing, R. Hidden in plain sight—Multiple resistant species within a strongyle community. Vet. Parasitol. 2018, 258, 79–87. [Google Scholar] [CrossRef]
- Sargison, N.D.; Jackson, F.; Wilson, D.J.; Bartley, D.J.; Penny, C.D.; Gilleard, J.S. Characterisation of milbemycin-, avermectin-, imidazothiazole- and benzimidazole-resistant Teladorsagia circumcincta from a sheep flock. Vet. Rec. 2010, 166, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Geurden, T.; Hoste, H.; Jacquiet, P.; Traversa, D.; Sotiraki, S.; Frangipane di Regalbono, A.; Tzanidakis, N.; Kostopoulou, D.; Gaillac, C.; Privat, S.; et al. Anthelmintic resistance and multidrug resistance in sheep gastro-intestinal nematodes in France, Greece and Italy. Vet. Parasitol. 2014, 201, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Mickiewicz, M.; Czopowicz, M.; Kawecka-Grochocka, E.; Moroz, A.; Szaluś-Jordanow, O.; Várady, M.; Königová, A.; Spinu, M.; Górski, P.; Bagnicka, E.; et al. The first report of multidrug resistance in gastrointestinal nematodes in goat population in Poland. BMC Vet. Res. 2020, 16, 270. [Google Scholar] [CrossRef] [PubMed]
- Bordes, L.; Dumont, N.; Lespine, A.; Souil, E.; Sutra, J.-F.; Prévot, F.; Grisez, C.; Romanos, L.; Dailledouze, A.; Jacquiet, P. First report of multiple resistance to eprinomectin and benzimidazole in Haemonchus contortus on a dairy goat farm in France. Parasitol. Int. 2020, 76, 102063. [Google Scholar] [CrossRef]
- George, M.M.; Paras, K.L.; Howell, S.B.; Kaplan, R.M. Utilization of composite fecal samples for detection of anthelmintic resistance in gastrointestinal nematodes of cattle. Vet. Parasitol. 2017, 240, 24–29. [Google Scholar] [CrossRef]
- Ploeger, H.W.; Everts, R.R. Alarming levels of anthelmintic resistance against gastrointestinal nematodes in sheep in the Netherlands. Vet. Parasitol. 2018, 262, 11–15. [Google Scholar] [CrossRef]
- Königová, A.; Dolinská, M.U.; Babják, M.; von Samson-Himmelstjerna, G.; Komáromyová, M.; Várady, M. Experimental evidence for the lack of sensitivity of in vivo faecal egg count reduction testing for the detection of early development of benzimidazole resistance. Parasitol. Res. 2021, 120, 153–159. [Google Scholar] [CrossRef]
- El-Abdellati, A.; Charlier, J.; Geldhof, P.; Levecke, B.; Demeler, J.; von Samson-Himmelstjerna, G.; Claerebout, E.; Vercruysse, J. The use of a simplified faecal egg count reduction test for assessing anthelmintic efficacy on Belgian and German cattle farms. Vet. Parasitol. 2010, 169, 352–357. [Google Scholar] [CrossRef]
- Várady, M.; Papadopoulos, E.; Dolinská, M.; Königová, A. Anthelmintic resistance in parasites of small ruminants: Sheep versus goats. Helminthologia 2011, 48, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Rehbein, S.; Kellermann, M.; Wehner, T.A. Pharmacokinetics and anthelmintic efficacy of topical eprinomectin in goats prevented from grooming. Parasitol. Res. 2014, 113, 4039–4044. [Google Scholar] [CrossRef]
- Briqué-Pellet, C.; Ravinet, N.; Quenet, Y.; Alvinerie, M.; Chartier, C. Pharmacokinetics and anthelmintic efficacy of injectable eprinomectin in goats. Vet. Parasitol. 2017, 241, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Rostang, A.; Devos, J.; Chartier, C. Review of the eprinomectin effective doses required for dairy goats: Where do we go from here? Vet. Parasitol. 2020, 277, 108992. [Google Scholar] [CrossRef] [PubMed]
- Murri, S.; Knubben-Schweizer, G.; Torgerson, P.; Hertzberg, H. Frequency of eprinomectin resistance in gastrointestinal nematodes of goats in canton Berne, Switzerland. Vet. Parasitol. 2014, 203, 114–119. [Google Scholar] [CrossRef] [PubMed]
Anthelmintic Compound/Class | Number of Sheep Flocks | Number of Goat Herds |
---|---|---|
Moxidectin 1 | 86 | 14 |
Avermectins 2 | 5 | 3 |
Levamisole 3 | 41 | 3 |
Monepantel 1 | 25 | 3 |
Benzimidazoles 1 | 44 | 12 |
Closantel and mebendazole 1 | 17 | 0 |
(Combination product) |
Anthelmintic Compound/Class (Number of Sheep Flocks/Goat Herds Suspecting Previous Ineffectiveness) | Number of These Flocks (Sheep/Goats) Using Suspected Product | Number of Flocks (Sheep/Goats) with Unsuccessful Treatment(s) Using Suspected Product |
---|---|---|
Moxidectin 1 (33/3) | 12/2 | 6/0 |
Avermectins 2 (6/3) | 1/0 | 0/n.a. |
Levamisole 3 (6/1) | 3/0 | 0/n.a. |
Monepantel 1 (8/1) | 2/0 | 1/n.a. |
Benzimidazoles 1 (24/3) | 5/2 | 0/2 |
Closantel and mebendazole 1 (3/1) | 0/0 | n.a./n.a. |
(Combination product) |
Anthelmintic Compound/Class (Number of Sheep Flocks/Goat Herds Using These) | Number and Percentage of Flocks with Unsuccessful Treatment(s) | |
---|---|---|
Sheep | Goats | |
Moxidectin 1 (86/14) | 39 (45.3%) | 3 (21.4%) |
Avermectins 2 (5/3) | 3 (60.0%) | 3 (100%) |
Levamisole 3 (41/3) | 6 (14.6%) | 3 (100%) |
Monepantel 1 (25/3) | 3 (12.0%) | 1 (33.3%) |
Benzimidazoles 1 (44/12) | 23 (52.3%) | 6 (50.0%) |
Closantel and mebendazole 1 (17/0) | 2 (11.8%) | n.a. |
(Combination product) |
Anthelmintic Compound/Class (Number of Sheep Flocks/Goat Herds Using These) | Mean FECR (Sheep/Goats) | SD (Sheep/Goats) | Median FECR (Sheep/Goats) | IQR (Sheep/Goats) |
---|---|---|---|---|
Moxidectin 1 (86/14) | 81.8%/94.3% | 27.8/11.4 | 95%/100% | 21.5/4.5 |
Avermectins 2 (5/3) | 56.6%/90.0% | 52.1/1.7 | 83%/89% | 100/1.5 |
Levamisole 3 (41/3) | 97.7%/87.3% | 3.9/1.2 | 100%/88% | 3.0/1.0 |
Monepantel 1 (25/3) | 97.4%/90.0% | 7.2/15.6 | 100%/98% | 0.0/1.4 |
Benzimidazoles 1 (44/12) | 66.9%/78.3% | 39.9/34.6 | 93%/96% | 59.3/30.0 |
Closantel and mebendazole 1 (17/0) | 94.0%/n.a. | 15.4/n.a. | 100%/n.a. | 1.0/n.a. |
(Combination product) |
Paired Comparison | OR [95% CI] | p-Value (Following Holm Correction) |
---|---|---|
MOX/AV | 3.45 [0.55–21.81] | 0.292 |
MOX/LEV | 0.10 [0.01–0.87] | 0.019 |
MOX/MOP | 0.12 [0.01–1.48] | 0.093 |
MOX/BZ | 2.22 [0.97–5.10] | 0.042 |
MOX/CLOS + BZ | 0.29 [0.04–2.27] | 0.379 |
AV/LEV | 0.03 [0.00–0.45] | 0.002 |
AV/MOP | 0.03 [0.00–0.71] | 0.013 |
AV/BZ | 0.64 [0.10–4.18] | 1.000 |
AV/CLOS + BZ | 0.08 [0.01–1.19] | 0.048 |
LEV/MOP | 1.15 [0.05–28.08] | 1.000 |
LEV/BZ | 21.29 [2.50–181.06] | <0.001 |
LEV/CLOS + BZ | 2.73 [0.16–47.78] | 1.000 |
MOP/BZ | 18.51 [1.47–232.71] | 0.009 |
MOP/CLOS + BZ | 2.38 [0.10–56.26] | 1.000 |
BZ/CLOS + BZ | 0.13 [0.02–1.04] | 0.040 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voigt, K.; Geiger, M.; Jäger, M.C.; Knubben-Schweizer, G.; Strube, C.; Zablotski, Y. Effectiveness of Anthelmintic Treatments in Small Ruminants in Germany. Animals 2022, 12, 1501. https://doi.org/10.3390/ani12121501
Voigt K, Geiger M, Jäger MC, Knubben-Schweizer G, Strube C, Zablotski Y. Effectiveness of Anthelmintic Treatments in Small Ruminants in Germany. Animals. 2022; 12(12):1501. https://doi.org/10.3390/ani12121501
Chicago/Turabian StyleVoigt, Katja, Maximilian Geiger, Miriam Carmen Jäger, Gabriela Knubben-Schweizer, Christina Strube, and Yury Zablotski. 2022. "Effectiveness of Anthelmintic Treatments in Small Ruminants in Germany" Animals 12, no. 12: 1501. https://doi.org/10.3390/ani12121501
APA StyleVoigt, K., Geiger, M., Jäger, M. C., Knubben-Schweizer, G., Strube, C., & Zablotski, Y. (2022). Effectiveness of Anthelmintic Treatments in Small Ruminants in Germany. Animals, 12(12), 1501. https://doi.org/10.3390/ani12121501