A Narrative Review on the Unexplored Potential of Colostrum as a Preventative Treatment and Therapy for Diarrhea in Neonatal Dairy Calves
Abstract
:Simple Summary
Abstract
1. Introduction
2. Causation of Digestive Disorders in Neonatal Calves
Consequences, Concerns and the Economic Loss of Neonatal Calf Diarrhea
3. Antimicrobial Usage and Its Role in Diarrhea Therapy
4. The Role of the Gastrointestinal Microbiome in Maintaining Gut Homeostasis
5. Colostrum
Colostrum Bioactive | Concentration | Benefit to the Gastrointestinal Tract | Reference | |||
---|---|---|---|---|---|---|
Unit | Colostrum | Mature Milk | ||||
Immunoglobulin G | g/L | 81 | <2 | Primary immunity contributor through pathogen binding in the intestinal mucosal membrane and passive immunity when absorbed into the circulatory system. | [17,77,86,87,96] | |
Lactoferrin | g/L | 1.84 | 0.1 | Sepsis prevention in infants. Binds to iron, preventing excess growth of bacteria, such as E. coli and Salmonella. | [16,88,89,90,91,92,93,96,114] | |
Lactoperoxidase | g/L | 0.011–0.045 | 0.013–0.030 | Inhibitory effects on bacterial metabolism through suppression of oxidation in proteins. | [16,114] | |
Lysozyme | μg/L | 140–700 | 70–600 | Cell lysis caused by hydrolysis of β linkages in the cell wall of Gram-positive and Gram-negative bacteria. | [16,94,114] | |
Insulin | μg/L | 65 | 1 | Promotes cell growth in the small intestine. | [96,115] | |
Insulin-like growth factor-I | μg/L | 310 | <2 | Stimulates intestinal cell growth and epithelial development. | [16,96] | |
Insulin-like growth factor-II | μg/L | 150 | 1 | Stimulates intestinal cell growth and epithelial development. | [16,96,116] | |
Oligosaccharides | g/L | 1 | <0.2 | Reduces gut permeability and promotes gut microflora development. | [101,117] | |
Fatty Acids | g/L | 64 | 39 | Improves thermoregulation capabilities. High levels of PUFA decreases oxidative stress by reducing the oxidants and reactive oxygen and nitrogen species. | [96,107,109,111] | |
Cytokines | IL-1 β IL-6 TNF-α INF-γ | μg/L | 845 75 925 260 | 3 <0.2 3 0.2 | Anti-inflammatory capabilities through the neutralization of pro-inflammatory molecules. Specifically, INF-γ amplifies the capacity of phagocytic cells. | [99,118] |
5.1. Hyperimmune Colostrum as a Treatment for Diarrhea
5.2. Natural Colostrum as a Preventative for Calf Disease
5.3. Natural Colostrum as a Treatment for Diarrhea
6. Future Research Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Urie, N.J.; Lombard, J.E.; Shivley, C.B.; Kopral, C.A.; Adams, A.E.; Earleywine, T.J.; Olson, J.D.; Garry, F.B. Preweaned Heifer Management on US Dairy Operations: Part V. Factors Associated with Morbidity and Mortality in Preweaned Dairy Heifer Calves. J. Dairy Sci. 2018, 101, 9229–9244. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.I.; Han, J.I.; Wang, C.; Cooper, V.; Schwartz, K.; Engelken, T.; Yoon, K.J. Case-Control Study of Microbiological Etiology Associated with Calf Diarrhea. Vet. Microbiol. 2013, 166, 375–385. [Google Scholar] [CrossRef]
- Bartels, C.J.M.; Holzhauer, M.; Jorritsma, R.; Swart, W.A.J.M.; Lam, T.J.G.M. Prevalence, Prediction and Risk Factors of Enteropathogens in Normal and Non-Normal Faeces of Young Dutch Dairy Calves. Prev. Vet. Med. 2010, 93, 162–169. [Google Scholar] [CrossRef] [PubMed]
- De La Fuente, R.; Garcia, A.; Ruiz-Santa-Quiteria, J.A.; Luzón, M.; Cid, D.; García, S.; Orden, J.A.; Gómez-Bautista, M. Proportional Morbidity Rates of Enteropathogens among Diarrheic Dairy Calves in Central Spain. Prev. Vet. Med. 1998, 36, 145–152. [Google Scholar] [CrossRef]
- Izzo, M.M.; Kirkland, P.D.; Mohler, V.L.; Perkins, N.R.; Gunn, A.A.; House, J.K. Prevalence of Major Enteric Pathogens in Australian Dairy Calves with Diarrhoea. Aust. Vet. J. 2011, 89, 167–173. [Google Scholar] [CrossRef]
- Chalmers, R.M.; Smith, R.; Elwin, K.; Clifton-hadley, F.A.; Giles, M. Epidemiology of Anthroponotic and Zoonotic Human Cryptosporidiosis in England and Wales. Epidemiol. Infect. 2011, 139, 700–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constable, P.D. Antimicrobial Use in the Treatment of Calf Diarrhea. J. Vet. Intern. Med. 2008, 8–17. [Google Scholar] [CrossRef]
- Frank, N.A.; Kaneene, J.B. Management Risk Factors Associated with Calf Diarrhea in Michigan Dairy Herds. J. Dairy Sci. 1993, 76, 1313–1323. [Google Scholar] [CrossRef]
- Anderson, D.C.; Kress, D.D.; Bernardini, T.M.M.; Davis, K.C.; Boss, D.L.; Doornbos, D.E. The Effect of Scours on Calf Weaning Weight. Prof. Anim. Sci. 2003, 19, 399–403. [Google Scholar] [CrossRef]
- Donovan, G.A.; Dohoo, I.R.; Montgomery, D.M.; Bennett, F.L. Calf and Disease Factors Affecting Growth in Female Holstein Calves in Florida, USA. Prev. Vet. Med. 1998, 33, 1–10. [Google Scholar] [CrossRef]
- Abuelo, A.; Cullens, F.; Brester, J.L. Effect of Preweaning Disease on the Reproductive Performance and First-Lactation Milk Production of Heifers in a Large Dairy Herd. J. Dairy Sci. 2021, 104, 7008–7017. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Strategy for Containment of Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2001; Available online: https://www.who.int/drugresistance/WHO_Global_Strategy_English.pdf (accessed on 22 January 2021).
- Helander, H.F.; Fändriks, L. Surface Area of the Digestive Tract-Revisited. Scand. J. Gastroenterol. 2014, 49, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Oultram, J.; Phipps, E.; Teixeira, A.G.V.; Foditsch, C.; Bicalho, M.L.; Machado, V.S.; Bicalho, R.C.; Oikonomou, G. Effects of Antibiotics (Oxytetracycline, Florfenicol or Tulathromycin) on Neonatal Calves’ Faecal Microbial Diversity. Vet. Rec. 2015, 117, 598. [Google Scholar] [CrossRef] [PubMed]
- van Vleck Pereira, R.; Lima, S.; Siler, J.D.; Foditsch, C.; Warnick, L.D.; Bicalho, R.C. Ingestion of Milk Containing Very Low Concentration of Antimicrobials: Longitudinal Effect on Fecal Microbiota Composition in Preweaned Calves. PLoS ONE 2016, 11, e0147525. [Google Scholar] [CrossRef] [Green Version]
- Pakkanen, R.; Aalto, J. Growth Factors and Antimicrobial Factors of Bovine Colostrum. Int. Dairy J. 1997, 7, 285–297. [Google Scholar] [CrossRef]
- Ulfman, L.H.; Leusen, J.H.W.; Savelkoul, H.F.J.; Warner, J.O.; van Neerven, R.J.J. Effects of Bovine Immunoglobulins on Immune Function, Allergy, and Infection. Front. Nutr. 2018, 5, 52. [Google Scholar] [CrossRef] [PubMed]
- Rathe, M.; Müller, K.; Sangild, P.T.; Husby, S. Clinical Applications of Bovine Colostrum Therapy: A Systematic Review. Nutr. Rev. 2014, 72, 237–254. [Google Scholar] [CrossRef]
- Berge, A.C.B.; Besser, T.E.; Moore, D.A.; Sischo, W.M. Evaluation of the Effects of Oral Colostrum Supplementation during the First Fourteen Days on the Health and Performance of Preweaned Calves. J. Dairy Sci. 2009, 92, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Jung, W.S.; Choi, N.J.; Kim, D.O.; Shin, D.H.; Kim, Y.J. Health-Promoting Effects of Bovine Colostrum in Type 2 Diabetic Patients Can Reduce Blood Glucose, Cholesterol, Triglyceride and Ketones. J. Nutr. Biochem. 2009, 20, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Ikemori, Y.; Ohta, M.; Umeda, K.; Icatlo, F.C.; Kuroki, M.; Yokoyama, H.; Kodama, Y. Passive Protection of Neonatal Calves against Bovine Coronavirus-Induced Diarrhea by Administration of Egg Yolk or Colostrum Antibody Powder. Vet. Microbiol. 1997, 58, 105–111. [Google Scholar] [CrossRef]
- Ungar, B.L.P.; Ward, D.J.; Fayer, R.; Quinn, C.A. Cessation of Cryptosporidium-Associated Diarrhea in an Acquired Immunodeficiency Syndrome Patient after Treatment with Hyperimmune Bovine Colostrum. Gastroenterology 1990, 98, 486–489. [Google Scholar] [CrossRef]
- Davidson, G.P.; Daniels, E.; Nunan, H.; Moore, A.G.; Whyte, P.B.D.; Franklin, K.; Mccloud, P.I.; Moore, D.J. Passive Immunisation of Children With Bovine Colostrum Containing Antibodies To Human Rotavirus. Lancet 1989, 334, 709–712. [Google Scholar] [CrossRef]
- Fayer, R.; Andrews, C.; Ungar, B.L.P.; Blagburn, B. Efficacy of Hyperimmune Bovine Colostrum for Prophylaxis of Cryptosporidiosis in Neonatal Calves. J. Parasitol. 1989, 75, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Chapman, C.; Roberton, D. Remission of Diarrhoea Due to Cryptosporidiosis in an Immunodeficient Child Treated with Hyperimmune Bovine Colostrum. Br. Med. J. (Clin. Res. Ed.) 1986, 293, 1276–1277. [Google Scholar] [CrossRef] [Green Version]
- Solomons, N.W. Modulation of the Immune System and the Response against Pathogens with Bovine Colostrum Concentrates. Eur. J. Clin. Nutr. 2002, 56, S24–S28. [Google Scholar] [CrossRef]
- Cantor, M.C.; Renaud, D.L.; Costa, J.H.C. Nutraceutical Intervention with Colostrum Replacer: Can We Reduce Disease Hazard, Ameliorate Disease Severity, and Improve Performance in Preweaned Dairy Calves? J. Dairy Sci. 2021, 104, 7168–7176. [Google Scholar] [CrossRef]
- Kargar, S.; Roshan, M.; Ghoreishi, S.M.; Akhlaghi, A.; Kanani, M.; Abedi Shams-Abadi, A.R.; Ghaffari, M.H. Extended Colostrum Feeding for 2 Weeks Improves Growth Performance and Reduces the Susceptibility to Diarrhea and Pneumonia in Neonatal Holstein Dairy Calves. J. Dairy Sci. 2020, 103, 8130–8142. [Google Scholar] [CrossRef]
- Berge, A.C.B.; Moore, D.A.; Besser, T.E.; Sischo, W.M. Targeting Therapy to Minimize Antimicrobial Use in Preweaned Calves: Effects on Health, Growth, and Treatment Costs. J. Dairy Sci. 2009, 92, 4707–4714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamorro, M.F.; Cernicchiaro, N.; Haines, D.M. Evaluation of the Effects of Colostrum Replacer Supplementation of the Milk Replacer Ration on the Occurrence of Disease, Antibiotic Therapy, and Performance of Pre-Weaned Dairy Calves. J. Dairy Sci. 2017, 100, 1378–1387. [Google Scholar] [CrossRef] [Green Version]
- Steele, J.; Sponseller, J.; Schmidt, D.; Cohen, O.; Tzipori, S. Hyperimmune Bovine Colostrum for Treatment of GI Infections. Hum. Vaccin. Immunother. 2013, 9, 1565–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBey, B.M.; Blanchard, P.C.; Durfee, P.T. Abomasal Bloat Associated with Sarcina-like Bacteria in Goat Kids. J. Am. Vet. Med. Assoc. 1996, 209, 1468–1469. [Google Scholar]
- Berchtold, J. Treatment of Calf Diarrhea: Intravenous Fluid Therapy. Vet. Clin. North Am.-Food Anim. Pract. 2009, 25, 73–99. [Google Scholar] [CrossRef]
- García, A.; Ruiz-Santa-Quiteria, J.A.; Orden, J.A.; Cid, D.; Sanz, R.; Gómez-Bautista, M.; De La Fuente, R. Rotavirus and Concurrent Infections with Other Enteropathogens in Neonatal Diarrheic Dairy Calves in Spain. Comp. Immunol. Microbiol. Infect. Dis. 2000, 23, 175–183. [Google Scholar] [CrossRef]
- El-Seedy, F.R.; Abed, A.H.; Yanni, H.A.; Abd El-Rahman, S.A.A. Prevalence of Salmonella and E. Coli in Neonatal Diarrheic Calves. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Renaud, D.L.; Rot, C.; Marshall, J.; Steele, M.A. The Effect of Cryptosporidium Parvum, Rotavirus, and Coronavirus Infection on the Health and Performance of Male Dairy Calves. J. Dairy Sci. 2021, 104, 2151–2163. [Google Scholar] [CrossRef] [PubMed]
- Klein-Jöbstl, D.; Iwersen, M.; Drillich, M. Farm Characteristics and Calf Management Practices on Dairy Farms with and without Diarrhea: A Case-Control Study to Investigate Risk Factors for Calf Diarrhea. J. Dairy Sci. 2014, 97, 5110–5119. [Google Scholar] [CrossRef]
- Cho, Y.L.; Yoon, K.J. An Overview of Calf Diarrhea—Infectious Etiology, Diagnosis, and Intervention. J. Vet. Sci. 2014, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.M.; Smith, G.W. Pathophysiology of Diarrhea in Calves. Vet. Clin. North Am. Food Anim. Pract. 2009, 25, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Peek, S.F.; Mcguirk, S.M.; Sweeney, R.W.; Cummings, K.J. Infectious Diseases of the Gastrointestinal Tract. In Rebhun’s Diseases of Dairy Cattle, 3rd ed.; Saunders Elsevierpp: St. Louis, MO, USA, 2018; pp. 249–356. [Google Scholar] [CrossRef]
- Ball, J.M.; Mitchell, D.M.; Gibbons, T.F.; Parr, R.D. Rotavirus NSP4: A Multifunctional Viral Enterotoxin. Viral Immunol. 2005, 18, 27–40. [Google Scholar] [CrossRef]
- Holschbach, C.L.; Peek, S.F. Salmonella in Dairy Cattle. Vet. Clin. North Am. Food Anim. Pract. 2018, 34, 133–154. [Google Scholar] [CrossRef]
- Giannella, R. Salmonella—Medical Microbiology—NCBI Bookshelf. Med. Microbiol. 1996. Available online: https://www.ncbi.nlm.nih.gov/books/NBK8435/ (accessed on 2 April 2021).
- Windeyer, M.C.; Leslie, K.E.; Godden, S.M.; Hodgins, D.C.; Lissemore, K.D.; LeBlanc, S.J. Factors Associated with Morbidity, Mortality, and Growth of Dairy Heifer Calves up to 3 Months of Age. Prev. Vet. Med. 2014, 113, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, A.J.; Heinrichs, B.S. A Prospective Study of Calf Factors Affecting First-Lactation and Lifetime Milk Production and Age of Cows When Removed from the Herd1. J. Dairy Sci. 2011, 94, 336–341. [Google Scholar] [CrossRef]
- Waltner-Toews, D.; Martin, S.W.; Meek, A.H. The Effect of Early Calfhood Health Status on Survivorship and Age at First Calving. Can. J. Vet. Res. 1986, 50, 314–317. [Google Scholar]
- Gabler, M.T.; Tozer, P.R.; Heinrichs, A.J. Development of a Cost Analysis Spreadsheet for Calculating the Costs to Raise a Replacement Dairy Heifer 1. J. Dairy Sci. 2000, 83, 1104–1109. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, X.; Xiao, J.; Chen, X.H.; Zhang, X.F.; Wang, T.; Zhen, Y.G.; Qin, G.X. Prepartum Body Condition Score Affects Milk Yield, Lipid Metabolism, and Oxidation Status of Holstein Cows. Asian-Australas. J. Anim. Sci. 2019, 32, 1889–1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meganck, V.; Hoflack, G.; Opsomer, G. Advances in Prevention and Therapy of Neonatal Dairy Calf Diarrhoea: A Systematical Review with Emphasis on Colostrum Management and Fluid Therapy. Acta Vet. Scand. 2014, 56, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kaneene, J.B.; Scott Hurd, H. The National Animal Health Monitoring System in Michigan. III. Cost Estimates of Selected Dairy Cattle Diseases. Prev. Vet. Med. 1990, 8, 127–140. [Google Scholar] [CrossRef]
- Garofalo, C.; Vignaroli, C.; Zandri, G.; Aquilanti, L.; Bordoni, D.; Osimani, A.; Clementi, F.; Biavasco, F. Direct Detection of Antibiotic Resistance Genes in Specimens of Chicken and Pork Meat. Int. J. Food Microbiol. 2007, 113, 75–83. [Google Scholar] [CrossRef]
- Tóth, A.G.; Csabai, I.; Krikó, E.; Tőzsér, D.; Maróti, G.; Patai Á, V.; Makrai, L.; Szita, G.; Solymosi, N. Antimicrobial Resistance Genes in Raw Milk for Human Consumption. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Alaoui Amine, S.; Melloul, M.; El Alaoui, M.A.; Boulahyaoui, H.; Loutfi, C.; Touil, N.; El Fahime, E. Evidence for Zoonotic Transmission of Species A Rotavirus from Goat and Cattle in Nomadic Herds in Morocco, 2012–2014. Virus Genes 2020, 56, 582–593. [Google Scholar] [CrossRef]
- Umpiérrez, A.; Bado, I.; Oliver, M.; Acquistapace, S.; Etcheverría, A.; Padola, N.L.; Vignoli, R.; Zunino, P. Zoonotic Potential and Antibiotic Resistance of Escherichia Coli in Neonatal Calves in Uruguay. Microbes Environ. 2017, 32, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Scott, N.A.; Andrusaite, A.; Andersen, P.; Lawson, M.; Alcon-Giner, C.; Leclaire, C.; Caim, S.; Le Gall, G.; Shaw, T.; Connolly, J.P.; et al. Antibiotics Induce Sustained Dysregulation of Intestinal T Cell Immunity by Perturbing Macrophage Homeostasis. Sci. Transl. Med. 2018, 10, eaao4755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmuthuge, N.; Griebel, P.J.; Guan, L.L. The Gut Microbiome and Its Potential Role in the Development and Function of Newborn Calf Gastrointestinal Tract. Front. Vet. Sci. 2015, 2, 36. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Chen, D.C.; Chen, L.M. Facing a New Challenge: The Adverse Effects of Antibiotics on Gut Microbiota and Host Immunity. Chin. Med J. 2019, 132, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Becattini, S.; Taur, Y.; Pamer, E.G. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends Mol. Med. 2016, 22, 458–478. [Google Scholar] [CrossRef] [Green Version]
- Tulstrup, M.V.L.; Christensen, E.G.; Carvalho, V.; Linninge, C.; Ahrné, S.; Højberg, O.; Licht, T.R.; Bahl, M.I. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class. PLoS ONE 2015, 10, e0144854. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.S.; Hötzel, M.J.; Weary, D.M.; Robbins, J.A.; von Keyserlingk, M.A.G. Imagining the Ideal Dairy Farm. J. Dairy Sci. 2016, 99, 1663–1671. [Google Scholar] [CrossRef] [Green Version]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alipour, M.J.; Jalanka, J.; Pessa-Morikawa, T.; Kokkonen, T.; Satokari, R.; Hynönen, U.; Iivanainen, A.; Niku, M. The Composition of the Perinatal Intestinal Microbiota in Cattle. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Malmuthuge, N. Role of Commensal Microbiota in Neonatal Calf Gut Development. 2016, pp. 1–290. Available online: https://era.library.ualberta.ca/items/2df7d952-623a-4cae-abb0-53d9a645eecd/view/5fbf0d43-e07f-4042-8194-fa0ae3a10f57/Malmuthuge_Nilusha_S_201607_PhD.pdf (accessed on 12 March 2021). [CrossRef]
- Klein-Jöbstl, D.; Quijada, N.M.; Dzieciol, M.; Feldbacher, B.; Wagner, M.; Drillich, M.; Schmitz-Esser, S.; Mann, E. Microbiota of Newborn Calves and Their Mothers Reveals Possible Transfer Routes for Newborn Calves’ Gastrointestinal Microbiota. PLoS ONE 2019, 14, e0220554. [Google Scholar] [CrossRef] [Green Version]
- Yeoman, C.J.; Ishaq, S.L.; Bichi, E.; Olivo, S.K.; Lowe, J.; Aldridge, B.M. Biogeographical Differences in the Influence of Maternal Microbial Sources on the Early Successional Development of the Bovine Neonatal Gastrointestinal Tract. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Belkaid, Y.; Hand, T.W. Role of the Microbiota in Immunity and Inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmuthuge, N.; Liang, G.; Guan, L.L. Regulation of Rumen Development in Neonatal Ruminants through Microbial Metagenomes and Host Transcriptomes. Genome Biol. 2019, 20, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonty, G.; Gouet, P.; Jouany, J.-P.; Senaud, J. Establishment of the Microflora and Anaerobic Fungi in the Rumen of Lambs Effects Of. J. Gen. Microbiol. 1987, 133, 1835–1843. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Schumacher, U.; Ronaasen, V.; Coates, M. Rat Intestinal Mucosal Responses to a Microbial Flora and Different Diets. 1995; Volume 36. Available online: https://pubmed.ncbi.nlm.nih.gov/7883219/ (accessed on 22 March 2021).
- Petersson, J.; Schreiber, O.; Hansson, G.C.; Gendler, S.J.; Velcich, A.; Lundberg, J.O.; Roos, S.; Holm, L.; Phillipson, M. Importance and Regulation of the Colonic Mucus Barrier in a Mouse Model of Colitis. Am. J. Physiol.-Gastrointest. Liver Physiol. 2010, 300, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.; Pamp, S.J.; Hill, J.A.; Surana, N.K.; Edelman, S.M.; Troy, E.B.; Reading, N.C.; Villablanca, E.J.; Wang, S.; Mora, J.R.; et al. Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota. Cell 2012, 149, 1578–1593. [Google Scholar] [CrossRef] [Green Version]
- Rautava, S.; Walker, W.A. Commensal Bacteria and Epithelial Cross Talk in the Developing Intestine. Curr. Gastroenterol. Rep. 2007, 9, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Uyeno, Y.; Shigemori, S.; Shimosato, T. Effect of Probiotics/Prebiotics on Cattle Health and Productivity. Microbes Environ. 2015, 30, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.J.; Wu, E. The Role of Gut Microbiota in Immune Homeostasis and Autoimmunity. Gut Microbes. 2012, 3, 4–14. [Google Scholar] [CrossRef] [Green Version]
- McGuirk, S.M.; Collins, M. Managing the Production, Storage, and Delivery of Colostrum. Vet. Clin. North Am.-Food Anim. Pract. 2004, 20, 593–603. [Google Scholar] [CrossRef]
- Godden, S. Colostrum Management for Dairy Calves. Vet. Clin. North Am.-Food Anim. Pract. 2008, 24, 19–39. [Google Scholar] [CrossRef]
- Godden, S.M.; Lombard, J.E.; Woolums, A.R. Colostrum Management for Dairy Calves. Vet. Clin. North Am.-Food Anim. Pract. 2019, 35, 535–556. [Google Scholar] [CrossRef]
- Fischer-Tlustos, A.; Lopez, A.; Hare, K.; Wood, K.; Steele, M. Immune and Bioactive Components in Bovine Colostrum and Their Effects on the Neonatal Calf. Can. J. Anim. Sci. 2021. [Google Scholar] [CrossRef]
- Winder, C.B.; Bauman, C.A.; Duffield, T.F.; Barkema, H.W.; Keefe, G.P.; Dubuc, J.; Uehlinger, F.; Kelton, D.F. Canadian National Dairy Study: Heifer Calf Management. J. Dairy Sci. 2018, 101, 10565–10579. [Google Scholar] [CrossRef] [Green Version]
- Weaver, D.M.; Tyler, J.W.; VanMetre, D.C.; Hostetler, D.E.; Barrington, G.M. Passive Transfer of Colostral Immunoglobulins in Calves. J. Vet. Intern. Med./Am. Coll. Vet. Intern. Med. 2000, 14, 569–577. [Google Scholar] [CrossRef]
- Hammon, H.M.; Blum, J.W. Metabolic and Endocrine Traits of Neonatal Calves Are Influenced by Feeding Colostrum for Different Durations or Only Milk Replacer. J. Nutr. 1998, 128, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Larson, B.L.; Heary, H.L.; Devery, J.E. Immunoglobulin Production and Transport by the Mammary Gland. J. Dairy Sci. 1980, 63, 665–671. [Google Scholar] [CrossRef]
- DuBourdieu, D. Colostrum Antibodies, Egg Antibodies and Monoclonal Antibodies Providing Passive Immunity for Animals. Nutraceuticals Vet. Med. 2019, 245–257. [Google Scholar] [CrossRef]
- Bush, L.J.; Staley, T.E. Absorption of Colostral Immunoglobulins in Newborn Calves. J. Dairy Sci. 1980, 63, 672–680. [Google Scholar] [CrossRef]
- Fischer, A.J.; Song, Y.; He, Z.; Haines, D.M.; Guan, L.L.; Steele, M.A. Effect of Delaying Colostrum Feeding on Passive Transfer and Intestinal Bacterial Colonization in Neonatal Male Holstein Calves. J. Dairy Sci. 2018, 101, 3099–3109. [Google Scholar] [CrossRef] [Green Version]
- Hilpert, H.; Briissow, H.; Mietens, C.; Sidoti, J.; Lerner, L.; Werchau, H. Use of Bovine Milk Concentrate Containing Antibody to Rotavirus to Treat Rotavirus Gastroenteritis In Infants. J. Infect. Dis. 1987, 156, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Rump, J.A.; Arndt, R.; Arnold, A.; Bendick, C.; Dichtelmüller, H.; Franke, M.; Helm, E.B.; Jäger, H.; Kampmann, B.; Kolb, P.; et al. Treatment of Diarrhoea in Human Immunodeficiency Virus-Infected Patients with Immunoglobulins from Bovine Colostrum. Clin. Investig. 1992, 70, 588–594. [Google Scholar] [CrossRef]
- Turin, C.G.; Zea-Vera, A.; Pezo, A.; Cruz, K.; Zegarra, J.; Bellomo, S.; Cam, L.; Llanos, R.; Castañeda, A.; Tucto, L.; et al. Lactoferrin for Prevention of Neonatal Sepsis. BioMetals 2014, 27, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Habing, G.; Harris, K.; Schuenemann, G.M.; Piñeiro, J.M.; Lakritz, J.; Clavijo, X.A. Lactoferrin Reduces Mortality in Preweaned Calves with Diarrhea. J. Dairy Sci. 2017, 100, 3940–3948. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Miyakawa, H.; Tamura, Y.; Shimamura, S.; Tomita, M. Potent Bactericidal Activity of Bovine Lactoferrin Hydrolysate Produced by Heat Treatment at Acidic PH. J. Dairy Sci. 1991, 74, 3724–3730. [Google Scholar] [CrossRef]
- Batish, V.K.; Chander, H.; Zumdegni, K.C.; Bhatia, K.L.; Singh, R.S. Antibacterial Activity Of Lactoferrin Against Some Common Food-Borne Pathogenic Organisms—ProQuest. Aust. J. Dairy Technol. 1988, 43, 16–18. [Google Scholar]
- Lassiter, M.O.; Newsome, A.L.; Sams, L.D.; Arnold, R.R. Characterization of Lactoferrin Interaction with Streptococcus Mutans. J. Dent. Res. 1987, 66, 480–485. [Google Scholar] [CrossRef]
- Oram, J.D.; Reiter, B. Inhibition of Bacteria by Lactoferrin and Other Iron-Chelating Agents. BBA-Gen. Subj. 1968, 170, 351–365. [Google Scholar] [CrossRef]
- Shah, N.P. Effects of Milk-Derived Bioactives: An Overview. Br. J. Nutr. 2000, 84, 3–10. [Google Scholar] [CrossRef] [Green Version]
- O’Callaghan, T.F.; O’Donovan, M.; Murphy, J.P.; Sugrue, K.; Mannion, D.; McCarthy, W.P.; Timlin, M.; Kilcawley, K.N.; Hickey, R.M.; Tobin, J.T. Evolution of the Bovine Milk Fatty Acid Profile–From Colostrum to Milk Five Days Post Parturition. Int. Dairy J. 2020, 104, 104655. [Google Scholar] [CrossRef]
- Blum, J.W.; Hammon, H. Colostrum Effects on the Gastrointestinal Tract, and on Nutritional, Endocrine and Metabolic Parameters in Neonatal Calves. Livest. Prod. Sci. 2000, 66, 151–159. [Google Scholar] [CrossRef]
- Steinhoff-Wagner, J.; Görs, S.; Junghans, P.; Bruckmaier, R.M.; Kanitz, E.; Metges, C.C.; Hammon, H.M. Intestinal Glucose Absorption but Not Endogenous Glucose Production Differs between Colostrum- and Formula-Fed Neonatal Calves1-3. J. Nutr. 2011, 141, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stelwagen, K.; Carpenter, E.; Haigh, B.; Hodgkinson, A.; Wheeler, T.T. Immune Components of Bovine Colostrum and Milk. J. Anim. Sci. 2009, 87, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagiwara, K.; Kataoka, S.; Yamanaka, H.; Kirisawa, R.; Iwai, H. Detection of Cytokines in Bovine Colostrum. Vet. Immunol. Immunopathol. 2000, 76, 183–190. [Google Scholar] [CrossRef]
- Playford, R.J.; Weiser, M.J. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef]
- Fischer-Tlustos, A.J.; Hertogs, K.; van Niekerk, J.K.; Nagorske, M.; Haines, D.M.; Steele, M.A. Oligosaccharide Concentrations in Colostrum, Transition Milk, and Mature Milk of Primi- and Multiparous Holstein Cows during the First Week of Lactation. J. Dairy Sci. 2020, 103, 3683–3695. [Google Scholar] [CrossRef]
- Martín-Sosa, S.; Martín, M.J.; Hueso, P. The Sialylated Fraction of Milk Oligosaccharides Is Partially Responsible for Binding to Enterotoxigenic and Uropathogenic Escherichia Coli Human Strains. J. Nutr. 2002, 132, 3067–3072. [Google Scholar] [CrossRef]
- Ganguli, K.; Meng, D.; Rautava, S.; Lu, L.; Walker, W.A.; Nanthakumar, N. Probiotics Prevent Necrotizing Enterocolitis by Modulating Enterocyte Genes That Regulate Innate Immune-Mediated Inflammation. Am. J. Physiol.-Gastrointest. Liver Physiol. 2013, 304, 132–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chichlowski, M.; De Lartigue, G.; Bruce German, J.; Raybould, H.E.; Mills, D.A. Bifidobacteria Isolated from Infants and Cultured on Human Milk Oligosaccharides Affect Intestinal Epithelial Function. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 321–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewaschuk, J.B.; Diaz, H.; Meddings, L.; Diederichs, B.; Dmytrash, A.; Backer, J.; Van Langen, M.L.; Madsen, K.L. Secreted Bioactive Factors from Bifidobacterium Infantis Enhance Epithelial Cell Barrier Function. Am. J. Physiol.-Gastrointest. Liver Physiol. 2008, 295, 1025–1034. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Xia, M.; Tan, M.; Zhong, W.; Wei, C.; Wang, L.; Morrow, A.; Jiang, X. Spike Protein VP8* of Human Rotavirus Recognizes Histo-Blood Group Antigens in a Type-Specific Manner. J. Virol. 2012, 86, 4833–4843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.T.; Chen, C.; Newburg, D.S. Utilization of Major Fucosylated and Sialylated Human Milk Oligosaccharides by Isolated Human Gut Microbes. Glycobiology 2013, 23, 1281–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilms, J.N.; Hare, K.S.; Fischer-Tlustos, A.; Vahmani, P.; Dugan, M.E.R.; Leal, L.N.; Steele, M.A. Fatty Acid Profile in Colostrum, Transition, and Mature Milks of Primi- and Multiparous Cows during the First Week of Lactation. J. Dairy Sci. 2021, 103. [Google Scholar] [CrossRef]
- Quigley, J.D.; Drewry, J.J. Nutrient and Immunity Transfer from Cow to Calf Pre- and Postcalving. J. Dairy Sci. 1998, 81, 2779–2790. [Google Scholar] [CrossRef]
- Morrill, K.M.; Conrad, E.; Lago, A.; Campbell, J.; Quigley, J.; Tyler, H. Nationwide Evaluation of Quality and Composition of Colostrum on Dairy Farms in the United States. J. Dairy Sci. 2012, 95, 3997–4005. [Google Scholar] [CrossRef] [Green Version]
- Opgenorth, J.; Sordillo, L.M.; Lock, A.L.; Gandy, J.C.; VandeHaar, M.J. Colostrum Supplementation with N-3 Fatty Acids Alters Plasma Polyunsaturated Fatty Acids and Inflammatory Mediators in Newborn Calves. J. Dairy Sci. 2020, 103, 11676–11688. [Google Scholar] [CrossRef] [PubMed]
- MacGibbon, A.K.H.; Taylor, M.W. Composition and Structure of Bovine Milk Lipids. Adv. Dairy Chem. 2006, 2, 25–66. [Google Scholar] [CrossRef]
- Opgenorth, J.; Sordillo, L.M.; VandeHaar, M.J. Colostrum Supplementation with N-3 Fatty Acids and α-Tocopherol Alters Plasma Polyunsaturated Fatty Acid Profile and Decreases an Indicator of Oxidative Stress in Newborn Calves. J. Dairy Sci. 2020, 103, 3545–3553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korhonen, H. Antimicrobial Factors in Bovine Colostrum. Agric. Food Sci. 1977, 49, 434–447. [Google Scholar] [CrossRef]
- Shulman, R.J. Oral Insulin Increases Small Intestinal Mass and Disaccharidase Activity in the Newborn Miniature Pig. Pediatr. Res. 1990, 28, 171–175. [Google Scholar] [CrossRef]
- Vega, J.R.; Gibson, C.A.; Skaar, T.C.; Hadsell, D.L.; Baumrucker, C.R. Insulin-like Growth Factor (IGF)-I and -II and IGF Binding Proteins in Serum and Mammary Secretions during the Dry Period and Early Lactation in Dairy Cows. J. Anim. Sci. 1991, 69, 2538–2547. [Google Scholar] [CrossRef]
- Nakamura, T.; Kawase, H.; Kimura, K.; Watanabe, Y.; Ohtani, M.; Arai, I.; Urashima, T. Concentrations of Sialyloligosaccharides in Bovine Colostrum and Milk during the Prepartum and Early Lactation. J. Dairy Sci. 2003, 86, 1315–1320. [Google Scholar] [CrossRef] [Green Version]
- Bernard, L.; Leroux, C.; Chilliard, Y. Expression of Nutritional Regulation of Lipogenic Genes in the Ruminant Lactating Mammary Gland. In Bioactive Components of Milk; Springer: New York, NY, USA, 2008. [Google Scholar]
- Kramski, M.; Center, R.J.; Wheatley, A.K.; Jacobson, J.C.; Alexander, M.R.; Rawlin, G.; Purcell, D.F.J. Hyperimmune Bovine Colostrum as a Low-Cost, Large-Scale Source of Antibodies with Broad Neutralizing Activity for HIV-1 Envelope with Potential Use in Microbicides. Antimicrob. Agents Chemother. 2012, 56, 4310–4319. [Google Scholar] [CrossRef] [Green Version]
- Fayer, R.; Perryman, L.E.; Riggs, M.W. Hyperimmune Bovine Colostrum Neutralizes Cryptosporidium Sporozoites and Protects Mice against Oocyst Challenge. J. Parasitol. 1989, 75, 151–153. [Google Scholar] [CrossRef]
- Sponseller, J.K.; Steele, J.A.; Schmidt, D.J.; Kim, H.B.; Beamer, G.; Sun, X.; Tzipori, S. Hyperimmune Bovine Colostrum as a Novel Therapy to Combat Clostridium Difficile Infection. J. Infect. Dis. 2015, 211, 1334–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombard, J.; Urie, N.; Garry, F.; Godden, S.; Quigley, J.; Earleywine, T.; McGuirk, S.; Moore, D.; Branan, M.; Chamorro, M.; et al. Consensus Recommendations on Calf- and Herd-Level Passive Immunity in Dairy Calves in the United States. J. Dairy Sci. 2020, 103, 7611–7624. [Google Scholar] [CrossRef] [PubMed]
- Hare, K.S.; Pletts, S.; Pyo, J.; Haines, D.; Guan, L.L.; Steele, M. Feeding Colostrum or a 1:1 Colostrum:Whole Milk Mixture for 3 Days after Birth Increases Serum Immunoglobulin G and Apparent Immunoglobulin G Persistency in Holstein Bulls. J. Dairy Sci. 2020, 103, 11833–11843. [Google Scholar] [CrossRef]
- Pyo, J.; Hare, K.; Pletts, S.; Inabu, Y.; Haines, D.; Sugino, T.; Guan, L.L.; Steele, M. Feeding Colostrum or a 1:1 Colostrum:Milk Mixture for 3 Days Postnatal Increases Small Intestinal Development and Minimally Influences Plasma Glucagon-like Peptide-2 and Serum Insulin-like Growth Factor-1 Concentrations in Holstein Bull Calves. J. Dairy Sci. 2020, 103, 4236–4251. [Google Scholar] [CrossRef] [PubMed]
- Geiger, A.J.; Parsons, C.L.M.; Akers, R.M. Feeding an Enhanced Diet to Holstein Heifers during the Preweaning Period Alters Steroid Receptor Expression and Increases Cellular Proliferation. J. Dairy Sci. 2017, 100, 8534–8543. [Google Scholar] [CrossRef]
- Davison, G.; Diment, B.C. Bovine Colostrum Supplementation Attenuates the Decrease of Salivary Lysozyme and Enhances the Recovery of Neutrophil Function after Prolonged Exercise. Br. J. Nutr. 2010, 103, 1425–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barakat, S.H.; Meheissen, M.A.; Omar, O.M.; Elbana, D.A. Bovine Colostrum in the Treatment of Acute Diarrhea in Children: A Double-Blinded Randomized Controlled Trial. J. Trop. Pediatr. 2019, 66, 46–55. [Google Scholar] [CrossRef]
- Snodgrass, D.R.; Stewart, J.; Taylor, J.; Krautil, F.L.; Smith, M.L. Diarrhoea in Dairy Calves Reduced by Feeding Colostrum from Cows Vaccinated with Rotavirus. Res. Vet. Sci. 1982, 32, 70–73. [Google Scholar] [CrossRef]
- Katsoulos, P.D.; Karatzia, M.A.; Dovas, C.I.; Filioussis, G.; Papadopoulos, E.; Kiossis, E.; Arsenopoulos, K.; Papadopoulos, T.; Boscos, C.; Karatzias, H. Evaluation of the In-Field Efficacy of Oregano Essential Oil Administration on the Control of Neonatal Diarrhea Syndrome in Calves. Res. Vet. Sci. 2017, 115, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Renaud, D.L.; Kelton, D.F.; Weese, J.S.; Noble, C.; Duffield, T.F. Evaluation of a Multispecies Probiotic as a Supportive Treatment for Diarrhea in Dairy Calves: A Randomized Clinical Trial. J. Dairy Sci. 2019, 102, 4498–4505. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, H.M.; Mulder, L.; Everts, H.; Van Espen, D.C.; Van Der Wal, E.; Klaassen, G.; Rouwers, S.M.G.; Hartemink, R.; Rombouts, F.M.; Beynen, A.C. Health and Growth of Veal Calves Fed Milk Replacers with or without Probiotics. J. Dairy Sci. 2005, 88, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carter, H.S.M.; Renaud, D.L.; Steele, M.A.; Fischer-Tlustos, A.J.; Costa, J.H.C. A Narrative Review on the Unexplored Potential of Colostrum as a Preventative Treatment and Therapy for Diarrhea in Neonatal Dairy Calves. Animals 2021, 11, 2221. https://doi.org/10.3390/ani11082221
Carter HSM, Renaud DL, Steele MA, Fischer-Tlustos AJ, Costa JHC. A Narrative Review on the Unexplored Potential of Colostrum as a Preventative Treatment and Therapy for Diarrhea in Neonatal Dairy Calves. Animals. 2021; 11(8):2221. https://doi.org/10.3390/ani11082221
Chicago/Turabian StyleCarter, Havelah S. M., David L. Renaud, Michael A. Steele, Amanda J. Fischer-Tlustos, and Joao H. C. Costa. 2021. "A Narrative Review on the Unexplored Potential of Colostrum as a Preventative Treatment and Therapy for Diarrhea in Neonatal Dairy Calves" Animals 11, no. 8: 2221. https://doi.org/10.3390/ani11082221