Diets for Dairy Cows with Different Proportions of Crude Protein Originating from Red Clover Silage versus Soybean Meal: Ruminal Degradation and Intestinal Digestibility of Amino Acids
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Rations Studied
2.2. Ruminal Degradation of Amino Acids
2.3. Intestinal Digestibility of Amino Acids
2.4. Chemical Analysis
2.5. Calculations and Statistical Analysis
3. Results
3.1. Amino Acid Concentration
3.2. Ruminal Degradation of Amino Acids
3.3. Intestinal Digestibility of Amino Acids
4. Discussion
4.1. Amino Acid Composition of Individual Feeds and Total Mixed Rations
4.2. Ruminal Degradation of Amino Acids
4.3. Intestinal Digestibility of Amino Acids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schulz, F.; Westreicher-Kristen, E.; Knappstein, K.; Molkentin, J.; Susenbeth, A. Replacing maize silage plus soybean meal with red clover silage plus wheat in diets for lactating dairy cows. J. Dairy Sci. 2018, 101, 1216–1226. [Google Scholar] [CrossRef]
- Vanhatalo, A.; Kuoppala, K.; Ahvenjärvi, S.; Rinne, M. Effects of feeding grass or red clover silage cut at two maturity stages in dairy cows. 1. Nitrogen metabolism and supply of amino acids. J. Dairy Sci. 2009, 92, 5620–5633. [Google Scholar] [CrossRef] [Green Version]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland-livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef] [PubMed]
- Moorby, J.M.; Ellis, N.M.; Davies, D.R. Assessment of dietary ratios of red clover and corn silages on milk production and milk quality in dairy cows. J. Dairy Sci. 2016, 99, 7982–7992. [Google Scholar] [CrossRef] [Green Version]
- Merry, R.J.; Lee, M.R.F.; Davies, D.R.; Dewhurst, R.J.; Moorby, J.M.; Scollan, N.D.; Theodorou, M.K. Effects of high-sugar ryegrass silage and mixtures with red clover silage on ruminant digestion. 1. In vitro and in vivo studies of nitrogen utilization. J. Anim. Sci. 2006, 84, 3049–3060. [Google Scholar] [CrossRef]
- Halmemies-Beauchet-Filleau, A.; Vanhatalo, A.; Toivonen, V.; Heikkilä, T.; Lee, M.R.F.; Shingfield, K.J. Effect of replacing grass silage with red clover silage on nutrient digestion, nitrogen metabolism, and milk fat composition in lactating cows fed diets containing a 60:40 forage-to-concentrate ratio. J. Dairy Sci. 2014, 97, 3761–3776. [Google Scholar] [CrossRef] [Green Version]
- Brito, A.F.; Broderick, G.A.; Colmenero, J.J.; Reynal, S.M. Effects of feeding formate-treated alfalfa silage or red clover silage on omasal nutrient flow and microbial protein synthesis in lactating dairy cows. J. Dairy Sci. 2007, 90, 1392–1404. [Google Scholar] [CrossRef]
- Westreicher-Kristen, E.; Blank, R.; Metges, C.C.; Susenbeth, A. Protein value of diets for dairy cows with different proportions of crude protein originating from red clover silage versus soybean meal. Anim. Feed Sci. Technol. 2018, 245, 126–135. [Google Scholar] [CrossRef]
- Kleinschmit, D.H.; Anderson, J.L.; Schingoethe, D.J.; Kalscheur, K.F.; Hippen, A.R. Ruminal and intestinal degradability of distillers grains plus solubles varies by source. J. Dairy Sci. 2007, 90, 2909–2918. [Google Scholar] [CrossRef]
- Mjoun, K.; Kalscheur, K.F.; Hippen, A.R.; Shingoethe, D.J. Ruminal degradability and intestinal digestibility of protein and amino acids in soybean and corn distillers grains products. J. Dairy Sci. 2010, 90, 4144–4154. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, J.Q.; Yang, W.Z.; Beauchemin, K.A. Ruminal and intestinal amino acid digestion of distiller´s grain vary with grain source and milling process. Anim. Feed Sci. Technol. 2012, 175, 121–130. [Google Scholar] [CrossRef]
- Westreicher-Kristen, E.; Steingass, H.; Rodehutscord, M. In situ degradation of amino acids and in vitro protein digestibility of undegraded CP of dried distillers’ grains with solubles from European ethanol plants. Animal 2013, 7, 1901–1909. [Google Scholar] [CrossRef]
- MacGregor, C.A.; Sniffen, C.J.; Hoover, W.H. Amino acids profiles of total and soluble protein in feedstuffs commonly fed to ruminants. J. Dairy Sci. 1978, 61, 566–573. [Google Scholar] [CrossRef]
- Erasmus, L.J.; Botha, P.M.; Cruywagen, C.W. Amino acid profile and intestinal digestibility in dairy cows of rumen-undegradable protein from various feedstuffs. J. Dairy Sci. 1994, 77, 541–551. [Google Scholar] [CrossRef]
- Van Straalen, W.M.; Odinga, J.J.; Mostert, W. Digestion of feed amino acids in the rumen and small intestine of dairy cows measured with nylon-bag techniques. Br. J. Nutr. 1997, 77, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Edmunds, B.; Südekum, K.-H.; Bennett, R.; Schröder, A.; Spiekers, H.; Schwarz, F.J. The amino acid composition of rumen-undegradable protein: A comparison between forages. J. Dairy Sci. 2013, 96, 4568–4577. [Google Scholar] [CrossRef]
- Schingoethe, D.J. Balancing the amino acid needs of the dairy cow. Anim. Feed Sci. Technol. 1996, 60, 153–160. [Google Scholar] [CrossRef]
- Waghorn, G.D.; Baldwin, R.L. Model of metabolite flux with mammary gland of the lactating cow. J. Dairy Sci. 1984, 67, 531–544. [Google Scholar] [CrossRef]
- VDLUFA. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten. In Handbuch Der Landwirtschaftlichen Versuchs- Und Untersuchungsmethodik (VDLUFA Methodenhandbuch), Bd. III. Die Chemische Untersuchung Von Futtermitteln; VDLUFA-Verlag: Darmstadt, Germany, 2007. [Google Scholar]
- Westreicher-Kristen, E.; Blank, R.; Schulz, F.; Susenbeth, A. Replacing maize silage with red clover silage in total mixed rations for dairy cows: In vitro ruminal fermentation characteristics and associative effects. Anim. Feed Sci. Technol. 2017, 227, 131–141. [Google Scholar] [CrossRef]
- Jones, B.N.; Gilligan, J.P. O-phtaldialdehyde precolumn derivitization and reverse phase high performance liquid chromatography of polypeptide hydrolysates and physiological fluids. J. Chromatogr. 1983, 266, 471–482. [Google Scholar] [CrossRef]
- Varzaru, I.; Untea, A.E.; Martura, T.; Olteanu, M.; Panaite, T.D.; Schitea, M.; Van, I. Development and validation of an RP-HPLC method for methionine, cystine and lysine separation and determination in corn Samples. Rev. Chem. 2013, 64, 673–679. [Google Scholar]
- NRC. National Research Council. In Nutrient Requirements of Dairy Cattle, 7th revised ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- CVB. Centraal Veevoeder Bureau. In CVB Feed Table 2021: Chemical Composition and Nutritional Values of Feedstuffs; Centraal Veevoeder Bureau: Wageningen, The Netherlands, 2021. [Google Scholar]
- Van Amburgh, M.E.; Collao-Saenz, E.A.; Higgs, R.J.; Ross, D.A.; Recktenwald, E.B.; Raffrenato, E.; Chase, L.E.; Overton, T.R.; Mills, J.K.; Foskolos, A. The Cornell Net Carbohydrate and Protein system: Updates to the model and evaluation of version 6.5. J. Dairy Sci. 2015, 98, 6361–6380. [Google Scholar] [CrossRef] [PubMed]
- Higgs, R.J.; Chase, L.E.; Ross, D.A.; Van Amburgh, M.E. Updating the Cornell Net Carbohydrate and Protein system feed library and analysing model sensitivity to feed inputs. J. Dairy Sci. 2015, 98, 6340–6360. [Google Scholar] [CrossRef] [PubMed]
- Van Duinkerken, G.; Blok, M.C.; Bannink, A.; Cone, J.W.; Dijkstra, J.; van Vuuren, A.M.; Tamminga, S. Update of the Dutch protein evaluation system for ruminants: The DVE/OEB210 system. J. Agric. Sci. 2011, 149, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Volden, H.; Larsen, M. Digestion and metabolism in the gastrointestinal tract. In NorFor−The Nordic Feed Evaluation System; Volden, H., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011. [Google Scholar]
- Vanzant, E.S.; Cochran, R.C.; Titgemeyer, E.C. Standardization of in situ techniques for ruminant feedstuff evaluation. J. Anim. Sci. 1998, 76, 2717–2729. [Google Scholar] [CrossRef] [PubMed]
- Vanhatalo, A. Assessment of Intestinal Feed Nitrogen Digestibility by the Mobile-Bag Method. Ph.D. Thesis, Agricultural Research Centre of Finland, Jokioinen, Finland, 1995. [Google Scholar]
- Lanzas, C.; Broderick, G.A.; Fox, D.G. Improved protein fractionation schemes for formulating rations with the Cornell Net Carbohydrate and Protein System. J. Dairy Sci. 2008, 91, 4881–4891. [Google Scholar] [CrossRef]
- Federal Republic of Germany. Tierschutzgesetz. 2014. Available online: https://www.gesetze-im-internet.de/tierschg/BJNR012770972.html (accessed on 9 May 2019).
Ingredient (g/kg DM) | TMR 1 | |||
---|---|---|---|---|
RCS15 | RCS30 | RCS45 | RCS60 | |
Maize silage | 610 | 466 | 316 | 162 |
Red clover silage | 136 | 275 | 421 | 571 |
Soybean meal | 159 | 108 | 55.0 | - |
Wheat | - | 54.9 | 110 | 168 |
Lupine seed | 85.9 | 87.0 | 88.8 | 89.6 |
Premix 2 | 9.10 | 9.10 | 9.20 | 9.40 |
Item | TMR Components 1 | TMR 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
MS | RCS | SBM | W | LS | RCS15 | RCS30 | RCS45 | RCS60 | |
Chemical composition (g/kg DM) | |||||||||
Organic matter 3 | 966 | 882 | 928 | 983 | 960 | 940 | 930 | 916 | 907 |
Crude protein | 71.2 | 194 | 457 | 115 | 351 | 172 | 174 | 173 | 175 |
Ether extract | 26.1 | 22.4 | 19.2 | 18.1 | 55.1 | 21.4 | 21.3 | 20.5 | 20.2 |
ANDFom 4 | 379 | 369 | 174 | 145 | 249 | 340 | 332 | 342 | 341 |
ADFom 5 | 219 | 296 | 113 | 32.1 | 180 | 212 | 219 | 239 | 244 |
Lignin(sa) | 26.4 | 57.9 | 8.92 | 7.40 | 6.11 | 28.0 | 32.4 | 36.9 | 41.0 |
EAA 6 (g/16 g N) | |||||||||
Cys | 1.11 | 0.44 | 1.41 | 2.22 | 1.29 | 1.07 | 0.99 | 0.78 | 0.64 |
His | 1.25 | 1.49 | 2.57 | 2.14 | 2.83 | 1.87 | 1.82 | 1.69 | 1.58 |
Ile | 3.66 † | 3.86 ‡ | 4.57 † | 3.35 † | 4.26 † | 4.14 † | 4.22 † | 4.18 † | 3.89 † |
Leu | 9.96 | 6.38 | 7.75 | 6.50 | 7.19 | 7.27 | 7.15 | 6.80 | 6.17 |
Lys | 2.15 * | 3.93 * | 5.90 * | 2.59 * | 4.76 * | 4.19 * | 4.20 * | 3.96 * | 3.70 * |
Met | 1.80 ‡ | 1.29 † | 1.60 ‡ | 1.70 ‡ | 0.73 | 1.45 ‡ | 1.40 ‡ | 1.35 | 1.16 |
Phe | 4.29 | 3.97 | 5.19 | 4.37 | 4.02 | 4.31 | 4.31 | 4.26 | 3.93 |
Thr | 2.80 | 3.68 | 4.07 | 2.77 | 3.73 | 3.33 | 3.40 | 3.54 | 3.37 |
Val | 4.85 | 4.79 | 4.71 | 4.07 | 3.95 ‡ | 4.51 | 4.70 | 4.80 ‡ | 4.56 ‡ |
TEAA | 31.9 | 29.8 | 37.8 | 29.7 | 32.8 | 32.1 | 32.2 | 31.4 | 29.0 |
MPS 7 | 0.470 | 0.440 | 0.557 | 0.438 | 0.483 | 0.474 | 0.474 | 0.462 | 0.427 |
NEAA 8 (g/16 g N) | |||||||||
Ala | 8.82 | 4.96 | 4.48 | 3.63 | 3.74 | 5.32 | 5.27 | 5.06 | 4.62 |
Arg | 1.73 | 2.31 | 7.01 | 3.88 | 10.4 | 4.89 | 4.48 | 3.95 | 3.35 |
Asp | 4.92 | 10.4 | 11.8 | 5.11 | 10.4 | 8.61 | 9.05 | 9.33 | 9.01 |
Glu | 10.9 | 7.04 | 18.1 | 27.5 | 21.7 | 13.5 | 12.9 | 11.6 | 10.3 |
Gly | 3.93 | 4.16 | 5.11 | 4.08 | 4.86 | 4.43 | 4.43 | 4.24 | 3.92 |
Ser | 3.06 | 3.69 | 5.24 | 4.58 | 5.29 | 3.94 | 3.92 | 3.85 | 3.60 |
Tyr | 6.15 | 4.12 | 3.32 | 2.50 | 3.26 | 4.30 | 4.54 | 4.56 | 4.33 |
TNEAA | 39.5 | 36.7 | 55.1 | 51.3 | 59.7 | 45.0 | 44.6 | 42.6 | 39.1 |
TAA | 71.4 | 66.5 | 92.8 | 81.0 | 92.4 | 77.1 | 76.8 | 74.0 | 68.1 |
Item | TMR Components 1 | TMR 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
MS | RCS | SBM | W | LS | RCS15 | RCS30 | RCS45 | RCS60 | |
EAA 3 (g/16 g N) | |||||||||
Cys | 1.52 | 0.69 | 0.86 | 0.03 | 0.76 | 1.17 | 1.12 | 0.99 | 0.95 |
His | 1.60 | 1.59 | 2.10 | 2.06 | 1.85 | 1.71 | 1.69 | 1.73 | 1.71 |
Ile | 4.17 † | 4.09 † | 4.56 † | 8.02 † | 7.01 † | 4.02 † | 4.10 † | 4.25 † | 4.32 † |
Leu | 8.04 | 6.67 | 7.60 | 4.65 | 4.35 | 6.78 | 6.87 | 6.99 | 6.97 |
Lys | 4.68 * | 4.82 * | 5.05 * | 4.39 * | 4.60 * | 4.81 * | 4.75 * | 4.99 * | 4.81 * |
Met | 2.22 | 1.44 ‡ | 1.35 | 0.13 ‡ | 0.77 | 1.45 | 1.46 | 1.50 | 1.45 |
Phe | 4.38 | 4.40 | 4.79 | 4.89 | 4.19 | 4.16 | 4.25 | 4.47 | 4.53 |
Thr | 4.37 | 4.01 | 3.87 | 4.21 | 3.65 | 3.64 | 3.77 | 3.98 | 4.11 |
Val | 4.65 ‡ | 4.59 | 4.80 ‡ | 5.36 | 4.51 ‡ | 4.37 ‡ | 4.46 ‡ | 4.71 ‡ | 4.88 ‡ |
TEAA 4 | 35.6 | 32.3 | 35.0 | 36.8 | 31.7 | 32.1 | 32.5 | 33.6 | 33.7 |
MPS 5 | 0.525 | 0.476 | 0.516 | 0.543 | 0.467 | 0.473 | 0.479 | 0.496 | 0.497 |
NEAA6 (g/16 g N) | |||||||||
Ala | 6.18 | 4.81 | 4.37 | 5.17 | 3.85 | 4.38 | 4.47 | 4.71 | 4.81 |
Arg | 3.17 | 3.18 | 5.47 | 4.70 | 5.81 | 3.87 | 3.93 | 3.67 | 3.68 |
Asp | 8.36 | 8.19 | 9.77 | 7.69 | 9.50 | 8.45 | 8.42 | 8.72 | 8.47 |
Glu | 11.5 | 8.62 | 13.6 | 17.5 | 14.7 | 11.3 | 11.0 | 10.6 | 9.90 |
Gly | 4.56 | 5.00 | 4.61 | 5.21 | 3.85 | 4.12 | 4.13 | 4.59 | 4.58 |
Ser | 4.08 | 3.92 | 4.86 | 4.54 | 4.71 | 4.05 | 4.08 | 4.21 | 4.14 |
Tyr | 2.98 | 2.69 | 3.27 | 2.88 | 2.60 | 2.42 | 2.47 | 2.70 | 2.64 |
TNEAA | 40.8 | 36.4 | 46.0 | 47.7 | 45.1 | 38.5 | 38.5 | 39.2 | 38.2 |
TAA | 76.5 | 68.7 | 81.0 | 84.5 | 76.7 | 70.6 | 71.0 | 72.8 | 71.9 |
Item | TMR Components 1 | TMR 2 | p > F 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS | RC | SBM | W | L | SEM | RCS15 | RCS30 | RCS45 | RCS60 | SEM | Linear | Quadratic | |
D CP 4 | 64.6 d | 82.7 b | 76.1 c | 94.2 a | 92.7 a | 1.29 | 75.8 c | 80.5 b,c | 83.4 a,b | 86.3 a | 2.60 | <0.001 | 0.49 |
EAA 5 | |||||||||||||
Cys | 61.1 d | 75.0 c,* | 86.1 b,* | 96.0 a | 96.0 a | 4.32 | 73.6 b | 78.4 a | 79.0 a | 79.7 a,* | 2.20 | <0.01 | 0.09 |
His | 55.0 c* | 82.1 b | 81.4 b* | 94.5 a | 95.4 a | 2.14 | 77.0 b | 81.3 ab | 82.5 a | 84.7 a | 2.44 | <0.001 | 0.39 |
Ile | 61.5 d | 82.2 b,c | 77.2 c | 86.4 a,b,* | 86.3 a,* | 2.34 | 76.5 b | 81.2 a,b | 83.2 a | 84.8 a | 2.27 | <0.001 | 0.16 |
Leu | 72.7 d,* | 82.4 b | 77.6 c | 95.9 a | 95.7 a | 1.26 | 77.4 b | 81.3 a,b | 83.0 a | 84.5 a | 2.42 | <0.001 | 0.29 |
Lys | 26.5 c,* | 79.4 b | 80.5 b,* | 90.4 a,* | 93.3 a | 1.62 | 72.3 b | 78.1 a | 80.3 a | 82.3 a | 2.17 | <0.001 | 0.08 |
Met | 63.2 c | 82.6 b | 80.8 b,* | 94.4 a | 92.9 a | 3.11 | 75.6 b | 79.9 a,b | 81.5 a | 82.9 a | 2.52 | <0.01 | 0.23 |
Phe | 65.4 c | 81.3 b | 78.9 b,* | 93.6 a | 92.6 a | 1.70 | 76.6 b | 80.8 a,b | 82.6 a | 84.2 a | 2.53 | <0.001 | 0.27 |
Thr | 47.3 d,* | 81.7 b | 78.3 c | 91.4 a,* | 93.1 a | 1.47 | 73.6 c | 78.5 b | 81.5 a,b | 83.3 a | 2.24 | <0.001 | 0.15 |
Val | 67.7 d | 83.9 b | 76.7 c | 92.5 a | 92.0 a | 1.52 | 76.6 b | 81.6 a | 83.8 a | 85.3 a | 2.17 | <0.001 | 0.10 |
NEAA 6 | |||||||||||||
Ala | 76.3 c | 83.7 b | 77.8 c | 91.9 a | 92.7 a | 1.40 | 80.1 b | 83.5 a,b | 84.7 a | 85.8 a | 1.82 | <0.001 | 0.19 |
Arg | 38.0 d | 76.8 c | 82.2 b | 93.1 a | 96.0 a | 2.36 | 80.9 | 82.8 | 84.7 | 84.9 | 2.56 | 0.02 | 0.46 |
Asp | 42.6 d | 86.8 b | 81.1 c | 91.5 a | 93.5 a | 1.24 | 76.3 c | 81.9 b | 84.6 a,b | 87.1 a | 2.11 | <0.001 | 0.13 |
Glu | 64.3 d | 79.4 c | 82.8 b | 96.4 a | 95.2 a | 1.38 | 79.8 b | 83.5 a,b | 85.0 a | 86.8 a | 2.13 | <0.001 | 0.35 |
Gly | 60.9 c | 79.8 b | 79.4 b | 92.7 a | 94.4 a | 1.37 | 76.6 b | 81.3 a | 82.1 a | 84.0 a | 2.03 | <0.001 | 0.19 |
Ser | 55.0 d | 82.2 b | 78.8 c | 94.4 a | 93.7 a | 1.38 | 75.1 b | 79.8 a,b | 82.0 a | 84.2 a | 2.39 | <0.001 | 0.28 |
Tyr | 83.6 c | 89.0 b | 77.5 a | 93.4 a | 94.4 a | 1.12 | 86.4 b | 89.4 a | 90.2 a | 91.6 a | 1.36 | <0.001 | 0.23 |
Item | TMR 1 | p > F 2 | |||||
---|---|---|---|---|---|---|---|
RCS15 | RCS30 | RCS45 | RCS60 | SEM | Linear | Quadratic | |
Intestinal digestibility 3 | |||||||
CP (g/100 g CP) | 76.0 a | 73.6 a | 63.5 b | 57.4 c | 0.91 | <0.001 | 0.08 |
Cys | 68.3 a,* | 68.2 a | 53.5 a,* | 46.0 b,* | 6.39 | <0.001 | 0.41 |
His | 78.1 a | 76.1 a | 65.4 b | 63.1 b | 1.36 | <0.001 | 0.92 |
Ile | 70.8 c | 80.6 a | 73.6 b,* | 71.9 b,c,* | 1.09 | 0.94 | <0.001 |
Leu | 89.2 a,* | 81.0 b | 74.0 c,* | 72.4 c,* | 0.83 | <0.001 | <0.01 |
Lys | 80.4 a | 79.5 a | 73.8 b,* | 71.7 b,* | 0.97 | <0.001 | 0.53 |
Met | 83.4 a,* | 84.0 a,* | 76.9 b,* | 73.4 b,* | 2.44 | <0.001 | 0.27 |
Phe | 80.9 a | 79.9 a | 73.1 b,* | 71.5 b,* | 0.91 | <0.001 | 0.75 |
Thr | 75.3 a | 75.6 a | 67.8 b | 66.0 b,* | 1.07 | <0.001 | 0.34 |
Val | 79.0 a | 78.2 a | 71.0 b,* | 69.3 b,* | 0.96 | <0.001 | 0.69 |
Intestinal absorbable 4 | |||||||
CP (g/100 g) | 18.4 a | 14.3 b | 10.5 c | 7.88 d | 0.17 | <0.001 | <0.01 |
Cys | 18.0 a | 14.7 a,b | 11.3 b,c | 9.32 c,* | 1.43 | <0.001 | 0.34 |
His | 18.0 a | 14.3 b | 11.5 c | 9.68 d,* | 0.24 | <0.001 | <0.01 |
Ile | 16.3 a,* | 15.2 b | 12.3 c,* | 11.0 d,* | 0.22 | <0.001 | 0.57 |
Leu | 20.1 a | 15.1 b | 12.6 c,* | 11.2 d,* | 0.14 | <0.001 | <0.001 |
Lys | 22.3 a,* | 17.4 b,* | 14.5 c,* | 12.7 d,* | 0.21 | <0.001 | <0.001 |
Met | 20.3 a,* | 16.9 b,* | 14.2 c,* | 12.6 d,* | 0.47 | <0.001 | <0.01 |
Phe | 18.9 a | 15.4 b | 12.7 c,* | 11.3 d,* | 0.17 | <0.001 | <0.001 |
Thr | 19.8 a | 16.2 b | 12.5 c,* | 11.0 d,* | 0.22 | <0.001 | <0.01 |
Val | 18.5 a | 14.4 b | 11.5 c | 10.2 d,* | 0.17 | <0.001 | <0.001 |
Total digestible 5 | |||||||
CP (g/100 g) | 94.2 b | 94.9 a | 93.9 b | 94.1 b | 0.17 | 0.22 | 0.21 |
Cys | 91.6 a,* | 93.2 a | 90.2 a,b,* | 89.1 b,* | 1.42 | 0.03 | 0.20 |
His | 95.0 a,b | 95.5 a | 93.9 c | 94.3 b,c | 0.24 | 0.01 | 0.78 |
Ile | 92.8 c | 96.3 a | 95.6 b,* | 95.7 a,b,* | 0.22 | <0.001 | <0.001 |
Leu | 97.6 a,* | 96.4 b | 95.6 c,* | 95.7 c,* | 0.14 | <0.001 | <0.01 |
Lys | 94.6 b | 95.5 a | 94.9 b | 95.0 a,b | 0.21 | 0.53 | 0.08 |
Met | 96.0 a,b,* | 96.8 a | 95.7 a,b,* | 95.4 b | 0.45 | 0.12 | 0.14 |
Phe | 95.5 b | 96.1 a | 95.3 b,* | 95.5 b | 0.17 | 0.30 | 0.23 |
Thr | 93.5 b | 94.7 a | 94.1 a,b | 94.3 a | 0.22 | 0.11 | 0.05 |
Val | 95.1 b | 96.0 a | 95.3 b,* | 95.5 a,b,* | 0.17 | 0.48 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westreicher-Kristen, E.; Blank, R.; Paschke-Beese, M.; Kühl, W.; Wolffram, S.; Metges, C.C.; Susenbeth, A. Diets for Dairy Cows with Different Proportions of Crude Protein Originating from Red Clover Silage versus Soybean Meal: Ruminal Degradation and Intestinal Digestibility of Amino Acids. Animals 2021, 11, 2177. https://doi.org/10.3390/ani11082177
Westreicher-Kristen E, Blank R, Paschke-Beese M, Kühl W, Wolffram S, Metges CC, Susenbeth A. Diets for Dairy Cows with Different Proportions of Crude Protein Originating from Red Clover Silage versus Soybean Meal: Ruminal Degradation and Intestinal Digestibility of Amino Acids. Animals. 2021; 11(8):2177. https://doi.org/10.3390/ani11082177
Chicago/Turabian StyleWestreicher-Kristen, Edwin, Ralf Blank, Monika Paschke-Beese, Wiebke Kühl, Siegfried Wolffram, Cornelia C. Metges, and Andreas Susenbeth. 2021. "Diets for Dairy Cows with Different Proportions of Crude Protein Originating from Red Clover Silage versus Soybean Meal: Ruminal Degradation and Intestinal Digestibility of Amino Acids" Animals 11, no. 8: 2177. https://doi.org/10.3390/ani11082177
APA StyleWestreicher-Kristen, E., Blank, R., Paschke-Beese, M., Kühl, W., Wolffram, S., Metges, C. C., & Susenbeth, A. (2021). Diets for Dairy Cows with Different Proportions of Crude Protein Originating from Red Clover Silage versus Soybean Meal: Ruminal Degradation and Intestinal Digestibility of Amino Acids. Animals, 11(8), 2177. https://doi.org/10.3390/ani11082177