Effect of Different Dietary Betaine Fortifications on Performance, Carcass Traits, Meat Quality, Blood Biochemistry, and Hematology of Broilers Exposed to Various Temperature Patterns
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Ethics and Area
2.2. Birds and Experimental Design
2.3. Measurements
2.3.1. Performance Measurements
2.3.2. Carcass and Meat Characteristic Measurements
2.4. Statistical Analysis
3. Results
3.1. Experimental Diets, and Performance during the Starter Period
3.2. Performance during the Grower-Finisher Period
3.3. Body Parts and Meat Characteristics
3.4. Breast Quality Characteristics
3.5. Blood Biochemical and Hematological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Attia, Y.A.; Hsaan, R.A.; Shehatta, M.H.; Abd El-Hady, S. Growth, carcass quality and serum constituents of slow growing chicks as affected by betaine addition to diets containing 2 different levels of methionine. Int. J. Poult. Sci. 2005, 4, 856–865. [Google Scholar]
- Attia, Y.A.; Hassan, S.S. Broiler tolerance to heat stress at various dietary protein/energy levels. Eur. Poult. Sci. 2017, 81. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Elnaggar, A.S. Productive, physiological and immunological responses of two broiler strains fed different dietary regimens and exposed to heat stress. Ital. J. Anim. Sci. 2018, 17, 686–697. [Google Scholar] [CrossRef] [Green Version]
- Farghly, M.F.A.; Mahrose, K.M.; Galal, A.E.; Ali, R.M.; Ahmad, E.A.M.; Rehman, Z.U.; Ullah, Z.; Ding, C. Implementation of different feed withdrawal times and water temperatures in managing turkeys during heat stress. Poult. Sci. 2018, 97, 3076–3084. [Google Scholar] [CrossRef]
- Farghly, M.F.A.; Mahrose, K.H.M.; Mahmoud, G.B.; Ali, R.M.; Daghash, W.; Metwally, K.A.; Abougaba, M.S. Lighting programs as an appliance to improve growing New Zealand white rabbit’s performance. Int. J. Biometeorol. 2020, 64, 1295–1303. [Google Scholar] [CrossRef]
- Farghly, M.F.A.; Mahrose, K.M.; Ullah, Z.; Rehman, Z.U.; Ding, C. Influence of swimming time in alleviating the deleterious effects of hot summer on growing Muscovy duck performance. Poult. Sci. 2017, 96, 3912–3919. [Google Scholar] [CrossRef]
- Rizk, Y.S.; Fahim, H.N.; Beshara, M.M.; Mahrose, K.M.; Awad, A.L. Response of duck breeders to dietary L-Carnitine supplementation during summer season. An. Acad. Bras. Ciências 2019, 91, e20180907. [Google Scholar] [CrossRef]
- Awad, A.; Fahim, H.; El-Shhat, A.E.; Mahrose, K.H.; Shazly, S. Dietary Echinacea purpurea administration enhanced egg laying performance, serum lipid profile, antioxidant status and semen quality in duck breeders during summer season. J. Anim. Physiol. Anim. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- De Silva, P.; Kalubowila, A. Influence of feed withdrawal for three hour time period on growth performance and carcass parameters of later stage of male broiler chickens. Iran. J. Appl. Anim. Sci. 2012, 2, 191–197. [Google Scholar]
- Hassan, F.A.; Mahrose, K.M.; Basyony, M.M. Effects of grape seed extract as a natural antioxidant on growth performance, carcass characteristics and antioxidant status of rabbits during heat stress. Arch. Anim. Nutr. 2016, 70, 141–154. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Mahrose, K.H.M.; Arif, M.; Chaudhry, M.T.; Saadeldin, I.M.; Saeed, M.; Soomro, R.N.; Abbasi, I.H.R.; Rehman, Z.U. Alleviating the environmental heat burden on laying hens by feeding on diets enriched with certain antioxidants (vitamin E and selenium) individually or combined. Environ. Sci. Pollut. Res. 2017, 24, 10708–10717. [Google Scholar] [CrossRef]
- Sakomura, N.K.; Barbosa, N.A.A.; Longo, F.A.; da Silva, E.P.; Bonato, M.A.; Fernandes, J.B.K. Effect of dietary betaine supplementation on the performance, carcass yield, and intestinal morphometrics of broilers submitted to heat stress. Braz. J. Poult. Sci. 2013, 15, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Ratriyanto, A.; Indreswari, R.; Nuhriawangsa, A.M.P. Effects of dietary protein level and betaine supplementation on nutrient digestibility and performance of Japanese quails. Braz. J. Poult. Sci. 2017, 19, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Attia, Y.A.; El-Hamid, A.E.A.; Abdallah, A.A.; Berika, M.A.; El-Gandy, M.F.; Sahin, K.; Abou-Shehema, B.M. Effect of betaine, vitamin C, and vitamin E on egg quality, hatchability, and markers of liver and renal functions in dual-purpose breeding hens exposed to chronic heat stress. Eur. Poult. Sci. 2018, 82. [Google Scholar] [CrossRef]
- Attia, Y.A.; El-Naggar, A.S.; Abou-Shehema, B.M.; Abdella, A.A. Effect of Supplementation with Trimethylglycine (Betaine) and/or Vitamins on Semen Quality, Fertility, Antioxidant Status, DNA Repair and Welfare of Roosters Exposed to Chronic Heat Stress. Animals 2019, 9, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzunoğlu, K.; Yalçin, S. Effects of dietary supplementation of betaine and sepiolite on performance and intestinal health in broilers. Ank. Üniv. Vet. Fak. Derg. 2019, 66, 221–229. [Google Scholar]
- Nutautaitė, M.; Alijošius, S.; Bliznikas, S.; Šašytė, V.; Vilienė, V.; Pockevičius, A.; Racevičiūtė-Stupelienė, A. Effect of betaine, a methyl group donor, on broiler chicken growth performance, breast muscle quality characteristics, oxidative status and amino acid content. Ital. J. Anim. Sci. 2020, 19, 621–629. [Google Scholar] [CrossRef]
- Summers, J.D. Effect of Choline or Betaine Supplementation on Broilers Exposed to Different Temperature Treatments. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2013. [Google Scholar]
- El-Shinnawy, A.M. Effect of betaine supplementation to methionine adequate diet on growth performance, carcass characteristics, some blood parameters and economic efficiency of broilers. J. Anim. Poult. Prod. 2015, 6, 27–41. [Google Scholar] [CrossRef]
- Willingham, B.D.; Ragland, T.J.; Ormsbee, M.J. Betaine supplementation may improve heat tolerance: Potential mechanisms in humans. Nutrients 2020, 12, 2939. [Google Scholar] [CrossRef]
- Wasti, S.; Sah, N.; Mishra, B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Ringuet, M.; Furness, J.B.; Dunshea, F.R. Betaine and antioxidants improve growth performance, breast muscle development and ameliorate thermoregulatory responses to cyclic heat exposure in broiler chickens. Animals 2018, 8, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Tamimi, H.; Mahmoud, K.; Al-Dawood, A.; Nusairat, B.; Bani Khalaf, H. Thermotolerance of broiler chicks ingesting dietary betaine and/or creatine. Animals 2019, 9, 742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; When, C.; Gu, Y.; Wang, C.; Chen, Y.; Zhuang, S.; Zhou, Y. Dietary betaine supplementation improves meat quality of transported broilers through altering muscle anaerobic glycolysis and antioxidant capacity. J. Sci. Food Agric. 2020, 100, 2656–2663. [Google Scholar] [CrossRef]
- Commission International de l’Eclairage. Official Recommendations on Uniform Colour Space, Colour Difference Equations and Metric Colour Terms. Color Res. Appl. 1977, 2. [Google Scholar] [CrossRef]
- Culler, R.D.; Parrish, F.C., Jr.; Smith, G.C.; Cross, H.R. Relationship of myofibril fragmentation index to certain chemical, physical and sensory characteristics of bovine longissimus muscle. J. Food Sci. 1978, 43, 1177–1180. [Google Scholar] [CrossRef]
- Hamm, R. Biochemistry of meat hydration. Adv. Food Res. 1960, 10, 355–463. [Google Scholar] [PubMed]
- Wilhelm, A.E.; Maganhini, M.B.; Hernández-Blazquez, F.J.; Ida, E.I.; Shimokomaki, M. Protease activity and the ultrastructure of broiler chicken PSE (pale, soft, exudative) meat. Food Chem. 2010, 119, 1201–1204. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.M.; Shiboob, M.M. Evaluation of the broiler meat quality in the retail market: Effects of type and source of carcasses. Rev. Mex. Cienc. Pecu. 2016, 7, 321–339. [Google Scholar] [CrossRef]
- Wheeler, T.L.; Cundiff, L.V.; Shackelford, S.D.; Koohmaraie, M. Characterization of biological types of cattle (Cycle VII): Carcass, yield, and longissimus palatability traits. J. Anim. Sci. 2005, 83, 196–207. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute. SAS/SRATI User’s Guide, Statistics; SAS Institute Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Attia, Y.A.; Hassan, R.A.; Qota, E.M. Recovery from adverse effects of heat stress on slow-growing chicks in the tropics 1: Effect of ascorbic acid and different levels of betaine. Trop. Anim. Health Prod. 2009, 41, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Keita, Å.V.; Söderholm, J.D. The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterol. Motil. 2010, 22, 718–733. [Google Scholar] [CrossRef]
- Dunshea, F.R.; Leury, B.J.; Fahri, F.T.; Digiacomo, K.; Hung, A.; Chauhan, S.S.; Clarke, I.J.; Collier, R.J.; Little, S.; Baumgard, L.H.; et al. Amelioration of thermal stress impacts in dairy cows. Anim. Prod. Sci. 2013, 53, 965–975. [Google Scholar] [CrossRef]
- Ratriyanto, A.; Mosenthin, R. Osmoregulatory function of betaine in alleviating heat stress in poultry. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1634–1650. [Google Scholar] [CrossRef]
- Chand, N.; Naz, S.; Maris, H.; Khan, R.U.; Khan, S.; Qureshi, M.S. Effect of betaine supplementation on the performance and immune response of heat stressed broilers. Pak. J. Zool. 2017, 49, 1857–1862. [Google Scholar] [CrossRef]
- Hassan, R.A.; Ebeid, T.A.; Abd El-Lateif, A.I.; Ismail, N.B. Effect of dietary betaine supplementation on growth, carcass and immunity of New Zealand White rabbits under high ambient temperature. Livest. Sci. 2011, 135, 103–109. [Google Scholar] [CrossRef]
- Mcdevitt, R.M.; Mack, S.; Wallis, I.R. Can betaine partially replace or enhance the effect of methionine by improving broiler growth and carcass characteristics. Br. Poult. Sci. 2000, 41, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Nofal, M.E.; Magda, A.; Galal, S.M.M.; Mousa, M.; Doaa, M.M.; Yassein, M.; Bealsh, A.M.A. Effect of dietary betaine supplementation on productive, physiological and immunological performance and carcass characteristic of growing developed chicks under the condition of heat stress. Egypt. Poult. Sci. J. 2015, 35, 237–259. [Google Scholar]
- Zhang, Z.Y.; Jia, G.Q.; Zuo, J.J.; Zhang, Y.; Lei, J.; Ren, L.; Feng, D.Y. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult. Sci. 2012, 91, 2931–2937. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yuan, Y.; Sun, C.; Balasubramanian, B.; Zhao, Z.; An, L. Effects of dietary betaine on growth performance, digestive function, carcass traits, and meat quality in indigenous yellow-feathered broiler under long-term heat stress. Animals 2019, 9, 506. [Google Scholar] [CrossRef] [Green Version]
- Attia, Y.A.; El-Hamid, A.E.-H.E.A.; Abedalla, A.A.; Berika, M.A.; Al-Harthi, M.A.; Kucuk, O.; Sahin, K.; Abou-Shehema, B.M. Laying performance, digestibility and plasma hormones in laying hens exposed to chronic heat stress as affected by betaine, vitamin C, and/or vitamin E supplementation. Springerplus 2016, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemi, H.A.; Nari, N. Effect of supplementary betaine on growth performance, blood biochemical profile, and immune response in heat-stressed broilers fed different dietary protein levels. J. Appl. Poult. Res. 2020, 29, 301–313. [Google Scholar] [CrossRef]
- Abdelsattar, M.M.; Hussein, A.M.A.; Haridy, M.; Abd El-Ati, M.N.; Saleem, A.M.; Zhang, N. Betaine counteracts the harmful effects of saline water induced to growing lambs. Egypt. J. Sheep Goat Sci. 2019, 14, 19–31. [Google Scholar]
1–18 d | 19–40 d | ||
---|---|---|---|
Ingredients | Basal Starter | Basel Finisher | |
% | |||
Corn | 59.105 | 62.00 | |
Soybean meal | 27.15 | 25.35 | |
Corn gluten meal | 6.70 | 4.275 | |
Corn oil | 2.53 | 3.72 | |
Dicalcium phosphate | 2.20 | 2.03 | |
Limestone | 0.70 | 0.57 | |
Salt | 0.40 | 0.40 | |
VM Mix 1 | 0.50 | 0.50 | |
DL-Methionine | 0.20 | 0.76 | |
Lysine-HCL | 0.33 | 0.24 | |
Threonine | 0.135 | 0.105 | |
Choline chloride | 0.05 | 0.05 | |
Total | 100 | 100 | |
Calculated 1 and determined 2 composition | |||
ME, kcal/kg 1 | 3050 | 3150 | |
Crude protein, % 2 | 22.0 | 21.3 | |
Crude fat,% 2 | 35.3 | 34.6 | |
Crude fiber,% 2 | 35.5 | 46.2 | |
Crude ash,% 2 | 60.3 | 54.2 | |
Lysine, % 1 | 1.22 | 1.10 | |
Sulfur amino acids, % 2 | 0.89 | 0.80 | |
Threonine, % 2 | 0.80 | 0.72 | |
Calcium, % 2 | 0.94 | 0.85 | |
Phosphorus, % 2 | 0.45 | 0.42 |
Performance | |||||
---|---|---|---|---|---|
Treatment | Betaine Added | FI (g) | BWG (g) | FCR (g:g) | PEF |
1 | 0.0% | 761 | 577 | 1.320 | 267 b |
2 | 0.075% | 761 | 581 | 1.311 | 270 b |
3 | 0.10% | 772 | 601 | 1.286 | 285 a |
4 | 0.15% | 748 | 576 | 1.299 | 271 b |
SEM | 8.96 | 8.21 | 0.009 | 4.92 | |
p value | NS | NS | NS | * |
Performance | ||||||
---|---|---|---|---|---|---|
Treatment | Betaine | Temperature | FI (g) | BWG (g) | FCR (g:g) | PEF |
Interaction between betaine and temperature | ||||||
1 | 0.0% | TN | 2981 | 1851 | 1.611 | 373 |
2 | 0.0% | HT | 2704 | 1658 | 1.635 | 346 |
3 | 0.075% | TN | 2887 | 1853 | 1.559 | 384 |
4 | 0.075% | HT | 2706 | 1705 | 1.589 | 363 |
5 | 0.10% | TN | 3004 | 1917 | 1.570 | 397 |
6 | 0.10% | HT | 2781 | 1758 | 1.583 | 370 |
7 | 0.15% | TN | 2972 | 1906 | 1.561 | 393 |
8 | 0.15% | HT | 2697 | 1690 | 1.597 | 352 |
SEM± | 35.84 | 30.05 | 0.014 | 7.76 | ||
Betaine average | ||||||
0.0% | 2843 | 1754 b | 1.623 a | 359 b | ||
0.075% | 2797 | 1779 ab | 1.574 b | 374 ab | ||
0.10% | 2893 | 1838 a | 1.577 b | 383 a | ||
0.15% | 2834 | 1798 ab | 1.579 b | 372 ab | ||
Temperature average | ||||||
Temperature average | ||||||
TN | 2961 a | 1882 a | 1.575 a | 387 a | ||
HT | 2722 b | 1703 b | 1.601 b | 358 b | ||
Statistical probabilities | ||||||
Betaine | NS | * | ** | * | ||
Temperature | *** | *** | * | *** | ||
Betaine × Temperature | NS | NS | NS | NS |
Dressing | Breast | Leg | Fat | Liver | IRW | |||
---|---|---|---|---|---|---|---|---|
Treatment | Betaine | Temperature | (%) | (%) | (%) | (%) | (%) | (%) |
Interaction between betaine and temperature | ||||||||
1 | 0.0% | TN | 72.5 | 39.5 | 29.9 | 1.7 | 2.3 | 3.8 a |
2 | 0.0% | HT | 72.9 | 38.4 | 30.5 | 2.3 | 2.2 | 3.5 ab |
3 | 0.075% | TN | 72.9 | 39.5 | 30.2 | 1.7 | 2.2 | 3.6 ab |
4 | 0.075% | HT | 72.9 | 38.5 | 30.1 | 1.9 | 2.3 | 3.7 a |
5 | 0.10% | TN | 73.5 | 40.0 | 28.9 | 1.8 | 2.3 | 3.4 b |
6 | 0.10% | HT | 72.9 | 38.0 | 30.8 | 1.7 | 2.1 | 3.8 a |
7 | 0.15% | TN | 73.1 | 40.4 | 29.8 | 1.7 | 2.2 | 3.6 ab |
8 | 0.15% | HT | 73.3 | 40.1 | 29.6 | 2.0 | 2.0 | 3.5 ab |
SEM± | 0.38 | 39.5 | 0.52 | 0.16 | 0.10 | 0.11 | ||
Betaine average | ||||||||
0.0% | 72.7 | 38.9 | 30.2 | 2.0 | 2.3 | 3.6 | ||
0.075% | 73.0 | 39.0 | 30.1 | 1.8 | 2.2 | 3.7 | ||
0.10% | 73.2 | 39.0 | 29.8 | 1.7 | 2.2 | 3.6 | ||
0.15% | 73.2 | 40.3 | 29.7 | 1.8 | 2.1 | 3.5 | ||
Temperature average | ||||||||
TN | 73.0 | 39.9 a | 29.7 | 1.7 b | 2.2 | 3.6 | ||
HT | 73.0 | 38.7 b | 30.3 | 2.0 a | 2.1 | 3.6 | ||
Statistical probabilities | ||||||||
Betaine | NS | NS | NS | NS | NS | NS | ||
Temperature | NS | ** | NS | * | NS | NS | ||
Betaine × Temperature | NS | NS | NS | NS | NS | * |
pH-10 min. | Temp.-10 min. (°C) | Color-10 min. | pH-24 h | Color-24 h | WHC | MFI | CL | SF (Kgf/g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | Betaine | Temperature | L* | a* | b* | L* | a* | b* | |||||||
Interaction between betaine and temperature | |||||||||||||||
1 | 0.0% | TN | 6.60 | 31.9 b | 47.5 | 3.64 b | 8.67 | 6.44 a | 50.9 | 3.83 | 9.13 | 0.24 | 62.1 | 39.7 | 1.57 |
2 | 0.0% | HT | 6.48 | 29.2 | 44.7 | 4.44 ab | 7.90 | 6.34 c | 47.1 | 4.60 | 10.31 | 0.23 | 57.2 | 35.7 | 1.81 |
3 | 0.075% | TN | 6.56 | 31.8 b | 45.4 | 4.02 ab | 8.87 | 6.37 bc | 48.8 | 4.22 | 11.10 | 0.22 | 63.9 | 35.1 | 1.28 |
4 | 0.075% | HT | 6.52 | 30.5 c | 45.9 | 3.24 b | 8.54 | 6.38 bc | 49.1 | 3.78 | 10.32 | 0.19 | 65.0 | 30.6 | 1.50 |
5 | 0.10% | TN | 6.61 | 32.2 b | 48.8 | 4.09 ab | 8.30 | 6.40 ab | 49.4 | 4.06 | 10.55 | 0.23 | 58.8 | 30.7 | 1.99 |
6 | 0.10% | HT | 6.45 | 33.1 a | 46.2 | 3.69 ab | 7.16 | 6.35 c | 47.3 | 5.00 | 9.48 | 0.22 | 52.9 | 31.3 | 1.72 |
7 | 0.15% | TN | 6.50 | 31.7 b | 47.8 | 3.14 b | 9.71 | 6.35 c | 48.3 | 3.92 | 11.59 | 0.23 | 62.3 | 33.9 | 1.63 |
8 | 0.15% | HT | 6.49 | 32.9 a | 45.4 | 4.97 a | 8.25 | 6.38 bc | 46.2 | 5.13 | 8.77 | 0.21 | 63.6 | 28.7 | 1.54 |
SEM± | 0.03 | 0.18 | 1.11 | 0.46 | 0.55 | 0.018 | 1.23 | 0.47 | 0.075 | 0.014 | 2.31 | 1.64 | 0.13 | ||
Betaine average | |||||||||||||||
0.0% | 6.54 | 30.6 c | 46.1 | 4.03 | 8.29 | 6.39 | 49.0 | 4.21 | 9.72 | 0.24 | 59.7 bc | 36.2 a | 1.69 ab | ||
0.075% | 6.54 | 31.1 b | 45.7 | 3.63 | 8.71 | 6.37 | 48.9 | 3.99 | 10.71 | 0.21 | 64.5 a | 32.8 b | 1.39 c | ||
0.10% | 6.53 | 32.6 a | 47.5 | 3.89 | 7.74 | 6.38 | 48.4 | 4.53 | 10.01 | 0.22 | 55.8 c | 31.0 b | 1.86 a | ||
0.15% | 6.49 | 32.3 a | 46.6 | 4.06 | 8.98 | 6.36 | 47.2 | 4.53 | 10.18 | 0.22 | 62.9 ab | 31.3 b | 1.59 bc | ||
Temperature average | |||||||||||||||
TN | 6.57 a | 31.9 a | 47.4 a | 3.72 | 8.89 a | 6.39 a | 49.3 a | 4.00 | 10.59 | 0.23 | 61.8 | 34.1 a | 1.62 | ||
HT | 6.49 b | 31.4 b | 45.5 b | 4.08 | 7.97 b | 6.36 b | 47.4 b | 4.62 | 9.72 | 0.22 | 59.7 | 31.6 b | 1.64 | ||
Statistical probabilities | |||||||||||||||
Betaine | NS | *** | NS | NS | NS | NS | NS | NS | NS | NS | ** | ** | ** | ||
Temperature | ** | *** | * | NS | * | * | * | NS | NS | NS | NS | * | NS | ||
Betaine × Temperature | NS | *** | NS | * | NS | ** | NS | NS | NS | NS | NS | NS | NS |
Glucose | TGs 1 | Cholesterol | TP 2 | Albumin | Globulin | A:G 3 | |||
---|---|---|---|---|---|---|---|---|---|
Treatment | Betaine | Temperature | (mg/dL) | (mg/dL) | (mg/dL) | (g/dL) | (g/dL) | (g/dL) | |
Interaction between betaine and temperature | |||||||||
1 | 0.0% | TN | 191.0 c | 78.9 | 95.0 | 2.9 | 1.7 | 1.2 | 1.6 |
2 | 0.0% | HT | 218.4 b | 71.2 | 102.0 | 3.1 | 1.8 | 1.3 | 1.6 |
3 | 0.075% | TN | 210.2 bc | 72.6 | 89.5 | 2.7 | 1.7 | 1.0 | 1.9 |
4 | 0.075% | HT | 221.6 b | 63.2 | 92.4 | 3.1 | 1.5 | 1.6 | 1.1 |
5 | 0.10% | TN | 202.6 bc | 68.2 | 90.6 | 3.0 | 1.7 | 1.3 | 1.5 |
6 | 0.10% | HT | 198.7 bc | 64.2 | 95.8 | 3.1 | 1.8 | 1.3 | 1.4 |
7 | 0.15% | TN | 198.7 bc | 73.3 | 92.0 | 3.0 | 1.7 | 1.3 | 1.5 |
8 | 0.15% | HT | 242.9 a | 63.3 | 95.5 | 2.9 | 1.5 | 1.5 | 1.2 |
SEM± | 8.3 | 3.33 | 3.02 | 0.09 | 0.08 | 0.11 | 0.19 | ||
Betaine average | |||||||||
0.0% | 204.7 | 75.0 a | 98.5 | 3.0 | 1.8 a | 1.2 | 1.6 | ||
0.075% | 215.9 | 67.9 b | 91.0 | 2.9 | 1.6 ab | 1.3 | 1.5 | ||
0.10% | 200.6 | 66.2 b | 93.2 | 3.1 | 1.7 ab | 1.3 | 1.5 | ||
0.15% | 220.8 | 68.3 b | 93.8 | 2.9 | 1.6 b | 1.4 | 1.3 | ||
Temperature average | |||||||||
TN | 200.6 b | 73.3 a | 91.8 b | 2.9 b | 1.7 | 1.2 b | 1.6 a | ||
HT | 220.4 a | 65.5 b | 96.0 a | 3.1 a | 1.6 | 1.4 a | 1.3 b | ||
Statistical probabilities | |||||||||
Betaine | NS | * | NS | NS | * | NS | NS | ||
Temperature | ** | ** | * | * | NS | ** | * | ||
Betaine × Temperature | * | NS | NS | NS | NS | NS | NS |
Hetophile | Lymphocyte | H:L 1 | |||
---|---|---|---|---|---|
Treatment | Betaine | Temperature | (%) | (%) | Ratio |
Interaction between Betaine and temperature | |||||
1 | 0.0% | TN | 12.0 | 88.0 | 0.14 |
2 | 0.0% | HT | 27.0 | 71.0 | 0.42 |
3 | 0.075% | TN | 14.0 | 86.0 | 0.16 |
4 | 0.075% | HT | 29.0 | 70.0 | 0.44 |
5 | 0.10% | TN | 15.0 | 85.0 | 0.18 |
6 | 0.10% | HT | 28.0 | 71.0 | 0.42 |
7 | 0.15% | TN | 12.0 | 87.0 | 0.14 |
8 | 0.15% | HT | 25.0 | 73.0 | 0.36 |
SEM± | 2.10 | 2.33 | 0.05 | ||
Betaine average | |||||
0.0% | 20.0 | 79.0 | 0.28 | ||
0.075% | 21.0 | 78.0 | 0.30 | ||
0.10% | 21.0 | 78.0 | 0.30 | ||
0.15% | 19.0 | 80.0 | 0.25 | ||
Temperature average | |||||
TN | 13.0 b | 86.0 a | 0.16 b | ||
HT | 27.0 a | 71.0 b | 0.41 a | ||
Statistical probabilities | |||||
Betaine | NS | NS | NS | ||
Temperature | *** | *** | *** | ||
Betaine × Temperature | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Sagan, A.A.; Al-Yemni, A.H.; Abudabos, A.M.; Al-Abdullatif, A.A.; Hussein, E.O. Effect of Different Dietary Betaine Fortifications on Performance, Carcass Traits, Meat Quality, Blood Biochemistry, and Hematology of Broilers Exposed to Various Temperature Patterns. Animals 2021, 11, 1555. https://doi.org/10.3390/ani11061555
Al-Sagan AA, Al-Yemni AH, Abudabos AM, Al-Abdullatif AA, Hussein EO. Effect of Different Dietary Betaine Fortifications on Performance, Carcass Traits, Meat Quality, Blood Biochemistry, and Hematology of Broilers Exposed to Various Temperature Patterns. Animals. 2021; 11(6):1555. https://doi.org/10.3390/ani11061555
Chicago/Turabian StyleAl-Sagan, Ahmed A., Abdullah H. Al-Yemni, Alaeldein M. Abudabos, Abdulaziz A. Al-Abdullatif, and Elsayed O. Hussein. 2021. "Effect of Different Dietary Betaine Fortifications on Performance, Carcass Traits, Meat Quality, Blood Biochemistry, and Hematology of Broilers Exposed to Various Temperature Patterns" Animals 11, no. 6: 1555. https://doi.org/10.3390/ani11061555
APA StyleAl-Sagan, A. A., Al-Yemni, A. H., Abudabos, A. M., Al-Abdullatif, A. A., & Hussein, E. O. (2021). Effect of Different Dietary Betaine Fortifications on Performance, Carcass Traits, Meat Quality, Blood Biochemistry, and Hematology of Broilers Exposed to Various Temperature Patterns. Animals, 11(6), 1555. https://doi.org/10.3390/ani11061555