Possibility of Using House Cricket (Acheta domesticus) or Mulberry Silkworm (Bombyx mori) Pupae Meal to Replace Poultry Meal in Canine Diets Based on Health and Nutrient Digestibility
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Insects, Diets and Feeding
2.3. Sample and Data Collection
2.4. Statistical Analysis
3. Results
3.1. Chemical Compositions of Insect Meals
3.2. Haematology and Blood Chemistry
3.3. Body Weight, Body Condition Score, Feed Intake, Faecal Output, Faecal Score, Faecal Moisture, and Apparent Total Tract Digestibility
4. Discussion
4.1. Diets and Insects
4.2. Health Parameters
4.3. Total Tract Apparent Digestibility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Charlton, A.J.; Dickinson, M.; Wakefield, M.E.; Fitches, E.; Kenis, M.; Han, R.; Zhu, F.; Kone, N.; Grant, M.; Devic, E.; et al. Exploring the chemical safety of fly larvae as a source of protein for animal feed. J. Insects Food Feed 2015, 1, 7–16. [Google Scholar] [CrossRef]
- Khan, S.; Khan, R.U.; Alam, W.; Sultan, A. Evaluating the nutritive profile of three insect meals and their effects to replace soya bean in broiler diet. J. Anim. Physiol. Anim. Nutr. 2018, 102, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental impact of food waste bioconversion by insects: Application of life cycle assessment to process using Hermetia illucens. J. Clean. Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security (No. 171); FAO: Rome, Italy, 2013. [Google Scholar]
- Lähteenmäki-Uutela, A.; Marimuthu, S.B.; Meijer, N. Regulations on insects as food and feed: A global comparison. J. Insects Food Feed 2021, 7, 1–8. [Google Scholar]
- Bosch, G.; Zhang, S.; Oonincx, D.G.; Hendriks, W.H. Protein quality of insects as potential ingredients for dog and cat foods. J. Nutr. Sci. 2014, 3, E29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beynen, A.C. Insect-based petfood. Creat. Companion 2018, 9, 40–41. [Google Scholar]
- Lei, X.J.; Kim, T.H.; Park, J.H.; Kim, I.H. Evaluation of supplementation of defatted black soldier fly (Hermetia illucens) larvae meal in beagle dogs. Ann. Anim. Sci. 2019, 19, 767–777. [Google Scholar] [CrossRef] [Green Version]
- Yamka, R.M.; Koutsos, E.A.; McComb, A. Evaluation of Black Soldier Fly Larvae as a Protein and Fat Source in Pet Foods; Petfood Forum: Kansas City, MI, USA, 2019; pp. 8–9. [Google Scholar]
- Meyer, L.F.; Kölln, M.; Kamphues, J. Hundefutter mit insekten? Untersuchungen zu mischfuttermitteln mit larven der schwarzen soldatenfliege als proteinquelle. Kleintierpraxis 2019, 64, 124–135. [Google Scholar]
- Penazzi, L.; Schiavone, A.; Russo, N.; Nery, J.; Valle, E.; Madrid, J.; Martinez, S.; Hernandez, F.; Pagani, E.; Ala, U.; et al. In vivo and in vitro digestibility of an extruded complete dog food containing black soldier fly (hermetia illucens) larvae meal as protein source. Front. Vet. Sci. 2021, 8, 542. [Google Scholar] [CrossRef] [PubMed]
- Kilburn, L.R.; Carlson, A.T.; Lewis, E.; Serao, M.C.R. Cricket (Gryllodes sigillatus) meal fed to healthy adult dogs does not affect general health and minimally impacts apparent total tract digestibility. J. Anim. Sci. 2020, 98, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovitvadhi, A.; Chundang, P.; Thongprajukaew, K.; Tirawattanawanich, C.; Srikachar, S.; Chotimanothum, B. Potential of insect meals as protein sources for meat-type ducks based on in vitro digestibility. Animals 2019, 9, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Association of American Feed Control Officials (AAFCO). Official Publication; AAFCO Inc: Atlanta, GA, USA, 2021. [Google Scholar]
- Association of Official Analytical Chemists International (AOAC). Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Janssen, R.H.; Vincken, J.P.; van den Broek, L.A.; Fogliano, V.; Lakemond, C.M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Laflamme, D.R.P.C. Development and validation of a body condition score system for dogs. Canine Pract. 1997, 22, 10–15. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2008. [Google Scholar]
- Bosch, G.; Swanson, K.S. Effect of using insects as feed on animals: Pet dogs and cats. J. Insects Food Feed 2020, 7, 795–805. [Google Scholar] [CrossRef]
- Kröger, S.; Heide, C.; Zentek, J. Evaluation of an extruded diet for adult dogs containing larvae meal from the Black Soldier Fly (Hermetia illucens). Anim. Feed Sci. Technol. 2020, 270, 114699. [Google Scholar] [CrossRef]
- Mansfield, C. Eosinophilia. In BSAVA Manual of Canine and Feline Haematology and Transfusion Medicine, BSAVA Library; Wiley Online Library: Hoboken, NJ, USA, 2012; pp. 126–130. [Google Scholar]
- Premrov Bajuk, B.; Zrimšek, P.; Kotnik, T.; Leonardi, A.; Križaj, I.; Jakovac Strajn, B. Insect Protein-Based Diet as Potential Risk of Allergy in Dogs. Animals 2021, 11, 1942. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, W.H.; Thomas, D.G.; Bosch, G.; Fahey Jr, G.C. Comparison of ileal and total tract nutrient digestibility of dry dog foods. J. Anim. Sci. 2013, 91, 3807–3814. [Google Scholar] [CrossRef] [PubMed]
Items | House Cricket Meal | Silkworm Pupae Meal | Groups | AAFCO 1 | ||||
---|---|---|---|---|---|---|---|---|
Control | House Cricket Inclusion | Silkworm Pupae Inclusion | ||||||
10% | 20% | 7% | 14% | |||||
Ingredients (%) | ||||||||
Corn | - | - | 50.1 | 48.1 | 46.2 | 48.7 | 47.2 | - |
Soybean meal | - | - | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | - |
Wheat flour | - | - | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 | - |
Poultry meal | - | - | 17.4 | 10.0 | 2.51 | 13.3 | 9.10 | - |
House cricket meal | - | - | - | 10.0 | 20.0 | - | - | - |
Mulberry silkworm pupae meal | - | - | - | - | - | 7.00 | 14.0 | - |
Palm oil | - | - | 5.72 | 5.09 | 4.44 | 4.01 | 2.50 | - |
Calcium carbonate | - | - | 0.53 | 0.56 | 0.60 | 0.74 | 0.95 | - |
Salt | - | - | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | - |
Vitamin premix 2 | - | - | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | - |
Mineral premix 3 | - | - | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | - |
Choline chloride | - | - | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | - |
Calculated composition (%DM) | ||||||||
Metabolizable energy (kcal/kg) 4 | - | - | 3700 | 3700 | 3700 | 3700 | 3700 | - |
Crude protein 5 | - | - | 23.5 (23.5) | 23.5 (25.3) | 23.5 (26.9) | 23.5 (24.5) | 23.5 (25.4) | 18.0 |
Crude fat | - | - | 10.3 | 10.3 | 10.3 | 10.2 | 10.1 | 5.50 |
NFE 6 | - | - | 57.2 | 57.1 | 57.1 | 57.4 | 57.6 | - |
Crude fibre | - | - | 2.67 | 3.30 | 3.93 | 2.76 | 2.85 | - |
Ash | - | - | 6.03 | 5.32 | 4.61 | 5.77 | 5.52 | - |
Methionine | - | - | 0.39 | 0.38 | 0.37 | 0.43 | 0.46 | 0.33 |
Cystein | - | - | 0.32 | 0.29 | 0.27 | 0.31 | 0.31 | - |
Methionine + cystein | - | - | 0.71 | 0.67 | 0.65 | 0.74 | 0.76 | 0.65 |
Lysine | - | - | 1.13 | 1.05 | 0.96 | 1.14 | 1.16 | 0.63 |
Calcium (Ca) | - | - | 0.94 | 0.78 | 0.62 | 0.87 | 0.80 | 0.50 |
Phosphorus (P) | - | - | 0.75 | 0.62 | 0.49 | 0.69 | 0.64 | 0.40 |
Ca/P ratio | - | - | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.00–2.00 |
Analyzed composition (%DM) | ||||||||
Dry matter | 94.1 | 94.0 | 79.3 | 78.8 | 70.5 | 84.7 | 77.1 | - |
Crude protein 7 | 54.4 | 43.8 | 25.3 | 26.4 | 29.2 | 25.0 | 25.7 | 18.0 |
Crude fat | 16.7 | 30.1 | 10.5 | 10.3 | 10.2 | 10.0 | 10.4 | 5.50 |
Crude fibre | 8.53 | 3.24 | 1.89 | 2.45 | 3.97 | 2.02 | 2.30 | - |
Ash | 5.82 | 4.30 | 5.16 | 4.08 | 3.78 | 4.78 | 4.79 | - |
Parameters 1 | Groups | SEM | p-Value | Reference Value 2 | ||||
---|---|---|---|---|---|---|---|---|
Control | House Cricket Inclusion | Silkworm Pupae Inclusion | ||||||
10% | 20% | 7% | 14% | |||||
Haemoglobin (g/dL) | 17.7 | 15.3 | 16.7 | 16.7 | 16.5 | 0.247 | 0.40 | 13.1–20.5 |
Haematocrit (%) | 47.5 | 42.2 | 45.2 | 45.2 | 43.9 | 0.979 | 0.17 | 37.3–61.7 |
Red blood cell (106/uL) | 8.07 | 6.99 | 7.24 | 7.93 | 7.43 | 0.101 | 0.09 | 5.65–8.87 |
MCV (fL) | 58.9 | 60.2 | 62.4 | 56.9 | 59.3 | 1.031 | 0.11 | 61.6–73.5 |
MCHC (g/dL) | 37.7 | 36.8 | 37.4 | 37.3 | 37.8 | 0.685 | 0.99 | 32.0–37.9 |
MCH (pg) | 22.0 | 21.9 | 23.0 | 21.0 | 22.2 | 0.148 | 0.38 | 21.2–25.9 |
White blood cell (103/uL) | 9.44 | 15.7 | 12.8 | 12.0 | 13.9 | 1.724 | 0.32 | 5.05–16.8 |
Neutrophils (103/uL) | 5.85 | 9.83 | 8.11 | 5.96 | 8.91 | 0.883 | 0.06 | 2.95–11.6 |
Lymphocytes (103/uL) | 2.50 | 2.87 | 3.11 | 3.64 | 2.64 | 0.603 | 0.68 | 1.05–5.10 |
Monocytes (103/uL) | 0.47 | 1.18 | 0.54 | 0.60 | 0.70 | 0.254 | 0.44 | 0.16–1.12 |
Eosinophils (103/uL) | 0.61 | 1.05 | 1.02 | 1.79 | 1.60 | 0.287 | 0.10 | 0.06–1.23 |
Basophils (103/uL) | 0.02 | 0.05 | 0.02 | 0.03 | 0.04 | 0.007 | 0.11 | 0.00–0.10 |
Platelets (103/uL) | 299 | 278 | 275 | 237 | 245 | 11.22 | 0.51 | 148–484 |
RDW (fL) | 19.0 | 16.7 | 18.0 | 18.3 | 17.3 | 0.307 | 0.35 | 9.10–19.4 |
MPV (fL) | 10.4 | 12.0 | 12.4 | 11.3 | 11.9 | 0.132 | 0.06 | 8.70–13.2 |
Blood urea nitrogen (mg%) | 12.5 | 13.1 | 13.4 | 13.8 | 13.6 | 0.480 | 0.99 | 10.0–26.0 |
Creatinine (mg%) | 1.07 | 0.96 | 1.22 | 1.20 | 1.15 | 0.024 | 0.41 | 0.50–1.30 |
ALT (IU/L) | 47.3 | 29.3 | 34.0 | 28.3 | 35.1 | 2.897 | 0.66 | 6.00–70.0 |
Total protein (gm%) | 7.20 | 7.16 | 6.36 | 6.73 | 6.87 | 0.089 | 0.47 | 5.30–7.80 |
Albumin (gm%) | 2.98 | 3.01 | 3.22 | 3.20 | 3.02 | 0.038 | 0.59 | 2.30–3.20 |
Globulin (gm%) | 4.23 | 4.14 | 3.13 | 3.53 | 3.84 | 0.101 | 0.35 | 2.70–4.40 |
Parameters | Groups | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
Control | House Cricket Inclusion | Silkworm Pupae Inclusion | |||||
10% | 20% | 7% | 14% | ||||
Body weight at d 22 1 | 27.3 | 24.1 | 24.8 | 25.7 | 26.4 | 2.686 | 0.86 |
Body condition score at d 22 | 4.73 | 4.27 | 4.57 | 4.23 | 4.47 | 0.384 | 0.91 |
Intake | |||||||
Feed intake, g as fed/d | 371 | 400 | 453 | 381 | 434 | 17.25 | 0.54 |
Feed intake, g DM/d | 468 | 508 | 642 | 450 | 564 | 24.37 | 0.06 |
Output | |||||||
Fecal output, g as-is/d | 247 | 213 | 234 | 187 | 266 | 12.39 | 0.32 |
Fecal output, g of DM/d | 94.8 | 87.4 | 92.2 | 70.8 | 95.3 | 4.426 | 0.37 |
Fecal score | 3.13 | 3.11 | 3.30 | 3.78 | 3.57 | 0.176 | 0.59 |
Fecal moisture (%FM) | 61.0 | 61.3 | 61.9 | 61.0 | 63.8 | 0.560 | 0.38 |
Apparent total tract digestibility (%) | |||||||
Dry matter | 71.5 | 75.2 | 74.8 | 79.7 | 74.8 | 1.002 | 0.19 |
Organic matter | 73.6 | 76.9 | 76.0 | 79.9 | 77.9 | 0.947 | 0.40 |
Crude protein | 72.8 | 75.4 | 76.9 | 78.0 | 77.3 | 0.924 | 0.50 |
Crude fat | 93.8 | 92.7 | 92.0 | 95.1 | 92.8 | 0.527 | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Areerat, S.; Chundang, P.; Lekcharoensuk, C.; Kovitvadhi, A. Possibility of Using House Cricket (Acheta domesticus) or Mulberry Silkworm (Bombyx mori) Pupae Meal to Replace Poultry Meal in Canine Diets Based on Health and Nutrient Digestibility. Animals 2021, 11, 2680. https://doi.org/10.3390/ani11092680
Areerat S, Chundang P, Lekcharoensuk C, Kovitvadhi A. Possibility of Using House Cricket (Acheta domesticus) or Mulberry Silkworm (Bombyx mori) Pupae Meal to Replace Poultry Meal in Canine Diets Based on Health and Nutrient Digestibility. Animals. 2021; 11(9):2680. https://doi.org/10.3390/ani11092680
Chicago/Turabian StyleAreerat, Sathita, Pipatpong Chundang, Chalermpol Lekcharoensuk, and Attawit Kovitvadhi. 2021. "Possibility of Using House Cricket (Acheta domesticus) or Mulberry Silkworm (Bombyx mori) Pupae Meal to Replace Poultry Meal in Canine Diets Based on Health and Nutrient Digestibility" Animals 11, no. 9: 2680. https://doi.org/10.3390/ani11092680